Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (572)

Search Parameters:
Keywords = nematic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2314 KiB  
Article
Effect of the Nematic Liquid Crystal on the Dye Sensitized Solar Cell Performance
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 - 31 Jul 2025
Viewed by 111
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

20 pages, 2804 KiB  
Article
Energetic Variational Modeling of Active Nematics: Coupling the Toner–Tu Model with ATP Hydrolysis
by Yiwei Wang
Entropy 2025, 27(8), 801; https://doi.org/10.3390/e27080801 - 27 Jul 2025
Viewed by 225
Abstract
We present a thermodynamically consistent energetic variational model for active nematics driven by ATP hydrolysis. Extending the classical Toner–Tu framework, we introduce a chemo-mechanical coupling mechanism in which the self-advection and polarization dynamics are modulated by the ATP hydrolysis rate. The model is [...] Read more.
We present a thermodynamically consistent energetic variational model for active nematics driven by ATP hydrolysis. Extending the classical Toner–Tu framework, we introduce a chemo-mechanical coupling mechanism in which the self-advection and polarization dynamics are modulated by the ATP hydrolysis rate. The model is derived using an energetic variational approach that integrates both chemical free energy and mechanical energy into a unified energy dissipation law. The reaction rate equation explicitly incorporates mechanical feedback, revealing how active transport and alignment interactions influence chemical fluxes and vice versa. This formulation not only preserves consistency with non-equilibrium thermodynamics but also provides a transparent pathway for modeling energy transduction in active systems. We also present numerical simulations demonstrating the positive energy transduction under a specific choice of model parameters. The new modeling framework offers new insights into energy transduction and regulation mechanisms in biologically related active systems. Full article
Show Figures

Figure 1

12 pages, 6858 KiB  
Perspective
Cellulose Nanocrystals for Advanced Optics and Electronics: Current Status and Future Directions
by Hyeongbae Jeon, Kyeong Keun Oh and Minkyu Kim
Micromachines 2025, 16(8), 860; https://doi.org/10.3390/mi16080860 - 26 Jul 2025
Viewed by 412
Abstract
Cellulose nanocrystals (CNCs) have attracted growing interest in optics and electronics, extending beyond their traditional applications. They are considered key materials due to their fast computing, sensing adhesion, and emission of circularly polarized luminescence with high dissymmetry factors. This interest arises from their [...] Read more.
Cellulose nanocrystals (CNCs) have attracted growing interest in optics and electronics, extending beyond their traditional applications. They are considered key materials due to their fast computing, sensing adhesion, and emission of circularly polarized luminescence with high dissymmetry factors. This interest arises from their unique chemical structure, which gives rise to structural color, a chiral nematic phase, and high mechanical strength. In this perspective, we first introduce the definition, sources, and fundamental properties of CNCs to explain the basis for their unique and effective use in optics and electronics. Next, we review recent research on the application of CNCs in these fields. We then analyze the current limitations that hinder further advancement. Finally, we offer our own perspective on future directions for the CNC-enabled advanced optics and electronics. Full article
Show Figures

Figure 1

36 pages, 2856 KiB  
Review
Intertwined Orders and the Physics of High Temperature Superconductors
by Eduardo Fradkin
Particles 2025, 8(3), 70; https://doi.org/10.3390/particles8030070 - 23 Jul 2025
Viewed by 194
Abstract
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic [...] Read more.
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic nematic states. In most cases, these phases have critical temperatures comparable in magnitude to that of the superconducting state and appear in a “pseudo-gap” regime. In these systems, the high temperature state does not produce a good metal with well-defined quasiparticles but a ”strange metal”. These states typically arise from doping a strongly correlated Mott insulator. With my collaborators, I have identified these behaviors as a problem with “Intertwined Orders”. A pair-density wave is a type of superconducting state that embodies the physics of intertwined orders. Here, I discuss the phenomenology of intertwined orders and the quantum materials that are known to display these behaviors. Full article
Show Figures

Figure 1

15 pages, 1917 KiB  
Article
Temperature-Dependent Polarization Characterization and Birefringence Inversion in Super-Twisted Nematic Liquid Crystals
by Houtong Liu, Bin Wang, Minjuan Mao, Yuanyuan Qian and Dan Wang
Photonics 2025, 12(7), 683; https://doi.org/10.3390/photonics12070683 - 7 Jul 2025
Viewed by 245
Abstract
The temperature-dependent polarization performance of super-twisted nematic liquid crystals (STN-LCs) when used as polarizers has garnered considerable scholarly attention. In this study, the transmittance of an STN-LC cell was measured under incident light wavelengths of 650 nm, 532 nm, and 405 nm over [...] Read more.
The temperature-dependent polarization performance of super-twisted nematic liquid crystals (STN-LCs) when used as polarizers has garnered considerable scholarly attention. In this study, the transmittance of an STN-LC cell was measured under incident light wavelengths of 650 nm, 532 nm, and 405 nm over the temperature range of 30 °C to 100 °C. The STN-LC cell was employed both as the sample under test and as an analyzer in a rotational measurement setup to investigate how its polarization properties vary with temperature. The results indicate that the LC cell exhibits the characteristics of a linear polarizer under red light (650 nm) and violet laser (405 nm) across the full temperature range. However, under green laser (532 nm), when the temperature exceeds 60 °C, its extinction ratio is poor, suggesting its unsuitability for polarization applications under such conditions. A birefringence inversion formula was derived using the transmittance difference method, which effectively eliminates the influence of the glass substrates on the measured transmittance of the LC layer. Utilizing this method, a simple optical setup consisting of a polarizer and photodetector was constructed to accurately extract the birefringence of the LC. The birefringence of super-twisted nematic liquid crystal can be obtained by the transmittance difference method, which is low-cost, has a simple optical path, and is convenient for temperature-controlled experimental measurements of the liquid crystal cell. The findings of this study provide methodological support for the precise determination of birefringence in LCs exhibiting linear polarization characteristics. Full article
Show Figures

Figure 1

19 pages, 3961 KiB  
Article
Bernoulli Principle in Ferroelectrics
by Anna Razumnaya, Yuri Tikhonov, Dmitrii Naidenko, Ekaterina Linnik and Igor Lukyanchuk
Nanomaterials 2025, 15(13), 1049; https://doi.org/10.3390/nano15131049 - 6 Jul 2025
Viewed by 340
Abstract
Ferroelectric materials, characterized by spontaneous electric polarization, exhibit remarkable parallels with fluid dynamics, where polarization flux behaves similarly to fluid flow. Understanding polarization distribution in confined geometries at the nanoscale is crucial for both fundamental physics and technological applications. Here, we show that [...] Read more.
Ferroelectric materials, characterized by spontaneous electric polarization, exhibit remarkable parallels with fluid dynamics, where polarization flux behaves similarly to fluid flow. Understanding polarization distribution in confined geometries at the nanoscale is crucial for both fundamental physics and technological applications. Here, we show that the classical Bernoulli principle, which describes the conservation of the energy flux along velocity streamlines in a moving fluid, can be extended to the conservation of polarization flux in ferroelectric nanorods with varying cross-sectional areas. Geometric constrictions lead to an increase in polarization, resembling fluid acceleration in a narrowing pipe, while expansions cause a decrease. Beyond a critical expansion, phase separation occurs, giving rise to topological polarization structures such as polarization bubbles, curls and Hopfions. This effect extends to soft ferroelectrics, including ferroelectric nematic liquid crystals, where polarization flux conservation governs the formation of complex mesoscale states. Full article
(This article belongs to the Special Issue Research on Ferroelectric and Spintronic Nanoscale Materials)
Show Figures

Figure 1

15 pages, 7120 KiB  
Article
A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope
by Tikhon V. Reztsov, Aleksey V. Chernykh, Tetiana Orlova and Nikolay V. Petrov
Polymers 2025, 17(13), 1849; https://doi.org/10.3390/polym17131849 - 2 Jul 2025
Viewed by 403
Abstract
Topological orientation structures in chiral nematic liquid crystals, such as torons, exhibit promising optical properties and are of increasing interest for applications in photonic devices. However, despite this attention, their polarization and phase dynamics during formation remain insufficiently explored. In this work, we [...] Read more.
Topological orientation structures in chiral nematic liquid crystals, such as torons, exhibit promising optical properties and are of increasing interest for applications in photonic devices. However, despite this attention, their polarization and phase dynamics during formation remain insufficiently explored. In this work, we investigate the dynamic optical response of a toron generated by focused femtosecond infrared laser pulses. A custom-designed polarization holographic microscope is employed to simultaneously record four polarization-resolved interferograms in a single exposure. This enables the real-time reconstruction of the Jones matrix, providing a complete description of the local polarization transformation introduced by the formation of the topological structure. The study demonstrates that torons can facilitate spin–orbit coupling of light in a manner analogous to q-plates, highlighting their potential for advanced vector beam shaping and topological photonics applications. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

26 pages, 14457 KiB  
Article
Molecular Simulation of the Isotropic-to-Nematic Transition of Rod-like Polymers in Bulk and Under Confinement
by Biao Yan, Daniel Martínez-Fernández, Katerina Foteinopoulou and Nikos Ch. Karayiannis
Polymers 2025, 17(12), 1703; https://doi.org/10.3390/polym17121703 - 19 Jun 2025
Viewed by 548
Abstract
We conduct extensive Monte Carlo simulations to investigate the factors that control the isotropic-to-nematic transition of hard colloidal polymers in bulk and under various conditions of confinement. Utilizing a highly idealized model, polymers are represented as linear chains of tangent hard spheres of [...] Read more.
We conduct extensive Monte Carlo simulations to investigate the factors that control the isotropic-to-nematic transition of hard colloidal polymers in bulk and under various conditions of confinement. Utilizing a highly idealized model, polymers are represented as linear chains of tangent hard spheres of uniform length, whose stiffness is controlled by a bending potential leading to rod-like configurations. Confinement is realized through the presence of flat, parallel, and impenetrable walls in one, two, or three dimensions while periodic boundary conditions are applied on the unconstrained dimensions. All simulations are performed through the Simu-D software, composed of conventional and advanced, chain-connectivity-altering Monte Carlo algorithms. We explore in detail how distinct factors, including chain length, stiffness, confinement, and packing density affect the isotropic-to-nematic transition exhibited by the polymer chains and identify with high precision the concentration range where this phase change takes place as a function of the applied conditions. Full article
(This article belongs to the Special Issue Semiflexible Polymers, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 3003 KiB  
Article
Nematic Phases in Photo-Responsive Hydrogen-Bonded Liquid Crystalline Dimers
by Christian Anders, Muhammad Abu Bakar, Tejal Nirgude and Mohamed Alaasar
Crystals 2025, 15(6), 576; https://doi.org/10.3390/cryst15060576 - 18 Jun 2025
Viewed by 350
Abstract
We report on the preparation and characterization of a new family of hydrogen-bonded nematogenic liquid crystalline dimers. The dimers are supramolecular complexes that consist of a benzoic acid derivative, acting as the proton donor, featuring a spacer with seven methylene groups and a [...] Read more.
We report on the preparation and characterization of a new family of hydrogen-bonded nematogenic liquid crystalline dimers. The dimers are supramolecular complexes that consist of a benzoic acid derivative, acting as the proton donor, featuring a spacer with seven methylene groups and a terminal decyloxy chain, paired with an azopyridine derivative as the proton acceptor. The latter was either fluorinated or nonfluorinated with variable alkoxy chain length. The formation of a hydrogen bond between the individual components was confirmed using FTIR and 1H NMR spectroscopy. All supramolecules were investigated for their liquid crystalline behaviour via a polarized optical microscope (POM) and differential scanning calorimetry (DSC). All materials exhibit enantiotropic nematic phases as confirmed by X-ray diffraction (XRD) and POM investigations. The nematic phase range depends strongly on the degree and position of fluorine atoms. Additionally, the supramolecules demonstrated a rapid and reversible transition between the liquid crystal phase and the isotropic liquid state because of trans-cis photoisomerization upon light irradiation. Therefore, this study presents a straightforward approach to design photo-responsive nematic materials, which could be of interest for nonlinear optics applications. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

16 pages, 2456 KiB  
Article
Characterization of Modified DNA-Based Polymer Alignment Layers for Photonic Applications
by Rafał Węgłowski, Mateusz Mrukiewicz, Dorota Węgłowska, Malwina Liszewska, Bartosz Bartosewicz, Adrian Chlanda and Anna Spadło
Materials 2025, 18(12), 2760; https://doi.org/10.3390/ma18122760 - 12 Jun 2025
Viewed by 349
Abstract
We present the creation of an alignment layer for liquid crystal molecules based on DNA from fish waste and a selected cationic surfactant. The implemented biodegradable DNA-based surface offers excellent optical and physical properties, cost-effectiveness, and environmental benefits compared to conventional polymers. Our [...] Read more.
We present the creation of an alignment layer for liquid crystal molecules based on DNA from fish waste and a selected cationic surfactant. The implemented biodegradable DNA-based surface offers excellent optical and physical properties, cost-effectiveness, and environmental benefits compared to conventional polymers. Our findings demonstrate that the biopolymer DNA-DODA effectively induces homeotropic alignment of nematic liquid crystals, which was confirmed by topography visualization using atomic force microscopy, macroscopy, and polarizing optical microscopy observations. Anchoring energy and response time studies in the well-known electro-optical effect show that DNA-DODA exhibits molecular interaction strengths comparable to those of commercial polyimide. The successful implementation of DNA-DODA as an alignment layer highlights its promise for next-generation technologies, including flexible, sustainable, and biocompatible optical devices. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Development of 2,1,3-Benzothiadiazole-Based Room-Temperature Fluorescent Nematic Liquid Crystals
by Muhammad Suhail bin Uzair, Yoshimichi Shimomura, Takuya Tanaka, Takashi Kajitani and Gen-ichi Konishi
Molecules 2025, 30(11), 2438; https://doi.org/10.3390/molecules30112438 - 2 Jun 2025
Viewed by 1322
Abstract
Fluorescent liquid crystals (LCs) have attracted considerable interest owing to their unique combination of fluidity, anisotropy, and intrinsic emission. However, most reported fluorescent LCs exhibit high phase transition temperatures and/or smectic phases, limiting their practical applications. To address this, we designed and synthesized [...] Read more.
Fluorescent liquid crystals (LCs) have attracted considerable interest owing to their unique combination of fluidity, anisotropy, and intrinsic emission. However, most reported fluorescent LCs exhibit high phase transition temperatures and/or smectic phases, limiting their practical applications. To address this, we designed and synthesized a series of 2,1,3-benzothiadiazole (BTD)-based fluorescent nematic liquid crystals incorporating donor (D) or acceptor (A) groups to form D–A–D or D–A–A structures. Most of the synthesized derivatives exhibited supercooled nematic phases at room temperature. They composed various functional groups, such as secondary alkylamine, branched alkyl chain, and trifluoroacetyl groups, which are rarely used in calamitic nematic LCs. Notably, dimethylamine- and carbonyl-substituted derivatives exhibited relatively high fluorescence quantum yields (Φfl) in both solid and mesophase states, demonstrating their potential as efficient fluorescent materials. Our findings underscore the versatility of BTD-based mesogenic skeletons for designing room-temperature fluorescent nematic LCs with various functional groups. These materials offer promising opportunities for next-generation display technologies, optical sensors, and photonic applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Figure 1

22 pages, 4021 KiB  
Article
DPPC Membrane Under Lateral Compression and Stretching to Extreme Limits: Phase Transitions and Rupture
by Subhalaxmi Das, Nikos Ch. Karayiannis and Supriya Roy
Membranes 2025, 15(6), 161; https://doi.org/10.3390/membranes15060161 - 26 May 2025
Viewed by 1685
Abstract
Dipalmitoylphosphatidylcholine (DPPC), is one of the key bilayer membranes of the phosphatidylcholine (PC) family which constitutes 40–50% of total cellular phospholipids in mammal cells. We investigate the behavior of an initially planar DPPC membrane under lateral pressures from −200 to 150 bar at [...] Read more.
Dipalmitoylphosphatidylcholine (DPPC), is one of the key bilayer membranes of the phosphatidylcholine (PC) family which constitutes 40–50% of total cellular phospholipids in mammal cells. We investigate the behavior of an initially planar DPPC membrane under lateral pressures from −200 to 150 bar at 323 K using microsecond-scale simulations. We identify, with very high precision, the pressure range for the occurrence of critical phenomena, mainly undulation and rupture. Notably, under compression, the membrane initially thickens, leading to a phase transition to an undulated state between 40 and 50 bar, as gauged by the sharp changes in the diverse structural metrics. Stretching induces systematic membrane thinning, with rupture becoming probable at −170 bar and certain at −200 bar. The reverse compression cycle shows pressure hysteresis with a 10-bar shift, while the reverse stretching cycle retraces the pathway. System size has a minimal impact on the observed trends. Under extreme mechanical stress, particularly near critical phenomena, simulation times on the order of microsecond are needed to accurately capture phase behavior and structural alterations. This work provides important insights into understanding membrane behavior under extreme conditions, which are relevant to numerous biological and technological applications. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

16 pages, 3550 KiB  
Article
Design of a Superlubricity System Using Polyimide Film Surface-Modified Poly-Ether-Ether-Ketone
by Yuwei Cheng, Rui Yu, Tingting Wang and Xinlei Gao
Polymers 2025, 17(11), 1439; https://doi.org/10.3390/polym17111439 - 22 May 2025
Viewed by 357
Abstract
Poly-ether-ether-ketone (PEEK) is widely used in dynamic sealing applications due to its excellent properties. However, its tribological performance as a sealing material still has limitations, as its relatively high friction coefficient may lead to increased wear of sealing components, affecting sealing effectiveness and [...] Read more.
Poly-ether-ether-ketone (PEEK) is widely used in dynamic sealing applications due to its excellent properties. However, its tribological performance as a sealing material still has limitations, as its relatively high friction coefficient may lead to increased wear of sealing components, affecting sealing effectiveness and service life. To optimize its lubrication performance, this study employs surface modification techniques to synthesize a thin polyimide (PI) film on the surface of PEEK. When paired with bearing steel, this modification reduces the friction coefficient and enhances the anti-wear performance of sealing components. The tribological properties of a friction pair composed of GCr15 steel and PI-modified PEEK were systematically investigated using a nematic liquid crystal as the lubricant. The friction system was analyzed through various tests. The experimental results show that, under identical conditions, the friction coefficient of the PI-modified PEEK system decreased by 83.3% compared to pure PEEK. Under loads of 5 N and 25 N and rotational speeds ranging from 50 rpm to 400 rpm, the system exhibited induced alignment superlubricity. At 50 rpm, superlubricity was maintained when the load was below 105 N, while at 200 rpm, this occurred when the load was below 125 N. Excessively high rotational speeds (above 300 rpm) might affect system stability. The friction coefficient initially decreased and then increased with increasing load. The friction system demonstrated induced alignment superlubricity under the tested conditions, suggesting the potential application of PI-modified PEEK in friction components. Full article
Show Figures

Figure 1

17 pages, 3664 KiB  
Article
Theoretical Insights into Twist–Bend Nematic Liquid Crystals: Infrared Spectra Analysis of Naphthalene-Based Dimers
by Barbara Loska, Yuki Arakawa and Katarzyna Merkel
Materials 2025, 18(9), 1971; https://doi.org/10.3390/ma18091971 - 26 Apr 2025
Viewed by 1013
Abstract
In this study, we employed density functional theory (DFT), a standard method in quantum chemistry, to investigate the structural intricacies of thioether-linked naphthalene-based liquid-crystal dimers. The theoretical analysis included the calculation of the molecular bend angle, a crucial factor influencing the formation of [...] Read more.
In this study, we employed density functional theory (DFT), a standard method in quantum chemistry, to investigate the structural intricacies of thioether-linked naphthalene-based liquid-crystal dimers. The theoretical analysis included the calculation of the molecular bend angle, a crucial factor influencing the formation of the twist–bend nematic (NTB) phase, as well as other molecular parameters such as transition dipole moments, bond lengths, and bond energies. These calculations allowed for the determination of the probable conformations and the computation of their vibrational spectra, which are essential for interpreting experimental spectra. Connecting these insights, we identified stable conformations and observed differences in the spectra between the conventional nematic (N) and NTB phases. The combined DFT calculations and infrared absorbance measurements allowed us to investigate the structure and intermolecular interactions of molecules in the N and NTB phases of the dimers. Notably, significant changes in average absorbance were detected in the experimental spectra in the NTB phase. During the transition from the N phase to the NTB phase, a clear decrease in absorbance for longitudinal dipoles and an increase for transverse dipoles were observed. This phenomenon suggests that longitudinal dipoles are antiparallel, while transverse dipoles are parallel. To verify the influence of nearest-neighbor interactions, DFT calculations were conducted on a system comprising several neighboring molecules. Full article
(This article belongs to the Special Issue Liquid Crystals and Other Partially Disordered Molecular Systems)
Show Figures

Graphical abstract

24 pages, 5126 KiB  
Article
The Impact of Nanoparticles on Previtreous Behavior: Glass-Forming Nematogenic E7 Mixture-Based Nanocolloids
by Aleksandra Drozd-Rzoska, Joanna Łoś and Sylwester J. Rzoska
Nanomaterials 2025, 15(8), 597; https://doi.org/10.3390/nano15080597 - 13 Apr 2025
Viewed by 397
Abstract
This report discusses the impact of nanoparticles on glass-forming systems composed of a liquid crystalline (LC) mixture E7 and paraelectric BaTiO3 particles (d50 nm, globular), tested via broadband dielectric spectroscopy. In the isotropic phase, critical changes [...] Read more.
This report discusses the impact of nanoparticles on glass-forming systems composed of a liquid crystalline (LC) mixture E7 and paraelectric BaTiO3 particles (d50 nm, globular), tested via broadband dielectric spectroscopy. In the isotropic phase, critical changes in the dielectric constant are shown. They are related to the weakly discontinuous nature of the isotropic–nematic transition. In the nematic phase, two primary relaxation times/processes and DC electric conductivity are considered, down to the glass temperature Tg. The prevalence of portrayals via the ‘double exponential’ MYEGA equation and the critical & activated Drozd-Rzoska relation for dynamic properties are shown. For the primary loss curve, critical-like changes of its maximum (peak) are evidenced: εpeak1/TTg* for Tg<T<Tg+25 K, where Tg*<Tg denotes the extrapolated singular temperature. Dielectric constant monitoring revealed the permanent arrangement of rod-like LC molecules by nanoparticles’ endogenic impact in the nematic phase. The heuristic model regarding this unique behavior is presented. It considers a hypothetical link between the glass transition and a hidden near-critical discontinuous phase transition, uniquely avoiding a symmetry change. The uniaxiality of LC molecules enables the detection of critical-like features when approaching the glass transition, hypothetically associated with a specific ‘amorphous’ phase transition. Full article
(This article belongs to the Special Issue The Impact of Nanoparticles on Phase Transitions in Liquid Crystals)
Show Figures

Figure 1

Back to TopTop