Early Immunological and Inflammation Proteomic Changes in Elderly COVID-19 Patients Predict Severe Disease Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Proteomic Profiling of Soluble Factors in Serum
2.3. Cytometric Bead Array (CBA) Immunoassay
2.4. Statistical Analysis
3. Results
3.1. Baseline Information of Elderly COVID-19 Patients
3.2. The Serum Proteomic Profile of the Severity Progression of COVID-19 in Elderly Patients
3.3. The Development and Validation of a Predictive Model for the Severity Progression of COVID-19 in Elderly Patients
3.4. Correlation Analysis Between the Novel Biomarker, TRAIL, and Clinical Laboratory Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedreañez, A.; Mosquera-Sulbaran, J.; Muñoz, N. SARS-CoV-2 infection represents a high risk for the elderly: Analysis of pathogenesis. Arch. Virol. 2021, 166, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Underlying Conditions and the Higher Risk for Severe COVID-19. Available online: https://www.cdc.gov/covid/hcp/clinical-care/underlying-conditions.html (accessed on 6 February 2025).
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Rathod, D.; Kargirwar, K.; Patel, M.; Kumar, V.; Shalia, K.; Singhal, P. Risk Factors associated with COVID-19 Patients in India: A Single Center Retrospective Cohort Study. J. Assoc. Physicians India 2023, 71, 11–12. [Google Scholar] [CrossRef]
- Liu, B.; Spokes, P.; He, W.; Kaldor, J. High risk groups for severe COVID-19 in a whole of population cohort in Australia. BMC Infect. Dis. 2021, 21, 685. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. eBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Opal, S.M.; Girard, T.D.; Ely, E.W. The immunopathogenesis of sepsis in elderly patients. Clin. Infect. Dis. 2005, 41 (Suppl. 7), S504–S512. [Google Scholar] [CrossRef]
- Borczuk, A.C.; Salvatore, S.P.; Seshan, S.V.; Patel, S.S.; Bussel, J.B.; Mostyka, M.; Elsoukkary, S.; He, B.; Del Vecchio, C.; Fortarezza, F.; et al. COVID-19 pulmonary pathology: A multi-institutional autopsy cohort from Italy and New York City. Mod. Pathol. 2020, 33, 2156–2168. [Google Scholar] [CrossRef]
- Lim, Z.J.; Subramaniam, A.; Ponnapa Reddy, M.; Blecher, G.; Kadam, U.; Afroz, A.; Billah, B.; Ashwin, S.; Kubicki, M.; Bilotta, F.; et al. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 54–66. [Google Scholar] [CrossRef]
- Asperges, E.; Albi, G.; Zuccaro, V.; Sambo, M.; Pieri, T.C.; Calia, M.; Colaneri, M.; Maiocchi, L.; Melazzini, F.; Lasagna, A.; et al. Dynamic NLR and PLR in Predicting COVID-19 Severity: A Retrospective Cohort Study. Infect. Dis. Ther. 2023, 12, 1625–1640. [Google Scholar] [CrossRef] [PubMed]
- Kosidło, J.W.; Wolszczak-Biedrzycka, B.; Matowicka-Karna, J.; Dymicka-Piekarska, V.; Dorf, J. Clinical Significance and Diagnostic Utility of NLR, LMR, PLR and SII in the Course of COVID-19: A Literature Review. J. Inflamm. Res. 2023, 16, 539–562. [Google Scholar] [CrossRef] [PubMed]
- Colaneri, M.; Genovese, C.; Fassio, F.; Canuti, M.; Giacomelli, A.; Ridolfo, A.L.; Asperges, E.; Albi, G.; Bruno, R.; Antinori, S.; et al. Prognostic Significance of NLR and PLR in COVID-19: A Multi-Cohort Validation Study. Infect. Dis. Ther. 2024, 13, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Rambow, A.C.; Aschenbach, I.; Hagelund, S.; Tawfik, D.; Gundlach, J.P.; Weiße, S.; Maass, N.; Trauzold, A. Endogenous TRAIL-R4 critically impacts apoptotic and non-apoptotic TRAIL-induced signaling in cancer cells. Front. Cell Dev. Biol. 2022, 10, 942718. [Google Scholar] [CrossRef]
- Fröhlich, F.; Gronwald, B.; Bay, J.; Simon, A.; Poryo, M.; Geisel, J.; Tegethoff, S.A.; Last, K.; Rissland, J.; Smola, S.; et al. Expression of TRAIL, IP-10, and CRP in children with suspected COVID-19 and real-life impact of a computational signature on clinical decision-making: A prospective cohort study. Infection 2023, 51, 1349–1356. [Google Scholar] [CrossRef]
- Ventura, M.T.; Casciaro, M.; Gangemi, S.; Buquicchio, R. Immunosenescence in aging: Between immune cells depletion and cytokines up-regulation. Clin. Mol. Allergy 2017, 15, 21. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Shi, F.; Tan, K.; Ma, Q.; Chen, Y.; Jiang, X.; Li, X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol. 2020, 92, 856–862. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 2020, 5, 33. [Google Scholar] [CrossRef]
- Kalabin, A.; Mani, V.R.K.; Valdivieso, S.C.; Donaldson, B. Role of neutrophil-to-lymphocyte, lymphocyte-to-monocyte and platelet-to-lymphocyte ratios as predictors of disease severity in COVID-19 patients. Infez. Med. 2021, 29, 46–53. [Google Scholar]
- Zhu, Z.; Cai, T.; Fan, L.; Lou, K.; Hua, X.; Huang, Z.; Gao, G. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int. J. Infect. Dis. 2020, 95, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Calvert, B.A.; Quiroz, E.J.; Lorenzana, Z.; Doan, N.; Kim, S.; Senger, C.N.; Anders, J.J.; Wallace, W.D.; Salomon, M.P.; Henley, J.; et al. Neutrophilic inflammation promotes SARS-CoV-2 infectivity and augments the inflammatory responses in airway epithelial cells. Front. Immunol. 2023, 14, 1112870. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef]
- Melms, J.C.; Biermann, J.; Huang, H.; Wang, Y.; Nair, A.; Tagore, S.; Katsyv, I.; Rendeiro, A.F.; Amin, A.D.; Schapiro, D.; et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 2021, 595, 114–119. [Google Scholar] [CrossRef]
- Xu, J.B.; Guan, W.J.; Zhang, Y.L.; Qiu, Z.E.; Chen, L.; Hou, X.C.; Yue, J.; Zhou, Y.Y.; Sheng, J.; Zhao, L.; et al. SARS-CoV-2 envelope protein impairs airway epithelial barrier function and exacerbates airway inflammation via increased intracellular Cl− concentration. Signal Transduct. Target. Ther. 2024, 9, 74. [Google Scholar] [CrossRef]
- Junqueira, C.; Crespo, Â.; Ranjbar, S.; de Lacerda, L.B.; Lewandrowski, M.; Ingber, J.; Parry, B.; Ravid, S.; Clark, S.; Schrimpf, M.R.; et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 2022, 606, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Guermonprez, P.; Helft, J.; Claser, C.; Deroubaix, S.; Karanje, H.; Gazumyan, A.; Darasse-Jèze, G.; Telerman, S.B.; Breton, G.; Schreiber, H.A.; et al. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat. Med. 2013, 19, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G., Jr.; Sharma, A.; Ramaiah, A.; Sen, C.; Purkayastha, A.; Kohn, D.B.; Parcells, M.S.; Beck, S.; Kim, H.; Bakowski, M.A.; et al. Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication. Cell Rep. 2021, 35, 108940. [Google Scholar] [CrossRef]
- Kindrachuk, J.; Ork, B.; Hart, B.J.; Mazur, S.; Holbrook, M.R.; Frieman, M.B.; Traynor, D.; Johnson, R.F.; Dyall, J.; Kuhn, J.H.; et al. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob. Agents Chemother. 2015, 59, 1088–1099. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016, 8, 959–970. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Huang, H.J.; Zhuang, D.L.; Nasser, M.I.; Yang, M.H.; Zhu, P.; Zhao, M.Y. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Infect. Dis. Poverty 2020, 9, 99. [Google Scholar] [CrossRef] [PubMed]
- Diao, B.; Wang, C.; Wang, R.; Feng, Z.; Zhang, J.; Yang, H.; Tan, Y.; Wang, H.; Wang, C.; Liu, L.; et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat. Commun. 2021, 12, 2506. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Sperhake, J.P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann. Intern. Med. 2020, 173, 268–277. [Google Scholar] [CrossRef]
- Wu, T.; Zuo, Z.; Kang, S.; Jiang, L.; Luo, X.; Xia, Z.; Liu, J.; Xiao, X.; Ye, M.; Deng, M. Multi-organ Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Aging Dis. 2020, 11, 874–894. [Google Scholar] [CrossRef]
- Han, E.; Youn, S.; Kwon, K.T.; Kim, S.C.; Jo, H.Y.; Jung, I. Disease progression associated cytokines in COVID-19 patients with deteriorating and recovering health conditions. Sci. Rep. 2024, 14, 24712. [Google Scholar] [CrossRef]
- Tegethoff, S.A.; Danziger, G.; Kühn, D.; Kimmer, C.; Adams, T.; Heintz, L.; Metz, C.; Reifenrath, K.; Angresius, R.; Mang, S.; et al. TNF-related apoptosis-inducing ligand, interferon gamma-induced protein 10, and C-reactive protein in predicting the progression of SARS-CoV-2 infection: A prospective cohort study. Int. J. Infect. Dis. 2022, 122, 178–187. [Google Scholar] [CrossRef]
- Condamine, T.; Ramachandran, I.; Youn, J.I.; Gabrilovich, D.I. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu. Rev. Med. 2015, 66, 97–110. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; de Sá, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2021, 218, e20201707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Leng, Y.; Zhang, Y.; Wu, K.; Ji, Y.; Lei, S.; Xia, Z. Meta-analysis of coagulation parameters associated with disease severity and poor prognosis of COVID-19. Int. J. Infect. Dis. 2020, 100, 441–448. [Google Scholar] [CrossRef]
- Simoncini, S.; Njock, M.S.; Robert, S.; Camoin-Jau, L.; Sampol, J.; Harlé, J.R.; Nguyen, C.; Dignat-George, F.; Anfosso, F. TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: A potential mechanism linking inflammation and coagulation. Circ. Res. 2009, 104, 943–951. [Google Scholar] [CrossRef]
Characteristics | NS-N (n = 144) | NS-S (n = 38) | p Value |
---|---|---|---|
Personal information | |||
Sex | |||
Male | 87 (60.42%) | 28 (73.68%) | 0.131 |
Female | 57 (39.58%) | 10 (26.32%) | |
Age (years) * | 79.00 (69.00, 89.00) | 84.00 (75.00, 88.00) | 0.039 |
Comorbidities | |||
Circulatory system diseases | 104 (72.22%) | 27 (71.05%) | 0.886 |
Endocrine system diseases | 31 (21.53%) | 7 (18.42%) | 0.675 |
Digestive system diseases | 40 (27.78%) | 8 (21.05%) | 0.403 |
Nervous System diseases | 27 (18.75%) | 9 (23.68%) | 0.497 |
Urinary system diseases | 29 (20.14%) | 10 (26.32%) | 0.409 |
Respiratory system diseases | 19 (13.19%) | 3 (7.89%) | 0.576 |
Musculoskeletal system diseases | 11 (7.64%) | 4 (10.53%) | 0.521 |
Other diseases | 19 (13.19%) | 3 (7.89%) | 0.576 |
Clinical information | |||
Time from onset to sample collection (days) | 7.00 (3.00, 10.00) | 6.00 (4.00, 8.00) | 0.458 |
Onset symptoms | |||
Fever | 120 (83.33%) | 32 (84.21%) | 0.897 |
Cough | 106 (73.61%) | 32 (84.21%) | 0.175 |
Expectoration | 89 (61.81%) | 24 (63.16%) | 0.879 |
Sore throat | 46 (31.94%) | 11 (28.95%) | 0.723 |
Others | 86 (59.72%) | 27 (71.05%) | 0.200 |
Vaccination | |||
Unvaccinated | 21 (14.58%) | 5 (13.16%) | 0.726 |
Vaccinated | 26 (18.06%) | 5 (13.16%) | |
Unknown | 97 (67.36%) | 28 (73.68%) | |
Immune-related parameters | |||
WBC (109/L) ** | 4.84 (3.80, 6.73) | 6.31 (4.78, 8.12) | 0.007 |
Neutrophils (%) *** | 70.10 (58.25, 81.40) | 83.65 (76.80, 87.70) | <0.001 |
Lymphocytes (%) *** | 18.70 (10.45, 28.65) | 10.50 (6.10, 16.50) | <0.001 |
Monocytes (%) *** | 8.10 (5.25, 11.25) | 5.00 (2.70, 7.60) | <0.001 |
Neutrophils (109/L) *** | 3.42 (2.40, 5.09) | 5.06 (3.91, 7.11) | <0.001 |
Lymphocytes (109/L) *** | 0.95 (0.65, 1.27) | 0.66 (0.43, 0.90) | <0.001 |
Monocytes (109)/L) | 0.40 (0.27, 0.56) | 0.29 (0.18, 0.56) | 0.082 |
PCT (ng/mL) *** | 0.06 (0.03, 0.10) | 0.24 (0.08, 0.64) | <0.001 |
CRP (mg/L) * | 16.09 (4.50, 44.20) | 51.15 (5.00, 88.40) | 0.023 |
IL-6 (pg/mL) *** | 18.28 (6.33, 43.24) | 51.98 (20.45, 188.40) | <0.001 |
NLR *** | 3.65 (1.94, 7.60) | 7.78 (4.60, 14.63) | <0.001 |
PLR | 180.11 (123.44, 278.05) | 226.67 (137.50, 358.62) | 0.350 |
LMR | 2.29 (1.58, 3.73) | 2.10 (1.10, 3.50) | 0.120 |
SII ** | 625.80 (331.02, 1258.00) | 1505.06 (597.57, 2024.66) | 0.004 |
Coagulation-related parameters | |||
Platelet (109/L) * | 165.00 (133.00, 214.00) | 144.00 (121.00, 188.00) | 0.010 |
Fibrinogen (g/L) ** | 4.65 (3.52, 6.49) | 5.80 (4.43, 7.64) | 0.002 |
D-dimer (mg/L) * | 0.49 (0.24, 0.96) | 0.84 (0.32, 1.75) | 0.010 |
Cardiac-related parameters | |||
Myoglobin (ng/mL) *** | 48.37 (31.67, 90.55) | 141.60 (68.33, 196.40) | <0.001 |
BNP (pg/mL) *** | 322.90 (108.00, 762.20) | 613.70 (387.00, 2953.00) | <0.001 |
CK (U/L) ** | 77.00 (50.00, 135.00) | 131.00 (68.00, 360.00) | 0.002 |
LDH (U/L) *** | 227.00 (192.00, 266.00) | 283.00 (251.00, 368.00) | <0.001 |
Liver-related parameters | |||
ALT (U/L) | 20.00 (16.00, 29.00) | 21.00 (16.00, 30.00) | 0.429 |
AST (U/L) *** | 27.00 (22.00, 37.00) | 39.00 (30.00, 49.00) | <0.001 |
TBil (μmol/L) | 9.50 (6.60, 12.90) | 11.20 (7.80, 13.60) | 0.136 |
Renal-related parameters | |||
Urea (mmol/L) *** | 5.60 (4.50, 7.40) | 8.20 (6.24, 10.60) | <0.001 |
Creatinine (μmol/L) *** | 77.00 (61.00, 91.00) | 99.00 (73.00, 118.00) | <0.001 |
Uric acid (μmol/L) | 270.40 (215.00, 336.00) | 288.00 (204.00, 347.00) | 0.773 |
Model | Features | Set | AUC (95%CI) | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|---|---|
1 | PCT | Training | 0.736 (0.620, 0.851) | 0.560 | 0.860 | 0.808 |
Validation | 0.778 (0.591, 0.965) | 0.700 | 0.907 | 0.849 | ||
2 | PCT + IL-6 | Training | 0.732 (0.602, 0.862) | 0.520 | 0.950 | 0.848 |
Validation | 0.844 (0.707, 0.981) | 0.600 | 0.977 | 0.887 | ||
3 | PCT + IL-6 + mono% | Training | 0.833 (0.749, 0.916) | 0.880 | 0.680 | 0.856 |
Validation | 0.842 (0.708, 0.975) | 0.600 | 0.977 | 0.867 | ||
4 | PCT + IL-6 + mono% + lymp# | Training | 0.844 (0.767, 0.921) | 0.840 | 0.700 | 0.848 |
Validation | 0.867 (0.736, 0.999) | 0.900 | 0.767 | 0.887 | ||
5 | PCT + IL-6 + mono% + lymp# + TRAIL | Training | 0.850 (0.772, 0.927) | 0.960 | 0.620 | 0.864 |
Validation | 0.870 (0.729, 1.000) | 0.900 | 0.791 | 0.906 | ||
6 | PCT + IL-6 + mono% + lymp# + TRAIL + CXCL5 | Training | 0.845 (0.766, 0.924) | 0.960 | 0.620 | 0.872 |
Validation | 0.933 (0.857, 1.000) | 0.900 | 0.873 | 0.906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xu, W.; Tu, B.; Xiao, Z.; Li, X.; Huang, L.; Yuan, X.; Zhou, J.; Yang, X.; Yang, J.; et al. Early Immunological and Inflammation Proteomic Changes in Elderly COVID-19 Patients Predict Severe Disease Progression. Biomedicines 2025, 13, 1162. https://doi.org/10.3390/biomedicines13051162
Liu S, Xu W, Tu B, Xiao Z, Li X, Huang L, Yuan X, Zhou J, Yang X, Yang J, et al. Early Immunological and Inflammation Proteomic Changes in Elderly COVID-19 Patients Predict Severe Disease Progression. Biomedicines. 2025; 13(5):1162. https://doi.org/10.3390/biomedicines13051162
Chicago/Turabian StyleLiu, Shiyang, Wen Xu, Bo Tu, Zhiqing Xiao, Xue Li, Lei Huang, Xin Yuan, Juanjuan Zhou, Xinxin Yang, Junlian Yang, and et al. 2025. "Early Immunological and Inflammation Proteomic Changes in Elderly COVID-19 Patients Predict Severe Disease Progression" Biomedicines 13, no. 5: 1162. https://doi.org/10.3390/biomedicines13051162
APA StyleLiu, S., Xu, W., Tu, B., Xiao, Z., Li, X., Huang, L., Yuan, X., Zhou, J., Yang, X., Yang, J., Chang, D., Chen, W., & Wang, F.-S. (2025). Early Immunological and Inflammation Proteomic Changes in Elderly COVID-19 Patients Predict Severe Disease Progression. Biomedicines, 13(5), 1162. https://doi.org/10.3390/biomedicines13051162