Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (977)

Search Parameters:
Keywords = neuronal active drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1179 KB  
Article
Comparative Characterization of a Proposed Generic Nusinersen: Identity of the Oligonucleotide Structure and Equivalence in SMN2 Splicing Activity
by Serge Taran, Maksim Smolov, Maksim Degterev, Ivan Lyagoskin and Rakhim Shukurov
Pharmaceutics 2026, 18(2), 178; https://doi.org/10.3390/pharmaceutics18020178 - 29 Jan 2026
Viewed by 97
Abstract
Background/Objectives: Nusinersen is a synthetic antisense RNA oligonucleotide employed in the management of spinal muscular atrophy, a rare neuromuscular disorder, by modulating the alternative splicing of the survival motor neuron 2 (SMN2) gene. GNR-100 represents the first generic version of the reference listed [...] Read more.
Background/Objectives: Nusinersen is a synthetic antisense RNA oligonucleotide employed in the management of spinal muscular atrophy, a rare neuromuscular disorder, by modulating the alternative splicing of the survival motor neuron 2 (SMN2) gene. GNR-100 represents the first generic version of the reference listed drug (RLD), containing nusinersen sodium as the active pharmaceutical ingredient. We performed comprehensive evaluations in accordance with FDA guidelines, including side-by-side comparative analyses of critical quality attributes, to thoroughly characterize the structural and functional properties of both nusinersen products. Results/Methods: GNR-100 was comprehensively demonstrated to be highly similar to RLD in terms of oligonucleotide structure, physicochemical properties, impurity profile, and in vitro cell-based assays for SMN-gene splice-switching and SMN-protein activity. Structural analyses confirmed that the oligonucleotide primary sequences and chemical structures were identical. The diastereomeric composition and higher-order structures were also similar between the proposed generic and the reference product. Comparable resistance to phosphodiesterase degradation and nearly identical melting temperatures of the oligonucleotide duplexes with their complementary strand further substantiated the structural sameness of the nusinersen products. The impurity profile of the proposed therapeutic oligonucleotide was consistent with that of RLD, and the collectively reduced levels of impurities, as assessed by orthogonal analytical methods, indicated no meaningful impact on the safety profile. Moreover, both products exhibited comparable biological activity in enhancing the production of full-length SMN2 mRNA transcripts and functional SMN protein in fibroblasts derived from SMA patients. Conclusions: These quality studies demonstrate that GNR-100 exhibits no significant differences from the licensed drug across structural, physicochemical, biophysical, and biological attributes, establishing its potential as a cost-effective therapeutic alternative for patients with spinal muscular atrophy. Full article
(This article belongs to the Section Biologics and Biosimilars)
31 pages, 3338 KB  
Review
Natural Neurobiological Active Compounds in Parkinson’s Disease: Molecular Targets, Signaling Pathways, and Therapeutic Prospects
by Xue Wu, Linao Zhang, Shifang Luo, Qing Li, Jiying Wang, Wentao Chen, Na Zhou, Lingli Zhou, Rongyu Li, Yuhuan Xie, Qinghua Chen and Peixin Guo
Int. J. Mol. Sci. 2026, 27(3), 1301; https://doi.org/10.3390/ijms27031301 - 28 Jan 2026
Viewed by 82
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative condition with a multifactorial etiology, characterized by dopaminergic neurons being selectively absent in the midbrain. Clinically, PD manifests primarily with core motor symptoms of resting tremor, bradykinesia, and muscle rigidity, and is often accompanied by non-motor [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative condition with a multifactorial etiology, characterized by dopaminergic neurons being selectively absent in the midbrain. Clinically, PD manifests primarily with core motor symptoms of resting tremor, bradykinesia, and muscle rigidity, and is often accompanied by non-motor symptoms including depression, cognitive impairment, and gastrointestinal dysfunction. Among the extensive relevant research, few have explored the precise pathogenic mechanisms underlying PD, and no curative treatment is available. Current pharmacological therapies mainly provide symptomatic relief by enhancing central dopaminergic function or modulating cholinergic activity; however, their long-term efficacy is frequently constrained by waning therapeutic response, drug tolerance, and adverse reactions. Accumulating evidence suggests that several naturally derived neuroactive compounds—such as gastrodin, uncarin, and paeoniflorin—demonstrate significant potential in combating PD. In this systematic review, we examined original research articles published from 2010 to 2025, retrieved from PubMed, Web of Science, and CNKI databases, using predefined keywords of Parkinson’s disease, neuroprotective herbal compounds, traditional medicine, multi-target mechanisms, natural product, autophagy, neuroinflammation, and oxidative stress. Studies were included if they specifically investigated the mechanistic actions of natural compounds in PD models. Conference abstracts, review articles, publications not in English or Chinese, and studies lacking clearly defined mechanisms were excluded. Analysis of the available literature reveals that natural neuroactive compounds may exert anti-PD effects through multiple mechanisms, e.g., inhibiting pathological α-synuclein aggregation, attenuating neuronal apoptosis, suppressing neuroinflammation, mitigating oxidative stress, and restoring mitochondrial dysfunction. This review provides insights that may inform the clinical application of natural bioactive compounds and guide their further development as potential therapeutic candidates against PD. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

22 pages, 2631 KB  
Article
Design, Docking, Synthesis, and Biological Evaluation of Pyrazolone Derivatives as Potential Dual-Action Antimicrobial and Antiepileptic Agents
by Yousef Al-ebini, Manojmouli Chandramouli, Naga Prashant Koppuravuri, Thoppalada Yunus Pasha, Mohamed Rahamathulla, Salwa Eltawaty, Kamal Y. Thajudeen, Mohammed Muqtader Ahmed and Thippeswamy Boreddy Shivanandappa
Pharmaceuticals 2026, 19(2), 193; https://doi.org/10.3390/ph19020193 - 23 Jan 2026
Viewed by 267
Abstract
Background/Objectives: Epilepsy is characterized by unpredictable seizures and drug resistance, along with rising antimicrobial resistance (AMR), highlighting the urgent need for innovative dual-action therapies. This study aimed to design, develop, and evaluate novel pyrazolone derivatives for a dual antimicrobial and antiepileptic potential. Methods: [...] Read more.
Background/Objectives: Epilepsy is characterized by unpredictable seizures and drug resistance, along with rising antimicrobial resistance (AMR), highlighting the urgent need for innovative dual-action therapies. This study aimed to design, develop, and evaluate novel pyrazolone derivatives for a dual antimicrobial and antiepileptic potential. Methods: Novel pyrazolone derivatives were designed, synthesized (using 2,4-dinitrophenylhydrazine/semicarbazide condensation with ethyl acetoacetate), and evaluated through molecular docking against antimicrobial (4URM, 3FYV, 3FRA) and neuronal targets (4COF, 5TP9, 5L1F). The in vitro antimicrobial activity was assessed against Gram-positive (S. aureus) and in vitro Gram-negative (E. coli, P. aeruginosa) strains via agar cup plate assays, while in vivo antiepileptic efficacy was tested in a PTZ-induced seizure model in Swiss albino mice. Results: Compound IIa showed potent dual activity, inhibiting E. coli (9 mm zone at 80 μg/mL) and S. aureus (9.5 mm at 80 μg/mL), alongside a significantly delayed seizure onset in the PTZ-induced mouse model (100% survival rate, 45 sec delayed seizure onset, p < 0.001). Compounds Ia and Id showed selective activity against E. coli (6 mm at 80 μg/mL) and P. aeruginosa (7 mm at 80 μg/mL), respectively. Docking studies revealed that compound IIa has a superior binding affinity (−7.57 kcal/mol for 3FYV) compared to standards, driven by hydrogen bonds (SER X: 49) and hydrophobic interactions (LEU X: 20). Conclusions: This study presents a novel approach by proposing a rationally designed pyrazolone scaffold exhibiting both antimicrobial and antiepileptic activity, which integrates in silico modeling with experimental validation. Compound IIa emerged with preliminary dual biological activities, exhibiting strong antibacterial activity, a superior binding affinity toward both bacterial and neuronal targets, and notable seizure prevention in vivo. These findings show the potential of multifunctional pyrazolone derivatives as a new treatment strategy for addressing drug-resistant infections linked to epilepsy and support further optimization toward clinical development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

23 pages, 1644 KB  
Review
Joint Acidosis and GPR68 Signaling in Osteoarthritis: Implications for Cartilage Gene Regulation
by Colette Hyde, Adam Yung, Ryan Taffe, Bhakti Patel and Nazir M. Khan
Genes 2026, 17(1), 109; https://doi.org/10.3390/genes17010109 - 20 Jan 2026
Viewed by 151
Abstract
Joint acidosis is increasingly recognized as an important determinant of cellular behavior in osteoarthritis (OA). Declines in extracellular pH (pHe) occur across cartilage, meniscus, synovium, and subchondral bone, where they influence inflammation, matrix turnover, and pain. Among proton-sensing G protein-coupled receptors, GPR68 responds [...] Read more.
Joint acidosis is increasingly recognized as an important determinant of cellular behavior in osteoarthritis (OA). Declines in extracellular pH (pHe) occur across cartilage, meniscus, synovium, and subchondral bone, where they influence inflammation, matrix turnover, and pain. Among proton-sensing G protein-coupled receptors, GPR68 responds to the acidic pH range characteristic of human OA joints. The receptor is activated between pH 6.8 and 7.0, couples to Gq/PLC-MAPK, cAMP-CREB, G12/13-RhoA-ROCK signaling pathways, and is expressed most prominently in articular cartilage, with additional expression reported in synovium, bone, vasculature, and some neuronal populations. These pathways regulate transcriptional programs relevant to cartilage stress responses, inflammation, and matrix turnover. GPR68 expression is increased in human OA cartilage and aligns with regions of active matrix turnover. We previously reported that pharmacologic activation of GPR68 suppresses IL1β-induced MMP13 expression in human chondrocytes under acidic conditions, indicating that increased GPR68 expression may represent a microenvironment-responsive, potentially adaptive signaling response rather than a driver of cartilage degeneration. Evidence from intestinal, stromal, and vascular models demonstrates that GPR68 integrates pH changes with inflammatory and mechanical cues, providing mechanistic context, although these effects have not been directly established in most joint tissues. Small-molecule modulators, including the positive allosteric agonist Ogerin and the inhibitor Ogremorphin, illustrate the tractability of GPR68 as a drug target, although no GPR68-directed therapies have yet been evaluated in preclinical models of OA. Collectively, current data support GPR68 as a functionally relevant proton sensor within the acidic OA joint microenvironment. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

35 pages, 1471 KB  
Review
β-Alanine Is an Unexploited Neurotransmitter in the Pathogenesis and Treatment of Alzheimer’s Disease
by Cindy M. Wozniczka and Donald F. Weaver
NeuroSci 2026, 7(1), 13; https://doi.org/10.3390/neurosci7010013 - 15 Jan 2026
Viewed by 631
Abstract
Alzheimer’s disease (AD) remains an unmet medical challenge, as there are no effective therapies that alter the disease’s progression. While approaches have targeted molecules like acetylcholine (ACh) and glutamate, these strategies have provided only limited benefits and do not address the complex molecular [...] Read more.
Alzheimer’s disease (AD) remains an unmet medical challenge, as there are no effective therapies that alter the disease’s progression. While approaches have targeted molecules like acetylcholine (ACh) and glutamate, these strategies have provided only limited benefits and do not address the complex molecular mechanisms underlying AD development. This review suggests that β-alanine (3-aminopropanoic acid) is an underexplored neurotransmitter that could serve as a potential AD drug target. Existing evidence indicates that β-alanine modulates GABAergic and glutamatergic neurotransmission, thereby affecting neuronal hyperexcitability. Additionally, studies suggest that β-alanine has antioxidant effects, reducing oxidative stress caused by reactive oxygen species (ROS). We propose that β-alanine might bind to Aβ/tau proteins, possibly targeting the six-amino acid sequences EVHHQK/DDKKAK, which are involved in protein aggregation. β-Alanine may also influence the release of pro-inflammatory cytokines from microglia, potentially reducing neuroinflammation. We also hypothesize that β-alanine may help regulate metal dyshomeostasis, which leads to ROS production. Taurine, structurally like β-alanine, appears to influence comparable mechanisms. Although structural similarity doesn’t ensure therapeutic effectiveness, this evidence supports considering β-alanine as a treatment for AD. Furthermore, β-alanine and its analogues face challenges, including crossing the blood–brain barrier (BBB) and optimizing structure–activity relationships (SAR). This review includes articles through September 2025, sourced from four databases. Full article
Show Figures

Figure 1

34 pages, 6962 KB  
Article
Novel Repurposing of Empagliflozin-Loaded Buccal Composite (Chitosan/Silk Fibroin/Poly(lactic acid)) Nanofibers for Alzheimer’s Disease Management via Modulation of Aβ–AGER–p-tau Pathway
by Walaa A. El-Dakroury, Samar A. Salim, Abdelrahman R. Said, Gihan F. Asaad, Mohamed F. Abdelhameed, Marwa E. Shabana, Mohamed M. Ibrahim, Sara G. Abualmajd, Haidy H. Mosaad, Aliaa A. Salama, Shrouk E. Asran, Mayar L. Amer, Ahmed S. Doghish and Fatma Sa’eed El-Tokhy
Pharmaceutics 2026, 18(1), 83; https://doi.org/10.3390/pharmaceutics18010083 - 8 Jan 2026
Cited by 1 | Viewed by 679
Abstract
Background/Objectives: Empagliflozin (EMPA) was repurposed for Alzheimer’s disease (AD) treatment via buccal delivery, exploiting novel nanofibers (NFs) integrating chitosan (Cs), silk fibroin (Fb), and poly(lactic acid) (PLA). Methods: EMPA-loaded Cs/Fb/PLA NFs were electrospun in different formulations to optimize the formulation parameters. [...] Read more.
Background/Objectives: Empagliflozin (EMPA) was repurposed for Alzheimer’s disease (AD) treatment via buccal delivery, exploiting novel nanofibers (NFs) integrating chitosan (Cs), silk fibroin (Fb), and poly(lactic acid) (PLA). Methods: EMPA-loaded Cs/Fb/PLA NFs were electrospun in different formulations to optimize the formulation parameters. The optimized formulation was then investigated for its enhanced in vivo effect. Results: Optimized nanofiber diameters ranged from 459 ± 173 to 668 ± 148 nm, possessing bead-free morphology confirmed by SEM and satisfactory mechanical properties. EMPA was successfully well-dispersed in the polymer matrix as evidenced by FTIR, XRD, and drug content. The optimized NFs displayed a hydrophilic surface (contact angle < 90°), and biphasic drug release with sustained EMPA liberation (84.98% over 24 h). In vivo, buccal EMPA-Cs/Fb/PLA NFs in an AlCl3-induced AD rat model significantly reduced brain-amyloid-β, phosphorylated tau, IL-1β, and AGER expression by 2.88-, 2.64-, 2.87-, and 2.50-fold, respectively, compared to positive controls, and improved locomotor activity (1.86-fold) and cognitive performance (T-maze) (4.17-fold). Compared to pure EMPA, the nanofiber formulation achieved further reductions in amyloid-β (1.78-fold), p-tau (1.42-fold), IL-1β (1.89-fold), and AGER (1.38-fold), with efficacy comparable to memantine. Histopathological examination revealed preservation of the hippocampal neuronal structure. Conclusions: The findings suggest EMPA-loaded Cs/Fb/PLA NFs as a promising non-invasive, sustained-release buccal delivery platform for AD therapy, offering multimodal neuroprotection through modulation of the Aβ–AGER–p-tau axis. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

46 pages, 7543 KB  
Review
Epigenetic Dysregulation in Neurodegeneration: The Role of Histone Deacetylases and Emerging Inhibitor Strategies
by Yogesh Pawar, Aleksandra Kopranovic, Ramaa C S and Franz-Josef Meyer-Almes
Biomolecules 2026, 16(1), 103; https://doi.org/10.3390/biom16010103 - 7 Jan 2026
Viewed by 419
Abstract
Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are characterized by complex pathologies with progressive neurodegeneration, protein misfolding, oxidative stress, and persistent inflammation. Recent findings indicate the pivotal involvement of epigenetic disruption, particularly aberrant histone deacetylase (HDAC) [...] Read more.
Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are characterized by complex pathologies with progressive neurodegeneration, protein misfolding, oxidative stress, and persistent inflammation. Recent findings indicate the pivotal involvement of epigenetic disruption, particularly aberrant histone deacetylase (HDAC) activity, in disease initiation and progression. In the current review, we systematically discuss the mechanistic function of HDACs across all classes (I, IIa, IIb, III, and IV) in neurodegenerative disease mechanisms, such as their involvement in the modulation of gene expression, mitochondrial function, proteostasis, and neuronal survival. We discuss the therapeutic potential, as well as limitations, of HDAC inhibitors (HDACis), such as pan-inhibitors and isoenzyme-selective inhibitors, and new multi-target-directed ligands with HDAC inhibition combined with acetylcholinesterase modulation, PDE modulation, MAO-B inhibition, or NMDAR modulation. Particular emphasis is placed on the development of HDAC6-selective inhibitors with enhanced brain permeability and reduced toxicity, which have shown promising preclinical efficacy in ameliorating hallmark pathologies of AD, PD, and HD. In addition, s-triazine-based scaffolds have recently emerged as promising chemotypes in HDAC inhibitor design, offering favorable pharmacokinetic profiles, metabolic stability, and the potential for dual-target modulation relevant to neurodegeneration. The review also explores the future of HDAC-targeted therapies, including PROTAC degraders, dual-inhibitor scaffolds, and sustainable, BBB-penetrant molecules. Collectively, this review underscores the importance of HDAC modulation as a multifaceted strategy in the treatment of neurodegenerative diseases and highlights the need for continued innovation in epigenetic drug design. Full article
Show Figures

Figure 1

26 pages, 2985 KB  
Review
Marine Derived Natural Products: Emerging Therapeutics Against Herpes Simplex Virus Infection
by Vaibhav Tiwari, James Elste, Chunyu Wang and Fuming Zhang
Biomolecules 2026, 16(1), 100; https://doi.org/10.3390/biom16010100 - 7 Jan 2026
Viewed by 508
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) are highly prevalent human pathogens that establish lifelong latency in sensory neurons, posing a persistent challenge to global public health. Their clinical manifestations range from mild, self-limiting orolabial lesions to severe, life-threatening conditions such as disseminated neonatal [...] Read more.
Herpes simplex viruses (HSV-1 and HSV-2) are highly prevalent human pathogens that establish lifelong latency in sensory neurons, posing a persistent challenge to global public health. Their clinical manifestations range from mild, self-limiting orolabial lesions to severe, life-threatening conditions such as disseminated neonatal infections, focal encephalitis, and herpetic stromal keratitis, which can lead to irreversible corneal blindness. Beyond direct pathology, HSV-mediated genital ulcerative disease (GUD) significantly enhances mucosal susceptibility to HIV-1 and other sexually transmitted infections, amplifying co-infection risk and disease burden. Despite decades of clinical reliance on nucleoside analogues such as acyclovir, the therapeutic landscape has stagnated with rising antiviral resistance, toxicity associated with prolonged use, and the complete inability of current drugs to eliminate latency or prevent reactivation continue to undermine effective disease control. These persistent gaps underscore an urgent need for next-generation antivirals that operate through fundamentally new mechanisms. Marine ecosystems, the planet’s most chemically diverse environments, are providing an expanding repertoire of antiviral compounds with significant therapeutic promise. Recent discoveries reveal that marine-derived polysaccharides, sulfated glycans, peptides, alkaloids, and microbial metabolites exhibit remarkably potent and multi-targeted anti-HSV activities, disrupting viral attachment, fusion, replication, and egress, while also reshaping host antiviral immunity. Together, these agents showcase mechanisms and scaffolds entirely distinct from existing therapeutics. This review integrates emerging evidence on structural diversity, mechanistic breadth, and translational promise of marine natural products with anti-HSV activity. Collectively, these advances position marine-derived compounds as powerful, untapped scaffolds capable of reshaping the future of HSV therapeutics. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Graphical abstract

16 pages, 2599 KB  
Article
GLUT1-DS Brain Organoids Exhibit Increased Sensitivity to Metabolic and Pharmacological Induction of Epileptiform Activity
by Loïc Lengacher, Sylvain Lengacher, Pierre J. Magistretti and Charles Finsterwald
Pharmaceuticals 2026, 19(1), 105; https://doi.org/10.3390/ph19010105 - 7 Jan 2026
Viewed by 381
Abstract
Background/Objectives: Glucose Transporter 1 Deficiency Syndrome (GLUT1-DS) is a neurodevelopmental disorder caused by mutations in the gene encoding glucose transporter 1 (GLUT1), which leads to impaired glucose transport into the brain and is characterized by drug-resistant epilepsy. Limited glucose supply disrupts neuronal [...] Read more.
Background/Objectives: Glucose Transporter 1 Deficiency Syndrome (GLUT1-DS) is a neurodevelopmental disorder caused by mutations in the gene encoding glucose transporter 1 (GLUT1), which leads to impaired glucose transport into the brain and is characterized by drug-resistant epilepsy. Limited glucose supply disrupts neuronal and astrocytic energy homeostasis, but how hypometabolism translates into network hyperexcitability remains poorly understood. Here, we used induced pluripotent stem cells (iPSCs)-derived brain organoids to examine how reduced metabolic substrate availability shapes epileptiform dynamics in human neuronal circuits from GLUT1-DS. Methods: Brain organoids were generated from a healthy donor or a GLUT1-DS patient and interfaced with multielectrode arrays (MEA) for recording of neuronal activity. A unified Python (v3.10)-based analytical pipeline was developed to quantify spikes, bursts, and power spectral density (PSD) across frequency bands of neuronal activity. Organoids were challenged with reduced glucose, pentylenetetrazol (PTZ), potassium chloride (KCl), and tetrodotoxin (TTX) to assess metabolic and pharmacological modulation of excitability. Results: GLUT1-DS organoids exhibited elevated baseline hyperexcitability compared to healthy control, characterized by increased spike rates, prolonged bursts, increased spikes per burst, and elevated PSD. Reduced glucose availability further amplified these features selectively in GLUT1-DS. Conclusions: Human brain organoids reproduce the pathological coupling between hypometabolism and hyperexcitability in GLUT1-DS. Our platform provides a mechanistic model and quantification tool for evaluating metabolic and anti-epileptic therapeutic strategies. Full article
(This article belongs to the Special Issue 2D and 3D Culture Systems: Current Trends and Biomedical Applications)
Show Figures

Graphical abstract

31 pages, 3962 KB  
Article
Modular Model of Neuronal Activity That Captures the Dynamics of Main Molecular Targets of Antiepileptic Drugs
by Pavel Y. Kondrakhin and Fedor A. Kolpakov
Int. J. Mol. Sci. 2026, 27(1), 490; https://doi.org/10.3390/ijms27010490 - 3 Jan 2026
Viewed by 293
Abstract
This paper presents a modular mathematical model of neuronal activity, designed to simulate the dynamics of main molecular targets of antiepileptic drugs and their pharmacological effects. The model was developed based on several existing synaptic transmission models that capture cellular processes crucial to [...] Read more.
This paper presents a modular mathematical model of neuronal activity, designed to simulate the dynamics of main molecular targets of antiepileptic drugs and their pharmacological effects. The model was developed based on several existing synaptic transmission models that capture cellular processes crucial to the pathology of epilepsy. It incorporates the primary molecular mechanisms involved in regulating excitation and inhibition within the neural network. Special attention is given to the dynamics of ion currents (Na+, K+, Ca2+), receptors (AMPA, NMDA, GABAA, GABAB and mGlu), and neurotransmitters (glutamate and GABA). Examples of simulations illustrating the inhibitory effects on synaptic transmission are provided. The numerical results are consistent with experimental data reported in the literature. Full article
(This article belongs to the Special Issue Bioinformatics of Gene Regulations and Structure–2025)
Show Figures

Figure 1

48 pages, 2042 KB  
Review
From Stress to Substance Use Disorders: The Expanding Role of Microglia–Astrocyte Crosstalk in Neuroimmune and Glutamate Alterations in the Nucleus Accumbens
by Liliana Marina Cancela, Bethania Mongi-Bragato, María Paula Avalos and Flavia Andrea Bollati
Int. J. Mol. Sci. 2026, 27(1), 385; https://doi.org/10.3390/ijms27010385 - 30 Dec 2025
Viewed by 532
Abstract
This review examines convergent neurobiological mechanisms linking stress and drugs that drive stress-induced drug-related behaviors. It first outlines the main theoretical frameworks explaining substance use disorders (SUDs), emphasizing vulnerability factors—particularly stressful life events—that increase addiction risk. The analysis integrates preclinical evidence demonstrating that [...] Read more.
This review examines convergent neurobiological mechanisms linking stress and drugs that drive stress-induced drug-related behaviors. It first outlines the main theoretical frameworks explaining substance use disorders (SUDs), emphasizing vulnerability factors—particularly stressful life events—that increase addiction risk. The analysis integrates preclinical evidence demonstrating that chronic stress facilitates cross-sensitization to psychostimulants and accelerates drug self-administration, underscoring how stress and drugs converge on glutamatergic and dopaminergic transmission within the Nucleus Accumbens (NAc). Special attention is given to the glial cells, particularly microglia and astrocytes, in mediating stress-induced neuroimmune activation and glutamate dysregulation in the NAc. Three major themes related to microglia–astrocyte crosstalk are addressed: (i) the contribution of these glial cells to neuroimmune and glutamatergic alterations induced by stress; (ii) their role in synaptic and structural plasticity changes within the NAc; and (iii) the mechanisms by which stress and drug exposure reshape glial–neuronal communication, driving the comorbidity between stress and SUDs. A dedicated section focuses on key neuroimmune signaling pathways—particularly the TNF-α/NF-κB axis—and their involvement in stress-induced vulnerability to cocaine addiction. Finally, the review discusses preclinical evidence supporting the therapeutic potential of repurposed glutamate-modulating agents as promising pharmacological candidates for treating comorbid stress and cocaine-use disorder. Full article
(This article belongs to the Special Issue Neurobiological Mechanisms of Addictive Disorders)
Show Figures

Figure 1

31 pages, 1046 KB  
Review
The Role of Blood–Brain Barrier Disruption in Epilepsy: Mechanisms and Consequences
by Elena Suleymanova and Anna Karan
Neurol. Int. 2026, 18(1), 1; https://doi.org/10.3390/neurolint18010001 - 22 Dec 2025
Cited by 1 | Viewed by 680
Abstract
The blood–brain barrier (BBB) is essential for maintaining cerebral homeostasis, and its dysfunction is increasingly recognized as an active driver of epilepsy. This review explores the mechanisms by which BBB disruption contributes to seizures and the development of chronic epilepsy. Potentially epileptogenic insults, [...] Read more.
The blood–brain barrier (BBB) is essential for maintaining cerebral homeostasis, and its dysfunction is increasingly recognized as an active driver of epilepsy. This review explores the mechanisms by which BBB disruption contributes to seizures and the development of chronic epilepsy. Potentially epileptogenic insults, including traumatic brain injury, stroke, and status epilepticus, induce acute and often persistent BBB leakage. This breach permits the extravasation of serum albumin, which activates transforming growth factor-beta (TGF-β) signaling in astrocytes. This cascade leads to astrocytic dysfunction, impaired potassium buffering, neuroinflammation, and synaptic remodeling, collectively fostering neuronal hyperexcitability. Furthermore, BBB disruption facilitates the infiltration of peripheral immune cells, amplifying neuroinflammation and propagating a pathologic cycle of BBB damage and seizure activity. BBB damage is mediated by multiple processes, including the activation of the plasminogen activation (PA) system. Furthermore, these processes of BBB disruption and neuroinflammation provide a shared pathological basis for neuropsychiatric disorders like depression and anxiety, which are common comorbidities of epilepsy, through shared mechanisms of neuroinflammation and neurovascular unit (NVU) dysregulation. BBB dysfunction can also contribute to the resistance to antiepileptic drugs. Finally, we discuss the therapeutic potential of stabilizing the BBB as a viable strategy for developing disease-modifying therapies for epilepsy. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Graphical abstract

15 pages, 3617 KB  
Article
Neuroprotective Effects of Anodal tDCS on Oxidative Stress and Neuroinflammation in Temporal Lobe Epilepsy
by Ali Osman Arslan, Sevdenur Akcay, Guven Akcay, Dana Zaqzouq and Aydın Him
Biomedicines 2026, 14(1), 23; https://doi.org/10.3390/biomedicines14010023 - 22 Dec 2025
Viewed by 430
Abstract
Background: Epilepsy affects over 50 million people worldwide, and about 30% remain drug-resistant—underscoring the urgent need for new therapies. This study evaluated the neuroprotective effects of anodal transcranial direct current stimulation (tDCS) in PTZ-induced epilepsy at acute and chronic stages in rats. Methods: [...] Read more.
Background: Epilepsy affects over 50 million people worldwide, and about 30% remain drug-resistant—underscoring the urgent need for new therapies. This study evaluated the neuroprotective effects of anodal transcranial direct current stimulation (tDCS) in PTZ-induced epilepsy at acute and chronic stages in rats. Methods: Sixty male Wistar Albino rats (12 per group) were randomly assigned to five groups: control, acute epilepsy, acute epilepsy+ tDCS, chronic epilepsy, and chronic epilepsy+ tDCS. Behavioral tests—including the open-field, novel-object recognition, and Y-maze—assessed locomotion, recognition, and spatial memory. Hippocampal tissues were analyzed for oxidative stress markers (SOD, MDA), inflammatory cytokines (IL-1β, TNF-α), histopathology, and mechanistic markers of astrocytic and nitric oxide-mediated neuronal damage (GFAP and nNOS immunohistochemistry). Results: PTZ-induced epilepsy resulted in cognitive deficits, increased oxidative stress, neuroinflammation, neuronal degeneration, and astrocytic activation. Specifically, SOD decreased, while MDA, IL-1β, and TNF-α increased; GFAP and nNOS upregulation indicated activation of astrocytes and nitric oxide-mediated neuronal damage. tDCS mitigated these effects by enhancing SOD, reducing MDA, IL-1β, and TNF-α, and modulating the NO/GFAP axis, which corresponded to decreased neuronal degeneration and vascular hyperemia. Behaviorally, tDCS improved recognition memory and partially rescued spatial memory deficits. Conclusions: Anodal tDCS exerts neuroprotective effects in acute and chronic epilepsy by modulating oxidative stress, neuroinflammation, and the astrocytic/nitric oxide pathways, supporting its potential as a non-invasive adjunct therapy for cognitive and cellular protection. Future studies should investigate its effects on hippocampal glutamatergic and GABAergic pathways, as well as calcium homeostasis. Full article
Show Figures

Graphical abstract

15 pages, 1909 KB  
Article
The Carbon Dots from Seabuckthorn (Hippophae rhamnoides L.) Leaves: Recycle the Herbal Waste Products for a Nano-Formulation in Delivering Bioactive Compounds
by Chen-Xi Xia, Xiong Gao, Queenie Wing-Sze Lai, Zheng-Qi Wang, Lish Sheng-Yin Lin, Janet Yuen-Man Ho, Jia-Yu Zhu, Roy Wai-Lun Tang, Tina Ting-Xia Dong and Karl Wah-Keung Tsim
J. Funct. Biomater. 2025, 16(12), 465; https://doi.org/10.3390/jfb16120465 - 17 Dec 2025
Viewed by 492
Abstract
Carbon dots have emerged as promising nanocarriers for drug delivery due to their unique physicochemical properties and biocompatibilities. Here, the potential of leaf-derived carbon dots (named as SBLCD), derived from Seabuckthorn (Hippophae rhamnoides L.), was illustrated as a novel nano-formulation [...] Read more.
Carbon dots have emerged as promising nanocarriers for drug delivery due to their unique physicochemical properties and biocompatibilities. Here, the potential of leaf-derived carbon dots (named as SBLCD), derived from Seabuckthorn (Hippophae rhamnoides L.), was illustrated as a novel nano-formulation for bioactive compound delivery. Seabuckthorn leaves, rich in flavonoids, are the waste product during the production of Seabuckthorn fruits. The wasted leaves were utilized to synthesize carbon dots via a hydrothermal method. The resulting SBLCD, characterized by TEM, FT-IR and Raman spectroscopy, exhibited a diameter of ~5 nm in both amorphous and quasi-crystalline forms. Applications of SBLCD in cultures demonstrated robust properties of anti-inflammation and inducing neuronal cell differentiation. Furthermore, SBLCD was able to encapsulate luteolin, a bioactive flavonoid. The enhanced delivery efficiency translated to superior biological activity, with SBLCD-luteolin requiring only 1.50 μg/mL in achieving the EC50 efficacy, as compared to 6.82 μg/mL for free luteolin in pNF200-Luc expression assays. This approach not only valorizes Seabuckthorn leaf by-products but also potentially improves the efficacy of encapsulated flavonoids. The development of SBLCD as a multifunctional platform for flavonoid delivery represents a promising strategy in enhancing the efficacy of neuroactive compounds, combining anti-inflammatory effects (>70% cytokine suppression) with enhanced cellular uptake (4.5-fold increase). Full article
(This article belongs to the Section Biomaterials for Drug Delivery)
Show Figures

Graphical abstract

33 pages, 2706 KB  
Review
Targeting Cathepsins in Neurodegeneration: Biochemical Advances
by Francesca Di Matteo, Mariapia Vietri, Simone D’Alessio, Tania Ciaglia, Erica Federica Vestuto, Giacomo Pepe, Ornella Moltedo, Veronica Di Sarno, Simona Musella, Carmine Ostacolo, Fabio Cominelli, Pietro Campiglia, Alessia Bertamino, Maria Rosaria Miranda and Vincenzo Vestuto
Biomedicines 2025, 13(12), 3019; https://doi.org/10.3390/biomedicines13123019 - 9 Dec 2025
Viewed by 678
Abstract
Background/Objectives: Cathepsins, lysosomal proteases crucial for neuronal proteostasis, mediate the clearance of misfolded and aggregated proteins. Their dysregulation is implicated in neurodegenerative and neuropsychiatric disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. These conditions are characterized by toxic protein accumulation and impaired [...] Read more.
Background/Objectives: Cathepsins, lysosomal proteases crucial for neuronal proteostasis, mediate the clearance of misfolded and aggregated proteins. Their dysregulation is implicated in neurodegenerative and neuropsychiatric disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. These conditions are characterized by toxic protein accumulation and impaired clearance, which exacerbate cellular stress responses, including the unfolded protein response (UPR), oxidative damage, and mitochondrial dysfunction. This review aims to summarize current knowledge on cathepsin roles in these pathways and assess their therapeutic potential. Methods: A comprehensive literature review was conducted, focusing on recent in vitro and in vivo studies investigating cathepsin function, inhibition, and modulation. Mechanistic insights and pharmacological approaches targeting cathepsins were analyzed, with attention to challenges in translating preclinical findings to clinical settings. Results: Cathepsins demonstrate a dual role: their proteolytic activity supports neuronal health by degrading toxic aggregates, but altered or insufficient activity may worsen proteotoxic stress. Studies reveal that cathepsins regulate autophagy, apoptosis, and neuroinflammation both intracellularly and extracellularly. Despite promising mechanistic data, clinical translation is hindered by issues such as poor inhibitor selectivity, limited brain penetration, and variability across preclinical models. Conclusions: Targeting cathepsins presents a promising strategy for treating neurodegenerative and neuropsychiatric disorders, but significant challenges remain. Future research should focus on improving drug specificity and delivery, and on developing standardized models to better predict clinical outcomes. Full article
Show Figures

Figure 1

Back to TopTop