Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = neuronal migration disorders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1869 KiB  
Review
Understanding the Molecular Basis of Miller–Dieker Syndrome
by Gowthami Mahendran and Jessica A. Brown
Int. J. Mol. Sci. 2025, 26(15), 7375; https://doi.org/10.3390/ijms26157375 - 30 Jul 2025
Viewed by 297
Abstract
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological [...] Read more.
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological defects, distinctive facial abnormalities, cognitive impairments, seizures, growth retardation, and congenital heart and liver abnormalities. One hallmark feature of MDS is an unusually smooth brain surface due to abnormal neuronal migration during early brain development. Several genes located within the MDS locus have been implicated in the pathogenesis of MDS, including PAFAH1B1, YWHAE, CRK, and METTL16. These genes play a role in the molecular and cellular pathways that are vital for neuronal migration, the proper development of the cerebral cortex, and protein translation in MDS. Improved model systems, such as MDS patient-derived organoids and multi-omics analyses indicate that WNT/β-catenin signaling, calcium signaling, S-adenosyl methionine (SAM) homeostasis, mammalian target of rapamycin (mTOR) signaling, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and others are dysfunctional in MDS. This review of MDS integrates details at the clinical level alongside newly emerging details at the molecular and cellular levels, which may inform the development of novel therapeutic strategies for MDS. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

31 pages, 2317 KiB  
Review
Roles of Ion Channels in Oligodendrocyte Precursor Cells: From Physiology to Pathology
by Jianing Wang, Yu Shen, Ping Liao, Bowen Yang and Ruotian Jiang
Int. J. Mol. Sci. 2025, 26(15), 7336; https://doi.org/10.3390/ijms26157336 - 29 Jul 2025
Viewed by 172
Abstract
Oligodendrocyte precursor cells (OPCs) are a distinct and dynamic glial population that retain proliferative and migratory capacities throughout life. While traditionally recognized for differentiating into oligodendrocytes (OLs) and generating myelin to support rapid nerve conduction, OPCs are now increasingly appreciated for their diverse [...] Read more.
Oligodendrocyte precursor cells (OPCs) are a distinct and dynamic glial population that retain proliferative and migratory capacities throughout life. While traditionally recognized for differentiating into oligodendrocytes (OLs) and generating myelin to support rapid nerve conduction, OPCs are now increasingly appreciated for their diverse and non-canonical roles in the central nervous system (CNS), including direct interactions with neurons. A notable feature of OPCs is their expression of diverse ion channels that orchestrate essential cellular functions, including proliferation, migration, and differentiation. Given their widespread distribution across the CNS, OPCs are increasingly recognized as active contributors to the development and progression of various neurological disorders. This review aims to present a detailed summary of the physiological and pathological functions of ion channels in OPCs, emphasizing their contribution to CNS dysfunction. We further highlight recent advances suggesting that ion channels in OPCs may serve as promising therapeutic targets across a broad range of disorders, including, but not limited to, multiple sclerosis (MS), spinal cord injury, amyotrophic lateral sclerosis (ALS), psychiatric disorders, Alzheimer’s disease (AD), and neuropathic pain (NP). Finally, we discuss emerging therapeutic strategies targeting OPC ion channel function, offering insights into potential future directions in the treatment of CNS diseases. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

46 pages, 2278 KiB  
Review
Melanin-Concentrating Hormone (MCH): Role in Mediating Reward-Motivated and Emotional Behavior and the Behavioral Disturbances Produced by Repeated Exposure to Reward Substances
by Olga Karatayev and Sarah F. Leibowitz
Int. J. Mol. Sci. 2025, 26(15), 7143; https://doi.org/10.3390/ijms26157143 - 24 Jul 2025
Viewed by 293
Abstract
Clinical and animal studies suggest that multiple brain systems are involved in mediating reward-motivated and related emotional behavior including the consumption of commonly used drugs and palatable food, and there is evidence that the repeated ingestion of or exposure to these rewarding substances [...] Read more.
Clinical and animal studies suggest that multiple brain systems are involved in mediating reward-motivated and related emotional behavior including the consumption of commonly used drugs and palatable food, and there is evidence that the repeated ingestion of or exposure to these rewarding substances may in turn stimulate these brain systems to produce an overconsumption of these substances along with co-occurring emotional disturbances. To understand this positive feedback loop, this review focuses on a specific population of hypothalamic peptide neurons expressing melanin-concentrating hormone (MCH), which are positively related to dopamine reward and project to forebrain areas that mediate this behavior. It also examines neurons expressing the peptide hypocretin/orexin (HCRT) that are anatomically and functionally linked to MCH neurons and the molecular systems within these peptide neurons that stimulate their development and ultimately affect behavior. This report first describes evidence in animals that exposure in adults and during adolescence to rewarding substances, such as the drugs alcohol, nicotine and cocaine and palatable fat-rich food, stimulates the expression of MCH as well as HCRT and their intracellular molecular systems. It also increases reward-seeking and emotional behavior, leading to excess consumption and abuse of these substances and neurological conditions, completing this positive feedback loop. Next, this review focuses on the model involving embryonic exposure to these rewarding substances. In addition to revealing a similar positive feedback circuit, this model greatly advances our understanding of the diverse changes that occur in these neuropeptide/molecular systems in the embryo and how they relate, perhaps causally, to the disturbances in behavior early in life that predict a later increased risk of developing substance use disorders. Studies using this model demonstrate in animals that embryonic exposure to these rewarding substances, in addition to stimulating the expression of peptide neurons, increases the intracellular molecular systems in neuroprogenitor cells that promote their development. It also alters the morphology, migration, location and neurochemical profile of the peptide neurons and causes them to develop aberrant neuronal projections to forebrain structures. Moreover, it produces disturbances in behavior at a young age, which are sex-dependent and occur in females more than in males, that can be directly linked to the neuropeptide/molecular changes in the embryo and predict the development of behavioral disorders later in life. These results supporting the close relationship between the brain and behavior are consistent with clinical studies, showing females to be more vulnerable than males to developing substance use disorders with co-occurring emotional conditions and female offspring to respond more adversely than male offspring to prenatal exposure to rewarding substances. It is concluded that the continued consumption of or exposure to rewarding substances at any stage of life can, through such peptide brain systems, significantly increase an individual’s vulnerability to developing neurological disorders such as substance use disorders, anxiety, depression, or cognitive impairments. Full article
(This article belongs to the Special Issue The Role of Neurons in Human Health and Disease—3rd Edition)
Show Figures

Figure 1

19 pages, 3308 KiB  
Article
Transcriptomic Changes in the Frontal Cortex of Juvenile Pigs with Diet-Induced Metabolic Dysfunction-Associated Liver Disease
by Kyle Mahon, Mohammed Abo-Ismail, Emily Auten, Rodrigo Manjarin and Magdalena Maj
Biomedicines 2025, 13(7), 1567; https://doi.org/10.3390/biomedicines13071567 - 26 Jun 2025
Viewed by 559
Abstract
Background/Objectives: Neurodegenerative disorders have a complex multifactorial pathogenesis that develop decades before the initial symptoms occur. One of the crucial factors in the development of neurodegenerative disorders is an unbalanced diet. A pediatric animal model of diet-induced metabolic dysfunction-associated steatotic liver disease [...] Read more.
Background/Objectives: Neurodegenerative disorders have a complex multifactorial pathogenesis that develop decades before the initial symptoms occur. One of the crucial factors in the development of neurodegenerative disorders is an unbalanced diet. A pediatric animal model of diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) was established by feeding juvenile Iberian pigs a diet high in fat and fructose for 10 weeks. The aim of this study was to investigate the initial molecular imbalances in the frontal cortex (FC) of diet-induced juvenile MASLD pig model and determine whether these changes are associated with neuronal loss. Methods: Eighteen 15-day-old Iberian pigs were randomly assigned to either a standard diet (SD) or a Western diet (WD) for 10 weeks. A short-term recognition memory test and animal activity was recorded during the study. Animals were euthanized in week 10, and the FC and hippocampus (HIP) tissue samples were collected for immunohistochemistry and transcriptomics analyses. Results: WD-fed pigs developed MASLD. There were no significant differences in animals’ activity or recognition memory between WD and SD. To identify and quantify mature neurons, NeuN immunostaining intensity was measured, which was significantly lower in the FC of WD than SD (p ≤ 0.05), but it did not change in HIP (p ≥ 0.05). The Wnt/β-catenin pathway, which promotes neuronal survival and neurogenesis, was downregulated in FC of WD-fed pigs (p ≤ 0.05). Similarly, cytoskeleton organization and extracellular matrix biological processes were downregulated in FC of WD-fed pigs (p ≤ 0.05), whereas the mitochondrial respiratory chain complex and mitochondrion increased in FC of WD compared with SD (p ≤ 0.01). There were several other significantly modulated pathways including signal transduction, cell migration, axon guidance, and calcium ion binding. Conclusions: The high-fructose, high-fat diet led to neuronal loss in the frontal cortex of MASLD pigs and dysregulated gene expression of the Wnt/β-catenin signaling pathway, cytoskeleton organization, extracellular matrix, and mitochondrial respiratory chain—all pathways that are found deregulated in neurodegnerative diseases. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Neurodegenerative Disorders)
Show Figures

Figure 1

11 pages, 368 KiB  
Review
Pontocerebellar Hypoplasia Type 1 and Associated Neuronopathies
by Mario Škarica, Gyula Acsadi and Sasha A. Živković
Genes 2025, 16(5), 585; https://doi.org/10.3390/genes16050585 - 15 May 2025
Viewed by 667
Abstract
Pontocerebellar hypoplasia is a rare neurodegenerative syndrome characterized by severe hypoplasia or atrophy of pons and cerebellum that may be associated with other brain malformations, microcephaly, optic nerve atrophy, dystonia, ataxia and neuromuscular disorders. At this time, there are 17 variants of PCH [...] Read more.
Pontocerebellar hypoplasia is a rare neurodegenerative syndrome characterized by severe hypoplasia or atrophy of pons and cerebellum that may be associated with other brain malformations, microcephaly, optic nerve atrophy, dystonia, ataxia and neuromuscular disorders. At this time, there are 17 variants of PCH distinguished by clinical presentation and distinctive radiological and biochemical features in addition to pontine and cerebellar hypoplasia. PCH1 is defined as PCH variant associated with anterior horn degeneration in the spinal cord with muscle weakness and hypotonia, and is associated with recessive variants in genes VRK1, EXOSC3, EXOSC8, EXOSC9 and SLC25A46. Neuromuscular manifestations may clinically present as amyotrophic lateral sclerosis (ALS), motor neuropathy (HMN) or neuronopathy (non-5q spinal muscular atrophy; SMA) or sensorimotor polyneuropathy (HMSN). Physiologic functions of PCH1-associated genes include regulation of RNA metabolism, mitochondrial fission and neuronal migration. Overall, complex phenotypes associated with PCH1 gene variants ranging from PCH and related neurodevelopmental disorders combined with neuromuscular disorders to isolated neuromuscular disorders have variable outcomes with isolated neuromuscular disorders typically having later onset with better outcomes. Improved understanding of pathogenesis of pontocerebellar hypoplasia and its association with motor neuronopathies and peripheral neuropathies may provide us with valuable insights and lead to potential new therapeutic targets for neurodegenerative disorders. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

23 pages, 7439 KiB  
Article
Nardostachys jatamansi Extract and Nardosinone Exert Neuroprotective Effects by Suppressing Glucose Metabolic Reprogramming and Modulating T Cell Infiltration
by Congyan Duan, Weifang Lin, Mingjie Zhang, Bianxia Xue, Wangjie Sun, Yang Jin, Xiaoxu Zhang, Hong Guo, Qing Yuan, Mingyu Yu, Qi Liu, Naixuan Wang, Hong Wang, Honghua Wu and Shaoxia Wang
Cells 2025, 14(9), 644; https://doi.org/10.3390/cells14090644 - 28 Apr 2025
Viewed by 925
Abstract
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. [...] Read more.
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. This study investigated the effects of ethyl acetate extract (NJ-1A) from N. jatamansi and its active constituent nardosinone on neuroinflammatory mediator release, glucose metabolic reprogramming, and T cell migration using both in vitro and in vivo experimental models. Methods: Lipopolysaccharide(LPS)-induced BV-2 microglial cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced male C57BL/6N mouse chronic model of Parkinson’s disease were applied. Results: Both NJ-1A and Nar could significantly suppress LPS-induced production of M1 pro-inflammatory factors or markers in microglia and could inhibit the glycolytic process and promote oxidative phosphorylation via the AKT/mTOR signaling pathway. Furthermore, they exhibited the capacity to attenuate chemokine release from activated microglia, consequently reducing T cell migration. In vivo experiments revealed that NJ-1A and Nar effectively inhibited microglial activation, diminished T cell infiltration, and mitigated the loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra of MPTP-induced mice. Conclusions: NJ-1A and nardosinone exert neuroprotective effects through the modulation of microglial polarization states, regulation of metabolic reprogramming, and suppression of T cell infiltration. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

16 pages, 3702 KiB  
Article
γ-Aminobutyric Acid Transporter Mutation GAT1 (S295L) Substantially Impairs Neurogenesis in Dentate Gyrus
by Weitong Liu, Yantian Yang, Yichen Liu, Bingyan Ni, Hua Zhuang, Kexin Chen, Jiahao Shi, Chenxin Zhu, Haoyue Wang and Jian Fei
Brain Sci. 2025, 15(4), 393; https://doi.org/10.3390/brainsci15040393 - 13 Apr 2025
Viewed by 668
Abstract
Background: GABAergic signaling plays a crucial role in modulating neuronal proliferation, migration, and the formation of neural network connections. The termination of GABA transmission primarily occurs through the action of GABA transporter 1 (GAT1), encoded by the SLC6A1 gene. Multiple SLC6A1 mutations [...] Read more.
Background: GABAergic signaling plays a crucial role in modulating neuronal proliferation, migration, and the formation of neural network connections. The termination of GABA transmission primarily occurs through the action of GABA transporter 1 (GAT1), encoded by the SLC6A1 gene. Multiple SLC6A1 mutations have been implicated in neurodevelopmental disorders, but their effects on the nervous system are unclear. Methods: We estimated the expression pattern of the GAT1 (S295L) protein using the Slc6a1S295L/S295L mouse model via RT-PCR, Western blotting, and confocal immunofluorescence. The effect of GAT1 (S295L) on hippocampal neurogenesis was investigated by neuronal marker staining (Sox2, Tbr2, NeuroD1, DCX, NeuN) and BrdU label experiments. The dendritic complexity was mapped through Sholl analysis. RNA-Seq was utilized to explore the signaling pathways and molecules associated with neurodevelopmental disorders. Results: We detected a remarkable decline in the quantity of type-2b intermediate progenitor cells, neuroblasts, and immature neurons in the dentate gyrus (DG) of Slc6a1S295L/S295L mice at 4 weeks. These abnormalities were exacerbated in adulthood, as evidenced by compromised dendritic length and height as well as the complexity of immature neurons. Immunofluorescence staining showed the abnormal aggregation of GAT1 (S295L) protein in neurons. RNA-seq analysis identified pathways associated with neurodevelopment, neurological disorders, protein homeostasis, and neuronutrition. The neurotrophin Bdnf decreased at all ages in the Slc6a1S295L/S295L mice. Conclusions: Our data provide new evidence that GAT1 (S295L) causes impaired neurogenesis in the DG. GAT1 mutation not only disrupts GABA homeostasis but also impairs the neurotrophic support necessary for normal hippocampal development, which may be one of the factors contributing to impaired neurogenesis. Full article
(This article belongs to the Special Issue Molecular Genetics of Neurodevelopment Disorders)
Show Figures

Figure 1

28 pages, 3773 KiB  
Article
Impact of Prenatal Dietary Soy on Cerebellar Neurodevelopment and Function in Experimental Fetal Alcohol Spectrum Disorder
by Suzanne M. de la Monte, Ming Tong, Jason Ziplow, Princess Mark, Stephanie Van and Van Ahn Nguyen
Nutrients 2025, 17(5), 812; https://doi.org/10.3390/nu17050812 - 26 Feb 2025
Viewed by 958
Abstract
Background: Prenatal alcohol exposure (PAE) models can cause neurodevelopmental abnormalities like those observed in fetal alcohol spectrum disorder (FASD). Previous studies link experimental PAE effects in the brain to impaired signaling through insulin/IGF and Notch pathways that mediate neuronal survival, growth, migration, energy [...] Read more.
Background: Prenatal alcohol exposure (PAE) models can cause neurodevelopmental abnormalities like those observed in fetal alcohol spectrum disorder (FASD). Previous studies link experimental PAE effects in the brain to impaired signaling through insulin/IGF and Notch pathways that mediate neuronal survival, growth, migration, energy metabolism, and plasticity. Importantly, concurrent administration of peroxisome proliferator-activated receptor agonists or dietary soy prevented many aspects of FASD due to their insulin-sensitizing, anti-inflammatory, and antioxidant properties. Objective: To determine if dietary soy interventions during pregnancy would be sufficient to normalize central nervous system structure and function, we examined the effects of maternal gestation-limited dietary soy on cerebellar postnatal development, motor function, and critical signaling pathways. Methods: Pregnant Long Evans rats were fed isocaloric liquid diets containing 0% or 26% caloric ethanol with casein or soy isolate as the protein source. The ethanol and soy feedings were discontinued upon delivery. The offspring were subjected to rotarod motor function tests, and on postnatal day 35, they were sacrificed to harvest cerebella for histological and molecular studies. Results: Despite the postnatal cessation of alcohol exposure, chronic gestational exposure reduced brain weight, caused cerebellar hypoplasia, and impaired motor performance. Gestational dietary soy prevented the ethanol-associated reduction in brain weight and largely restored the histological integrity of the cerebellum but failed to normalize motor performance. Ethanol withdrawal abolished the impairments in insulin/IGF signaling that were previously associated with ongoing ethanol exposures, but ethanol’s inhibitory effects on Notch and Wnt signaling persisted. Soy significantly increased cerebellar expression of the insulin and IGF-1 receptors and abrogated several ethanol-associated impairments in Notch and Wnt signaling. Conclusions: Although gestation-restricted dietary soy has significant positive effects on neurodevelopment, optimum prevention of FASD’s long-term effects will likely require dietary soy intervention during the critical periods of postnatal development, even after alcohol exposures have ceased. Full article
(This article belongs to the Special Issue Prenatal and Early Postnatal Nutrition to Promote Offspring's Health)
Show Figures

Figure 1

16 pages, 6258 KiB  
Article
Prenatal Alcohol Exposure Disrupts CXCL16 Expression in Rat Hippocampus: Temporal and Sex Differences
by Mayra Madeleine Padilla-Valdez, Margarita Belem Santana-Bejarano, Marisol Godínez-Rubí, Daniel Ortuño-Sahagún and Argelia Esperanza Rojas-Mayorquín
Int. J. Mol. Sci. 2025, 26(5), 1920; https://doi.org/10.3390/ijms26051920 - 23 Feb 2025
Viewed by 1034
Abstract
Prenatal alcohol exposure (PAE) affects around 40,000 newborns every year and poses a significant health risk. Although much is already known about the neurotoxic mechanisms of PAE, new findings continue to emerge. Studies with mouse models show that PAE leads to overexpression of [...] Read more.
Prenatal alcohol exposure (PAE) affects around 40,000 newborns every year and poses a significant health risk. Although much is already known about the neurotoxic mechanisms of PAE, new findings continue to emerge. Studies with mouse models show that PAE leads to overexpression of proinflammatory cytokines and chemokines in the brain, which disrupts important neurodevelopmental processes such as cell migration, survival and proliferation of neurons. The chemokine CXCL16 is overexpressed in the brain following various impairments, including PAE. This study shows that CXCL16 expression varies by developmental stage and sex, consistent with known sexual dimorphism in immune responses. In females, CXCL16 expression may be influenced by estrogen-related mechanisms, possibly related to the alcohol-mediated rebound effect described here. In contrast, the male hippocampus shows greater resilience to PAE-induced CXCL16 changes. Furthermore, the presence of CXCL16 in neuronal nuclei suggests a role in gene regulation, similar to other chemokines such as CCL5 and CXCL4. These findings shed light on the role of chemokines in hippocampal neuroplasticity and may pave the way for better treatment of fetal alcohol spectrum disorder (FASD). Full article
(This article belongs to the Special Issue Alcohol and Inflammation)
Show Figures

Figure 1

24 pages, 3487 KiB  
Review
A Comprehensive, Analytical Narrative Review of Polysaccharides from the Red Seaweed Gracilaria: Pharmaceutical Applications and Mechanistic Insights for Human Health
by Deepesh Khandwal, Sapna Patel, Abhay Kumar Pandey and Avinash Mishra
Nutrients 2025, 17(5), 744; https://doi.org/10.3390/nu17050744 - 20 Feb 2025
Cited by 2 | Viewed by 2212
Abstract
Gracilaria species, a widely distributed genus of red macroalgae, have gathered significant attention for their diverse medical applications attributable to their bioactive sulphated polysaccharides (SPs). This review examines the global narrative of various Gracilaria SP applications in terms of their therapeutic potential and [...] Read more.
Gracilaria species, a widely distributed genus of red macroalgae, have gathered significant attention for their diverse medical applications attributable to their bioactive sulphated polysaccharides (SPs). This review examines the global narrative of various Gracilaria SP applications in terms of their therapeutic potential and mechanistic insights into the use of these SPs against a range of medical conditions, including cancer, inflammation, neurodegenerative disorders, diabetes, and immune dysfunctions. SPs extracted from G. lemaneiformis and G. fisheri have demonstrated potent anti-tumour activities by inducing apoptosis through various mechanisms, including the upregulation of CD8+ T cells and IL-2, inhibition of EGFR/MAPK/ERK signalling pathways, and activation of the Fas/FasL pathway. Selenium nanoparticles (SeNPs) conjugated with SPs further enhanced the targeted delivery and efficacy of these SPs against glioblastoma by the downregulation of ROS followed by the activation of p53, MAPK, and AKT pathways. The anti-inflammatory properties of SPs are evidenced by key suppressive inflammatory markers like NO, TNF-α, IL-1β, and IL-6 in mutant rodent models. SPs from G. cornea and G. birdiae effectively reduce neutrophil migration and vascular permeability, offering potential treatments for acute inflammation and conditions such as colitis by modulating pathways involving COX-2 and NF-κB. Neuroprotective effects by SPs (from G. cornea and G. gracili) studied in 6-OHDA-induced rats, which mitigate oxidative stress and enhance neuronal cell viability, facilitate the management of neurodegenerative diseases like Parkinson’s and Alzheimer’s. Regarding the hypoglycaemic effect, SPs from G. lemaneiformis exhibit a glucose-modulating response by improving insulin regulation, inhibiting α-amylase activity, repairing pancreatic β-cells, and modulating lipid metabolism. Moreover, immunomodulatory activities of Gracilaria-derived SPs include the stimulation of macrophages, T-cell proliferation, and cytokine production, underscoring their potential as functional food and immunotherapeutic agents. Recently, Gracilaria-derived SPs have been found to modulate gut microbiota, promote SCFA production, and enhance gut microbials, suggesting their potential as prebiotic agents (G. rubra and G. lemaneiformis). This review highlights the multifaceted medical applications of Gracilaria sulphated polysaccharides, providing detailed mechanistic insights and suggesting avenues for future clinical translation and therapeutic innovations. Full article
(This article belongs to the Special Issue Functional Foods and Sustainable Health (2nd Edition))
Show Figures

Figure 1

14 pages, 4998 KiB  
Article
The p.R66W Variant in RAC3 Causes Severe Fetopathy Through Variant-Specific Mechanisms
by Ryota Sugawara, Hidenori Ito, Hidenori Tabata, Hiroshi Ueda, Marcello Scala and Koh-ichi Nagata
Cells 2024, 13(23), 2032; https://doi.org/10.3390/cells13232032 - 9 Dec 2024
Cited by 1 | Viewed by 1241
Abstract
RAC3 encodes a small GTPase of the Rho family that plays a critical role in actin cytoskeleton remodeling and intracellular signaling regulation. Pathogenic variants in RAC3, all of which reported thus far affect conserved residues within its functional domains, have been linked [...] Read more.
RAC3 encodes a small GTPase of the Rho family that plays a critical role in actin cytoskeleton remodeling and intracellular signaling regulation. Pathogenic variants in RAC3, all of which reported thus far affect conserved residues within its functional domains, have been linked to neurodevelopmental disorders characterized by diverse phenotypic features, including structural brain anomalies and facial dysmorphism (NEDBAF). Recently, a novel de novo RAC3 variant (NM_005052.3): c.196C>T, p.R66W was identified in a prenatal case with fetal akinesia deformation sequence (a spectrum of conditions that interfere with the fetus’s ability to move), and complex brain malformations featuring corpus callosum agenesis, diencephalosynapsis, kinked brainstem, and vermian hypoplasia. To investigate the mechanisms underlying the association between RAC3 deficiency and this unique, distinct clinical phenotype, we explored the pathophysiological significance of the p.R66W variant in brain development. Biochemical assays revealed a modest enhancement in intrinsic GDP/GTP exchange activity and an inhibitory effect on GTP hydrolysis. Transient expression studies in COS7 cells demonstrated that RAC3-R66W interacts with the downstream effectors PAK1, MLK2, and N-WASP but fails to activate SRF-, AP1-, and NFkB-mediated transcription. Additionally, overexpression of RAC3-R66W significantly impaired differentiation in primary cultured hippocampal neurons. Acute expression of RAC3-R66W in vivo by in utero electroporation resulted in impairments in cortical neuron migration and axonal elongation during corticogenesis. Collectively, these findings suggest that the p.R66W variant may function as an activated version in specific signaling pathways, leading to a distinctive and severe prenatal phenotype through variant-specific mechanisms. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

14 pages, 1129 KiB  
Review
A Review of Limbic System-Associated Membrane Protein in Tumorigenesis
by Kayleigh Wittmann Sinopole, Kevin Babcock, Albert Dobi and Gyorgy Petrovics
Biomedicines 2024, 12(11), 2590; https://doi.org/10.3390/biomedicines12112590 - 13 Nov 2024
Viewed by 1870
Abstract
Purpose of Review: This review aims to describe the role of limbic system-associated membrane protein (LSAMP) in normal- and pathophysiology, and its potential implications in oncogenesis. We have summarized research articles reporting the role of LSAMP in the development of a variety of [...] Read more.
Purpose of Review: This review aims to describe the role of limbic system-associated membrane protein (LSAMP) in normal- and pathophysiology, and its potential implications in oncogenesis. We have summarized research articles reporting the role of LSAMP in the development of a variety of malignancies, such as clear cell renal cell carcinoma, prostatic adenocarcinoma, lung adenocarcinoma, osteosarcoma, neuroblastoma, acute myeloid leukemia, and epithelial ovarian cancer. We also examine the current understanding of how defects in LSAMP gene function may contribute to oncogenesis. Finally, this review discusses the implications of future LSAMP research and clinical applications. Recent Findings: LSAMP has been originally described as a surface adhesion glycoprotein expressed on cortical and subcortical neuronal somas and dendrites during the development of the limbic system. It is categorized as part of the IgLON immunoglobulin superfamily of cell-adhesion molecules and is involved in regulating neurite outgrowth and neural synapse generation. LSAMP is both aberrantly expressed and implicated in the development of neuropsychiatric disorders due to its role in the formation of specific neuronal connections within the brain. Additionally, LSAMP has been shown to support brain plasticity via the formation of neuronal synapses and is involved in modulating the hypothalamus in anxiogenic environments. In murine studies, the loss of LSAMP expression was associated with decreased sensitivity to amphetamine, increased sensitivity to benzodiazepines, increased hyperactivity in new environments, abnormal social behavior, decreased aggressive behavior, and decreased anxiety. Findings have suggested that LSAMP plays a role in attuning serotonergic activity as well as GABA activity. Given its importance to limbic system development, LSAMP has also been studied in the context of suicide. In malignancies, LSAMP may play a significant role as a putative tumor suppressor, the loss of which leads to more aggressive phenotypes and mortality from metastatic disease. Loss of the LSAMP gene facilitates epithelial-mesenchymal transition, or EMT, where epithelial cells lose adhesion and gain the motile properties associated with mesenchymal cells. Additionally, LSAMP and the function of the RTK pathway have been implicated in tumorigenesis through the modulation of RTK expression in cell membranes and the activation of second messenger pathways and β-catenin. Summary: Beyond its many roles in the limbic system, LSAMP functions as a putative tumor suppressor protein. Loss of the LSAMP gene is thought to facilitate epithelial-mesenchymal transition, or EMT, where cells lose adhesion and migrate to distant organs. LSAMP’s role in modulating RTK activity and downstream ERK and Akt pathways adds to a large body of data investigating RTK expression in oncogenesis. The characteristics of LSAMP defects and their association with aggressive and metastatic disease are evident in reports on clear cell renal cell carcinoma, prostatic adenocarcinoma, lung adenocarcinoma, osteosarcoma, neuroblastoma, acute myeloid leukemia, and epithelial ovarian cancer. Full article
(This article belongs to the Special Issue Advanced Cancer Diagnosis and Treatment: Second Edition)
Show Figures

Graphical abstract

19 pages, 3007 KiB  
Review
Diverse Roles of the LINC Complex in Cellular Function and Disease in the Nervous System
by Ken-ichiro Kuwako and Sadafumi Suzuki
Int. J. Mol. Sci. 2024, 25(21), 11525; https://doi.org/10.3390/ijms252111525 - 26 Oct 2024
Viewed by 1980
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC [...] Read more.
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC complex is essential for different aspects of the nervous system, particularly during development. The significance of the LINC complex in neural lineage cells is further corroborated by the fact that mutations in genes associated with the LINC complex have been implicated in several neurological diseases, including neurodegenerative and psychiatric disorders. In this review, we aimed to summarize the expanding knowledge of LINC complex-related neuronal functions and associated neurological diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 4708 KiB  
Article
ANKK1 Is a Wnt/PCP Scaffold Protein for Neural F-ACTIN Assembly
by Laura Domínguez-Berzosa, Lara Cantarero, María Rodríguez-Sanz, Gemma Tort, Elena Garrido, Johanna Troya-Balseca, María Sáez, Xóchitl Helga Castro-Martínez, Sara Fernandez-Lizarbe, Edurne Urquizu, Enrique Calvo, Juan Antonio López, Tomás Palomo, Francesc Palau and Janet Hoenicka
Int. J. Mol. Sci. 2024, 25(19), 10705; https://doi.org/10.3390/ijms251910705 - 4 Oct 2024
Viewed by 2009
Abstract
The TaqIA polymorphism is a marker of both the Ankyrin Repeat and Kinase Domain containing I gene (ANKK1) encoding a RIP-kinase, and the DRD2 gene for the dopamine receptor D2. Despite a large number of studies of TaqIA in [...] Read more.
The TaqIA polymorphism is a marker of both the Ankyrin Repeat and Kinase Domain containing I gene (ANKK1) encoding a RIP-kinase, and the DRD2 gene for the dopamine receptor D2. Despite a large number of studies of TaqIA in addictions and other psychiatric disorders, there is difficulty in interpreting this genetic phenomenon due to the lack of knowledge about ANKK1 function. In SH-SY5Y neuroblastoma models, we show that ANKK1 interacts with the synapse protein FERM ARH/RhoGEF and Pleckstrin Domain 1 (FARP1), which is a guanine nucleotide exchange factor (GEF) of the RhoGTPases RAC1 and RhoA. ANKK1–FARP1 colocalized in F-ACTIN-rich structures for neuronal maturation and migration, and both proteins activate the Wnt/PCP pathway. ANKK1, but not FARP1, promotes neuritogenesis, and both proteins are involved in neuritic spine outgrowth. Notably, the knockdown of ANKK1 or FARP1 affects RhoGTPases expression and neural differentiation. Additionally, ANKK1 binds WGEF, another GEF of Wnt/PCP, regulating its interaction with RhoA. During neuronal differentiation, ANKK1–WGEF interaction is downregulated, while ANKK1–FARP1 interaction is increased, suggesting that ANKK1 recruits Wnt/PCP components for bidirectional control of F-ACTIN assembly. Our results suggest a brain structural basis in TaqIA-associated phenotypes. Full article
(This article belongs to the Special Issue Molecular Advances in Mental Health and Disorders)
Show Figures

Figure 1

16 pages, 3616 KiB  
Article
Human-Induced Pluripotent Stem Cell (iPSC)-Derived GABAergic Neuron Differentiation in Bipolar Disorder
by Daniel J. Schill, Durga Attili, Cynthia J. DeLong, Melvin G. McInnis, Craig N. Johnson, Geoffrey G. Murphy and K. Sue O’Shea
Cells 2024, 13(14), 1194; https://doi.org/10.3390/cells13141194 - 15 Jul 2024
Cited by 1 | Viewed by 3796
Abstract
Bipolar disorder (BP) is a recurring psychiatric condition characterized by alternating episodes of low energy (depressions) followed by manias (high energy). Cortical network activity produced by GABAergic interneurons may be critical in maintaining the balance in excitatory/inhibitory activity in the brain during development. [...] Read more.
Bipolar disorder (BP) is a recurring psychiatric condition characterized by alternating episodes of low energy (depressions) followed by manias (high energy). Cortical network activity produced by GABAergic interneurons may be critical in maintaining the balance in excitatory/inhibitory activity in the brain during development. Initially, GABAergic signaling is excitatory; with maturation, these cells undergo a functional switch that converts GABAA channels from depolarizing (excitatory) to hyperpolarizing (inhibitory), which is controlled by the intracellular concentration of two chloride transporters. The earliest, NKCC1, promotes chloride entry into the cell and depolarization, while the second (KCC2) stimulates movement of chloride from the neuron, hyperpolarizing it. Perturbations in the timing or expression of NKCC1/KCC2 may affect essential morphogenetic events including cell proliferation, migration, synaptogenesis and plasticity, and thereby the structure and function of the cortex. We derived induced pluripotent stem cells (iPSC) from BP patients and undiagnosed control (C) individuals, then modified a differentiation protocol to form GABAergic interneurons, harvesting cells at sequential stages of differentiation. qRT-PCR and RNA sequencing indicated that after six weeks of differentiation, controls transiently expressed high levels of NKCC1. Using multi-electrode array (MEA) analysis, we observed that BP neurons exhibit increased firing, network bursting and decreased synchrony compared to C. Understanding GABA signaling in differentiation may identify novel approaches and new targets for treatment of neuropsychiatric disorders such as BP. Full article
Show Figures

Graphical abstract

Back to TopTop