Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = neuronal differentiation 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 1261 KiB  
Review
Human-Induced Pluripotent Stem Cells (iPSCs) for Disease Modeling and Insulin Target Cell Regeneration in the Treatment of Insulin Resistance: A Review
by Sama Thiab, Juberiya M. Azeez, Alekya Anala, Moksha Nanda, Somieya Khan, Alexandra E. Butler and Manjula Nandakumar
Cells 2025, 14(15), 1188; https://doi.org/10.3390/cells14151188 (registering DOI) - 1 Aug 2025
Abstract
Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), has become the epidemic of the century and a major public health concern given its rising prevalence and the increasing adoption of a sedentary lifestyle globally. This multifaceted disease is characterized by impaired [...] Read more.
Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), has become the epidemic of the century and a major public health concern given its rising prevalence and the increasing adoption of a sedentary lifestyle globally. This multifaceted disease is characterized by impaired pancreatic beta cell function and insulin resistance (IR) in peripheral organs, namely the liver, skeletal muscle, and adipose tissue. Additional insulin target tissues, including cardiomyocytes and neuronal cells, are also affected. The advent of stem cell research has opened new avenues for tackling this disease, particularly through the regeneration of insulin target cells and the establishment of disease models for further investigation. Human-induced pluripotent stem cells (iPSCs) have emerged as a valuable resource for generating specialized cell types, such as hepatocytes, myocytes, adipocytes, cardiomyocytes, and neuronal cells, with diverse applications ranging from drug screening to disease modeling and, importantly, treating IR in T2D. This review aims to elucidate the significant applications of iPSC-derived insulin target cells in studying the pathogenesis of insulin resistance and T2D. Furthermore, recent differentiation strategies, protocols, signaling pathways, growth factors, and advancements in this field of therapeutic research for each specific iPSC-derived cell type are discussed. Full article
(This article belongs to the Special Issue Advances in Human Pluripotent Stem Cells)
12 pages, 1773 KiB  
Article
Low-Frequency rTMS and Diazepam Exert Synergistic Effects on the Excitability of an SH-SY5Y Model of Epileptiform Activity
by Ioannis Dardalas, Efstratios K. Kosmidis, Roza Lagoudaki, Vasilios K. Kimiskidis, Theodoros Samaras, Theodoros Moysiadis, Dimitrios Kouvelas and Chryssa Pourzitaki
Biomedicines 2025, 13(8), 1857; https://doi.org/10.3390/biomedicines13081857 - 30 Jul 2025
Abstract
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address [...] Read more.
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address this issue. In this in vitro study, we elucidated and characterized the alterations in intracellular Ca2+ levels in cell cultures where diazepam and repetitive transcranial magnetic stimulation were implemented, alone or in combination. Methods: Using the differentiated human-derived neuroblastoma cell line SH-SY5Y, we measured the alterations in intracellular Ca2+ levels under the impact of either low-frequency repetitive transcranial magnetic stimulation (1 Hz), diazepam (14 μM), or their combination. We used the Ca2+-sensitive fluorescent indicator Fluo-4 acetoxymethyl ester for calcium imaging, while neuronal excitation was achieved with 50 mM KCl. Results: The highest median fluorescence intensity increase (%ΔF/F = 24.80) was observed in control cell cultures, followed by rTMS cultures (%ΔF/F = 16.96) and diazepam cultures (%ΔF/F = 11.46). The lowest median fluorescence intensity value (%ΔF/F =−0.44) was observed when diazepam was used concomitantly with repetitive transcranial magnetic stimulation. Post hoc analysis assessed pairwise differences, showing statistically significant differentiation between the control group and all other groups. Additionally, statistically significant results were observed between repetitive transcranial magnetic stimulation or diazepam and their combination, but not between them. Conclusions: The combination of diazepam and repetitive transcranial magnetic stimulation resulted in the most significant reduction in intracellular Ca2+ levels, as indicated by the lowest fluorescence values compared with the control group. Individually, each treatment produced a notable but less pronounced effect. We conclude that both diazepam and low-frequency repetitive transcranial magnetic stimulation can control epileptiform activity in vitro, while their combination is the most effective treatment. Full article
(This article belongs to the Special Issue Epilepsy: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

18 pages, 3973 KiB  
Article
Identification and Characterization of Static Craniofacial Defects in Pre-Metamorphic Xenopus laevis Tadpoles
by Emilie Jones, Jay Miguel Fonticella and Kelly A. McLaughlin
J. Dev. Biol. 2025, 13(3), 26; https://doi.org/10.3390/jdb13030026 - 25 Jul 2025
Viewed by 224
Abstract
Craniofacial development is a complex, highly conserved process involving multiple tissue types and molecular pathways, with perturbations resulting in congenital defects that often require invasive surgical interventions to correct. Remarkably, some species, such as Xenopus laevis, can correct some craniofacial abnormalities during [...] Read more.
Craniofacial development is a complex, highly conserved process involving multiple tissue types and molecular pathways, with perturbations resulting in congenital defects that often require invasive surgical interventions to correct. Remarkably, some species, such as Xenopus laevis, can correct some craniofacial abnormalities during pre-metamorphic stages through thyroid hormone-independent mechanisms. However, the full scope of factors mediating remodeling initiation and coordination remain unclear. This study explores the differential remodeling responses of craniofacial defects by comparing the effects of two pharmacological agents, thioridazine-hydrochloride (thio) and ivermectin (IVM), on craniofacial morphology in X. laevis. Thio-exposure reliably induces a craniofacial defect that can remodel in pre-metamorphic animals, while IVM induces a permanent, non-correcting phenotype. We examined developmental changes from feeding stages to hindlimb bud stages and mapped the effects of each agent on the patterning of craniofacial tissue types including: cartilage, muscle, and nerves. Our findings reveal that thio-induced craniofacial defects exhibit significant consistent remodeling, particularly in muscle, with gene expression analysis revealing upregulation of key remodeling genes, matrix metalloproteinases 1 and 13, as well as their regulator, prolactin.2. In contrast, IVM-induced defects show no significant remodeling, highlighting the importance of specific molecular and cellular factors in pre-metamorphic craniofacial correction. Additionally, unique neuronal profiles suggest a previously underappreciated role for the nervous system in tissue remodeling. This study provides novel insights into the molecular and cellular mechanisms underlying craniofacial defect remodeling and lays the groundwork for future investigations into tissue repair in vertebrates. Full article
Show Figures

Figure 1

33 pages, 8117 KiB  
Article
Induced Microglial-like Cells Derived from Familial and Sporadic Alzheimer’s Disease Peripheral Blood Monocytes Show Abnormal Phagocytosis and Inflammatory Response to PSEN1 E280A Cholinergic-like Neurons
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2025, 26(15), 7162; https://doi.org/10.3390/ijms26157162 - 24 Jul 2025
Viewed by 313
Abstract
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in [...] Read more.
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in a 15-day differentiation process to investigate the effect of bolus addition of Aβ42, PSEN1 E280A cholinergic-like neuron (ChLN)-derived culture supernatants, and PSEN1 E280A ChLNs on wild type (WT) iMG, PSEN1 E280A iMG, and sporadic Alzheimer’s disease (SAD) iMG. We found that WT iMG cells, when challenged with non-cellular (e.g., lipopolysaccharide, LPS) or cellular (e.g., Aβ42, PSEN1 E280A ChLN-derived culture supernatants) microenvironments, closely resemble primary human microglia in terms of morphology (resembling an “amoeboid-like phenotype”), expression of surface markers (Ionized calcium-binding adapter molecule 1, IBA-1; transmembrane protein 119, TMEM119), phagocytic ability (high pHrodo™ Red E. coli BioParticles™ phagocytic activity), immune metabolism (i.e., high generation of reactive oxygen species, ROS), increase in mitochondrial membrane potential (ΔΨm), response to ATP-induced transient intracellular Ca2+ influx, cell polarization (cluster of differentiation 68 (CD68)/CD206 ratio: M1 phenotype), cell migration activity according to the scratch wound assay, and especially in their inflammatory response (secretion of cytokine interleukin-6, IL-6; Tumor necrosis factor alpha, TNF-α). We also found that PSEN1 E280A and SAD iMG are physiologically unresponsive to ATP-induced Ca2+ influx, have reduced phagocytic activity, and diminished expression of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) protein, but when co-cultured with PSEN1 E280A ChLNs, iMG shows an increase in pro-inflammatory phenotype (M1) and secretes high levels of cytokines IL-6 and TNF-α. As a result, PSEN1 E280A and SAD iMG induce apoptosis in PSEN1 E280A ChLNs as evidenced by abnormal phosphorylation of protein TAU at residue T205 and cleaved caspase 3 (CC3). Taken together, these results suggest that PSEN1 E280A ChLNs initiate a vicious cycle between damaged neurons and M1 phenotype microglia, resulting in excessive ChLN death. Our findings provide a suitable platform for the exploration of novel therapeutic approaches for the fight against FAD. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

22 pages, 1781 KiB  
Article
Gene Expression Profile of the Cerebral Cortex of Niemann-Pick Disease Type C Mutant Mice
by Iris Valeria Servín-Muñoz, Daniel Ortuño-Sahagún, María Paulina Reyes-Mata, Christian Griñán-Ferré, Mercè Pallàs and Celia González-Castillo
Genes 2025, 16(8), 865; https://doi.org/10.3390/genes16080865 - 24 Jul 2025
Viewed by 257
Abstract
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being [...] Read more.
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being an autosomal recessive inherited pathology, which belongs to LSDs. It occurs in 95% of cases due to mutations in the NPC1 gene, while 5% of cases are due to mutations in the NPC2 gene. In the cerebral cortex (CC), the disease shows lipid inclusions, increased cholesterol and multiple sphingolipids in neuronal membranes, and protein aggregates such as hyperphosphorylated tau, α-Synuclein, TDP-43, and β-amyloid peptide. Mitochondrial damage and oxidative stress are some alterations at the cellular level in NPC. Therefore, the aim of this work was to determine the gene expression profile in the CC of NPC1 mice in order to identify altered molecular pathways that may be related to the pathophysiology of the disease. Methods: In this study, we performed a microarray analysis of a 22,000-gene chip from the cerebral cortex of an NPC mutant mouse compared to a WT mouse. Subsequently, we performed a bioinformatic analysis in which we found groups of dysregulated genes, and their expression was corroborated by qPCR. Finally, we performed Western blotting to determine the expression of proteins probably dysregulated. Results: We found groups of dysregulated genes in the cerebral cortex of the NPC mouse involved in the ubiquitination, fatty acid metabolism, differentiation and development, and underexpression in genes with mitochondrial functions, which could be involved in intrinsic apoptosis reported in NPC, in addition, we found a generalized deregulation in the cortical circadian rhythm pathway, which could be related to the depressive behavior that has even been reported in NPC patients. Conclusions: Recognizing that there are changes in the expression of genes related to ubiquitination, mitochondrial functions, and cortical circadian rhythm in the NPC mutant mouse lays the basis for targeting treatments to new potential therapeutic targets. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1664 KiB  
Article
Depletion of IGFALS Serum Level up to 3 Months After Cardiac Surgery, with Exploration of Potential Relationships to Surrogates of Organ Failures and Clinical Outcomes
by Krzysztof Laudanski, Mohamed A. Mahmoud, Hossam Gad and Daniel A. Diedrich
Curr. Issues Mol. Biol. 2025, 47(8), 581; https://doi.org/10.3390/cimb47080581 - 23 Jul 2025
Viewed by 189
Abstract
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients [...] Read more.
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients undergoing elective cardiac surgery with implementation of cardiopulmonary bypass had their serum isolated at baseline, 24 h, seven days, and three months postoperatively to assess serum concentrations of IGFALS and insulin growth factor 1 (IGF-1). Markers of perioperative injury included troponin I (TnI), high-mobility group box 1 (HMGB-1), and heat shock protein 60 (Hsp-60). Inflammatory status was assessed via interleukin-6 (IL-6) and interleukin-8 (IL-8). Additionally, we measured in vitro cytokine production to viral stimulation of whole blood and monocytes. Surrogates of neuronal distress included neurofilament light chain (NF-L), total tau (τ), phosphorylated tau at threonine 181 (τp181), and amyloid β40 and β42. Renal impairment was defined by RIFLE criteria. Cardiac dysfunction was denoted by serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Serum IGFALS levels declined significantly after surgery and remained depressed even at 3 months. Administration of acetaminophen and acetylsalicylic acid differentiated IGFALS levels at the 24 h postoperatively. Serum IGFALS 24 h post-operatively correlated with production of cytokines by leukocytes after in vitro viral stimulation. Serum amyloid-β1-42 was significantly associated with IGFALS at baseline and 24 h post-surgery Patients discharged home had higher IGFALS levels at 28 days and 3 months than those discharged to healthcare facilities or who died. These findings suggest that IGFALS may serve as a prognostic biomarker for recovery trajectory and postoperative outcomes in cardiac surgery patients. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 5794 KiB  
Article
A More Rapid Method for Culturing LUHMES-Derived Neurons Provides Greater Cell Numbers and Facilitates Studies of Multiple Viruses
by Adam W. Whisnant, Stephanie E. Clark, José Alberto Aguilar-Briseño, Lorellin A. Durnell, Arnhild Grothey, Ann M. Miller, Steven M. Varga, Jeffery L. Meier, Charles Grose, Patrick L. Sinn, Jessica M. Tucker, Caroline C. Friedel, Wendy J. Maury, David H. Price and Lars Dölken
Viruses 2025, 17(7), 1001; https://doi.org/10.3390/v17071001 - 16 Jul 2025
Viewed by 313
Abstract
The ability to study mature neuronal cells ex vivo is complicated by their non-dividing nature and difficulty in obtaining large numbers of primary cells from organisms. Thus, numerous transformed progenitor models have been developed that can be routinely cultured, then scaled, and differentiated [...] Read more.
The ability to study mature neuronal cells ex vivo is complicated by their non-dividing nature and difficulty in obtaining large numbers of primary cells from organisms. Thus, numerous transformed progenitor models have been developed that can be routinely cultured, then scaled, and differentiated to mature neurons. In this paper, we present a new method for differentiating one such model, the Lund human mesencephalic (LUHMES) dopaminergic neurons. This method is two days faster than some established protocols, results in nearly five times greater numbers of mature neurons, and involves fewer handling steps that could introduce technical variability. Moreover, it overcomes the problem of cell aggregate formation that commonly impedes high-resolution imaging, cell dissociation, and downstream analysis. While recently established for herpes simplex virus type 1, we demonstrate that LUHMES neurons can facilitate studies of other herpesviruses, as well as RNA viruses associated with childhood encephalitis and hemorrhagic fever. This protocol provides an improvement in the generation of large-scale neuronal cultures, which may be readily applicable to other neuronal 2D cell culture models and provides a system for studying neurotrophic viruses. We named this method the Streamlined Protocol for Enhanced Expansion and Differentiation Yield, or SPEEDY, method. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

23 pages, 2596 KiB  
Article
Integrated Behavioral and Proteomic Characterization of MPP+-Induced Early Neurodegeneration and Parkinsonism in Zebrafish Larvae
by Adolfo Luis Almeida Maleski, Felipe Assumpção da Cunha e Silva, Marcela Bermudez Echeverry and Carlos Alberto-Silva
Int. J. Mol. Sci. 2025, 26(14), 6762; https://doi.org/10.3390/ijms26146762 - 15 Jul 2025
Viewed by 271
Abstract
Zebrafish (Danio rerio) combine accessible behavioral phenotypes with conserved neurochemical pathways and molecular features of vertebrate brain function, positioning them as a powerful model for investigating early neurodegenerative processes and screening neuroprotective strategies. In this context, integrated behavioral and proteomic analyses [...] Read more.
Zebrafish (Danio rerio) combine accessible behavioral phenotypes with conserved neurochemical pathways and molecular features of vertebrate brain function, positioning them as a powerful model for investigating early neurodegenerative processes and screening neuroprotective strategies. In this context, integrated behavioral and proteomic analyses provide valuable insights into the initial pathophysiological events shared by conditions such as Parkinson’s disease and related disorders—including mitochondrial dysfunction, oxidative stress, and synaptic impairment—which emerge before overt neuronal loss and offer a crucial window to understand disease progression and evaluate therapeutic candidates prior to irreversible damage. To investigate this early window of dysfunction, zebrafish larvae were exposed to 500 μM 1-methyl-4-phenylpyridinium (MPP+) from 1 to 5 days post-fertilization and evaluated through integrated behavioral and label-free proteomic analyses. MPP+-treated larvae exhibited hypokinesia, characterized by significantly reduced total distance traveled, fewer movement bursts, prolonged immobility, and a near-complete absence of light-evoked responses—mirroring features of early Parkinsonian-like motor dysfunction. Label-free proteomic profiling revealed 40 differentially expressed proteins related to mitochondrial metabolism, redox regulation, proteasomal activity, and synaptic organization. Enrichment analysis indicated broad molecular alterations, including pathways such as mitochondrial translation and vesicle-mediated transport. A focused subset of Parkinsonism-related proteins—such as DJ-1 (PARK7), succinate dehydrogenase (SDHA), and multiple 26S proteasome subunits—exhibited coordinated dysregulation, as visualized through protein–protein interaction mapping. The upregulation of proteasome components and antioxidant proteins suggests an early-stage stress response, while the downregulation of mitochondrial enzymes and synaptic regulators reflects canonical PD-related neurodegeneration. Together, these findings provide a comprehensive functional and molecular characterization of MPP+-induced neurotoxicity in zebrafish larvae, supporting its use as a relevant in vivo system to investigate early-stage Parkinson’s disease mechanisms and shared neurodegenerative pathways, as well as for screening candidate therapeutics in a developmentally responsive context. Full article
(This article belongs to the Special Issue Zebrafish Model for Neurological Research)
Show Figures

Graphical abstract

18 pages, 14857 KiB  
Article
Valproic Acid Promotes the Differentiation of Satellite Glial Cells into Neurons via the pH-Dependent Pathway
by Dongyan Wang, Wenrun Kang, Jinhui Zhang, Jianwei Xu, Ruyi Wang, Xiangdan Xiao, Chao Wei, Wenfeng Yu and Junhou Lu
Biomolecules 2025, 15(7), 986; https://doi.org/10.3390/biom15070986 - 11 Jul 2025
Viewed by 316
Abstract
Valproic acid (VPA) is a widely prescribed antiepileptic agent whose teratogenic potential has been recognized. In recent years, VPA has been shown to promote neuronal regeneration; however, the exact molecular mechanisms are not fully understood. This study elucidates the pH-dependent pathway through which [...] Read more.
Valproic acid (VPA) is a widely prescribed antiepileptic agent whose teratogenic potential has been recognized. In recent years, VPA has been shown to promote neuronal regeneration; however, the exact molecular mechanisms are not fully understood. This study elucidates the pH-dependent pathway through which VPA promotes the differentiation of satellite glial cells (SGCs) into neurons. We observed sustained intracellular pH elevation during the VPA-induced neural differentiation of SGCs, and the modulation of intracellular pH was shown to influence this differentiation process. Then, we found that VPA regulates intracellular pH through NHE1 (sodium–hydrogen exchanger 1), and that the pharmacological inhibition of NHE1 not only attenuated intracellular pH elevation but also substantially impaired VPA-induced neuronal differentiation. Finally, our results showed that the elevated intracellular pH promoted the neuronal differentiation of SGCs by activating β-catenin signaling. These findings provide novel insights into the mechanisms of VPA-induced neurogenesis, advancing our understanding of its pharmacological profile and informing its potential therapeutic application in neuronal regeneration strategies. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

18 pages, 306 KiB  
Review
The Interplay Between Melatonin and Nitric Oxide: Mechanisms and Implications in Stroke Pathophysiology
by Santos Blanco, María del Mar Muñoz-Gallardo, Raquel Hernández and María Ángeles Peinado
Antioxidants 2025, 14(6), 724; https://doi.org/10.3390/antiox14060724 - 13 Jun 2025
Viewed by 581
Abstract
This work reviews the complex interplay between melatonin and nitric oxide (NO) in the central nervous system (CNS), with a detailed focus on its involvement in stroke pathophysiology. Melatonin, a neurohormone with potent antioxidant, anti-inflammatory, and neuroprotective properties, and NO, a gaseous signaling [...] Read more.
This work reviews the complex interplay between melatonin and nitric oxide (NO) in the central nervous system (CNS), with a detailed focus on its involvement in stroke pathophysiology. Melatonin, a neurohormone with potent antioxidant, anti-inflammatory, and neuroprotective properties, and NO, a gaseous signaling molecule with diverse roles, interact crucially. In the context of ischemic stroke, NO exhibits a dual role: it can be neuroprotective (primarily via endothelial nitric oxide synthase (eNOS)) or neurotoxic (especially through inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), contributing to the formation of damaging peroxynitrite (ONOO)). Melatonin has consistently demonstrated neuroprotective effects in animal models of stroke. Its key mechanisms related to NO include (1) differential modulation of nitric oxide synthase isoforms, suppressing detrimental iNOS expression/activity while often preserving or enhancing beneficial eNOS; (2) direct scavenging of NO and, critically, highly reactive peroxynitrite, thereby attenuating nitrosative stress; (3) reduction in neuroinflammation, partly by promoting M2 (anti-inflammatory) microglia polarization; and (4) mitochondrial protection and decreased apoptosis. These multifaceted actions of melatonin contribute to reduced infarct volume and improved functional outcomes, underscoring its considerable therapeutic potential for ischemic stroke through the favorable modulation of the melatonin–NO axis. Full article
21 pages, 659 KiB  
Review
Metal-Induced Genotoxic Events: Possible Distinction Between Sporadic and Familial ALS
by William Wu Kim, Gregory Zarus, Breanna Alman, Patricia Ruiz, Moon Han, Paul Mehta, Chao Ji, Hoormat Qureshi, James Antonini and Mohammad Shoeb
Toxics 2025, 13(6), 493; https://doi.org/10.3390/toxics13060493 - 12 Jun 2025
Viewed by 694
Abstract
Metal exposure is a potential risk factor for amyotrophic lateral sclerosis (ALS). Increasing evidence suggests that elevated levels of DNA damage are present in both familial (fALS) and sporadic (sALS) forms of ALS, characterized by the selective loss of motor neurons in the [...] Read more.
Metal exposure is a potential risk factor for amyotrophic lateral sclerosis (ALS). Increasing evidence suggests that elevated levels of DNA damage are present in both familial (fALS) and sporadic (sALS) forms of ALS, characterized by the selective loss of motor neurons in the brain, brainstem, and spinal cord. However, identifying and differentiating initial biomarkers of DNA damage response (DDR) in both forms of ALS remains unclear. The toxicological profiles from the Agency for Toxic Substances and Disease Registry (ATSDR) and our previous studies have demonstrated the influence of metal exposure-induced genotoxicity and neurodegeneration. A comprehensive overview of the ATSDR’s toxicological profiles and the available literature identified 15 metals (aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), uranium (U), vanadium (V), and zinc (Zn)) showing exposure-induced genotoxicity indicators associated with ALS pathogenesis. Genetic factors including mutations seen in ALS types and with concomitant metal exposure were distinguished, showing that heavy metal exposure can exacerbate the downstream effect of existing genetic mutations in fALS and may contribute to motor neuron degeneration in sALS. Substantial evidence associates heavy metal exposure to genotoxic endpoints in both forms of ALS; however, a data gap has been observed for several of these endpoints. This review aims to (1) provide a comprehensive overview of metal exposure-induced genotoxicity in ALS patients and experimental models, and its potential role in disease risk, (2) summarize the evidence for DNA damage and associated biomarkers in ALS pathogenesis, (3) discuss possible mechanisms for metal exposure-induced genotoxic contributions to ALS pathogenesis, and (4) explore the potential distinction of genotoxic biomarkers in both forms of ALS. Our findings support the association between metal exposure and ALS, highlighting under or unexplored genotoxic endpoints, signaling key data gaps. Given the high prevalence of sALS and studies showing associations with environmental exposures, understanding the mechanisms and identifying early biomarkers is vital for developing preventative therapies and early interventions. Limitations include variability in exposure assessment and the complexity of gene–environment interactions. Studies focusing on longitudinal exposure assessments, mechanistic studies, and biomarker identification to inform preventative and therapeutic strategies for ALS is warranted. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

18 pages, 2481 KiB  
Article
Alteration of Metabolic Profile in Patients with Narcolepsy Type 1
by Md Abdul Hakim, Waziha Purba, Akeem Sanni, Md Mostofa Al Amin Bhuiyan, Farid Talih, Giuseppe Lanza, Firas Kobeissy, Giuseppe Plazzi, Fabio Pizza, Raffaele Ferri and Yehia Mechref
Metabolites 2025, 15(6), 382; https://doi.org/10.3390/metabo15060382 - 9 Jun 2025
Viewed by 744
Abstract
Background: Narcolepsy type 1 (NT1) is a rare neurological sleep disorder characterized by excessive daytime sleepiness and cataplexy. NT1 is thought to be caused by the loss of hypocretin-producing neurons in the hypothalamus due to autoimmunity. Since cerebrospinal fluid hypocretin testing is invasive [...] Read more.
Background: Narcolepsy type 1 (NT1) is a rare neurological sleep disorder characterized by excessive daytime sleepiness and cataplexy. NT1 is thought to be caused by the loss of hypocretin-producing neurons in the hypothalamus due to autoimmunity. Since cerebrospinal fluid hypocretin testing is invasive and not always feasible in clinical practice, there is a critical need for less invasive biomarkers to improve diagnostic accuracy and accessibility. Very few studies have explored serum-based biomolecules that could serve as biomarkers for NT1. Methods: This study examines the differential abundance of serum metabolites in patients with NT1 using an LC-MS/MS-based comprehensive metabolomics approach. Results: An untargeted analysis identified a total of 1491 metabolites, 453 of which were differentially abundant compared to the control cohort. Ingenuity pathway analysis revealed that key pathways, such as the inflammatory response (p-value of 0.01, activation z-score of 0.5), generation and synthesis of reactive oxygen species (p-value of 0.0008, z-score of 1.3), and neuronal cell death (p-value of 0.04, z-score of 0.4), are predicted to be activated in NT1. A targeted analysis using parallel reaction monitoring validated 49 metabolites, including important downregulated metabolites such as uridine (fold change (FC) of 0.004), epinephrine (FC of 0.05), colchicine (FC of 0.2), corticosterone (FC of 0.3), and arginine (FC of 0.6), as well as upregulated metabolites such as p-cresol sulfate (FC of 2601.7), taurine (FC of 1315.4), inosine (FC of 429.7), and malic acid (FC of 7.9). Conclusions: Understanding the pathways identified in this study and further investigating the differentially abundant metabolites associated with them may pave the way for gaining insight into disease pathogenesis and developing novel therapeutic interventions. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

24 pages, 574 KiB  
Systematic Review
Tissue Stem Cell-Based Therapies in Parkinson’s Disease: A Scoping Review of Therapeutic Mechanisms and Translational Outcomes
by Emily Cueva, Andrea Wiesheu, Zaira Sordo, Jailene González, Sabine Falconi, Jose A. Rodas and Jose E. Leon-Rojas
Cells 2025, 14(11), 822; https://doi.org/10.3390/cells14110822 - 1 Jun 2025
Viewed by 1021
Abstract
(1) Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by dopaminergic neuronal loss. Tissue stem cell-based therapies have emerged as promising candidates for disease modification and symptomatic relief. This scoping review aims to systematically synthesise the literature on tissue stem cell [...] Read more.
(1) Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by dopaminergic neuronal loss. Tissue stem cell-based therapies have emerged as promising candidates for disease modification and symptomatic relief. This scoping review aims to systematically synthesise the literature on tissue stem cell therapies for PD across cellular, animal, and human studies, with a focus on transplantation strategies, mechanisms of action, and therapeutic outcomes. (2) Methods: We identified 1017 records by querying PubMed, Scopus, Cochrane, and the Virtual Health Library. After screening and applying eligibility criteria, 33 experimental studies were included. Data were extracted on study design, tissue stem cell source, type of subject, and therapeutic effects. (3) Results: Most studies (n = 25) involved animal models, with a minority (n = 8) focusing on human applications. Tissue stem cell therapies showed potential to promote dopaminergic differentiation, reduce inflammation and apoptosis, and improve behavioural and motor outcomes. Autologous transplants yielded a higher safety and efficacy compared to allogeneic ones. The beneficial mechanisms of tissue stem cells included neurotrophic support, mitochondrial protection, modulation of the gut–brain axis, and α-synuclein clearance. (4) Conclusions: Tissue stem cell therapies represent a promising approach for PD. However, standardised protocols and long-term safety assessments are essential to optimise their translational potential. Full article
Show Figures

Figure 1

17 pages, 6960 KiB  
Article
Hippocampal Proteomics Reveals the Novel Molecular Profiling of Postnatal Lead (Pb) Exposure on Autism-like Behaviors
by Li Liu, Xulan Zhou, Zihan Ma, Ruming Liu, Yuhan Zhang, Yaqi Wang, Yiwen Liu, Xiaochun Xia and Juan Wang
Toxics 2025, 13(6), 465; https://doi.org/10.3390/toxics13060465 - 31 May 2025
Viewed by 655
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder, with lead (Pb) exposure increasingly linked to its risk. However, the molecular mechanisms linking Pb to ASD remain poorly understood. This study established a postnatal Pb-exposed mouse model and employed the three-chamber social test [...] Read more.
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder, with lead (Pb) exposure increasingly linked to its risk. However, the molecular mechanisms linking Pb to ASD remain poorly understood. This study established a postnatal Pb-exposed mouse model and employed the three-chamber social test and the marble-burying test to assess ASD-like behavioral phenotypes. The Pb levels in both blood and the hippocampus were quantified, and hippocampal neurons were assessed for morphological alterations. Moreover, a Tandem Mass Tag (TMT)-based quantitative proteomics approach was applied to elucidate the underlying mechanisms. Neurobehavioral experiments revealed Pb-exposed C57BL/6 offspring exhibited reduced social interaction and novelty preference along with increased repetitive marble-burying behavior. The Pb levels in both the blood and hippocampus of Pb-treated mice were significantly elevated compared with those of control animals. Postnatal Pb exposure resulted in a reduction in the neuronal numbers and disorganized neuronal arrangement in the hippocampus. A total of 66 proteins were identified as being differentially expressed after postnatal Pb exposure. Among them, 34 differentially expressed proteins were common in both Pb exposure groups, with 33 downregulated and 1 upregulated. Bioinformatic analysis revealed multi-pathway regulation involved in Pb-induced neurodevelopmental disorders, including dysregulation of synaptic signaling, abnormal activation of neuron apoptosis, and neuroinflammation. Notably, the SYT10/IGF-1 signaling pathway may play a potential key role. These findings enhance understanding of Pb-induced autism-like behaviors, providing novel proteomic insights into the etiology of ASD. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

11 pages, 1685 KiB  
Brief Report
In Preclinical Epilepsy, GLUT1 and GFAP Dysregulation in Cells Surrounding the Third Ventricle, Including Tanycytes, Is Differentially Restored with Ketogenic Diet Treatment
by Parisa Rafiei, Huda S. Mian, Shruthi H. Iyer, Samantha B. Draves, Stephanie A. Matthews, Daniel E. Rendon, Emma J. Neesen, Madeline Dunlay, McKenna Revis, Adrianna L. Glisan, Timothy A. Simeone and Kristina A. Simeone
Nutrients 2025, 17(11), 1824; https://doi.org/10.3390/nu17111824 - 28 May 2025
Viewed by 583
Abstract
Background/Objectives: Hyperexcitable neuronal activity associated with seizures may disrupt brain homeostasis resulting in abnormal glucose and nutrient management and metabolism. Specialized ependymal cells known as tanycytes line the third ventricle wall bridging communication between the brain, CSF, and blood. Despite their positional importance, [...] Read more.
Background/Objectives: Hyperexcitable neuronal activity associated with seizures may disrupt brain homeostasis resulting in abnormal glucose and nutrient management and metabolism. Specialized ependymal cells known as tanycytes line the third ventricle wall bridging communication between the brain, CSF, and blood. Despite their positional importance, whether tanycytes are impacted by epilepsy is unknown. Here, known protein markers of tanycytes were assessed in the Kcna1-null mouse model of genetic epilepsy with spontaneous recurrent seizures (SRS mice). Further, whether an anti-seizure metabolic ketogenic diet (KD), previously proven effective in SRS mice, restored protein levels was determined. Methods: Known tanycyte proteins, including glucose transporter 1 (GLUT1), glial fibrillary acidic protein (GFAP), and doublecortin (DCX, to determine potential neurogenic differences) were examined throughout the anterior–posterior axis of the third ventricle using immunofluorescent histochemistry. Results: Decreased GLUT1 immunoreactivity and elevated GFAP levels were found in the SRS cohorts. The number of neurogenic DCX-expressing cells did not differ. Two weeks of KD treatment reduced GFAP to WT levels. GLUT1 remained low in KD-treated SRS mice. Conclusions: These data suggest that the expression of proteins important for the structure and function of tanycytes is altered in preclinical epilepsy and is differentially restored with KD treatment. Whether tanycytes actively participate in the pathophysiology of epilepsy or associated comorbidities is an intriguing possibility given their integral role in brain homeostasis. Full article
(This article belongs to the Special Issue Nutrition, Metabolites, and Human Health—3rd Edition)
Show Figures

Figure 1

Back to TopTop