Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (602)

Search Parameters:
Keywords = neighborhood search

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2800 KiB  
Article
An Enhanced NSGA-II Driven by Deep Reinforcement Learning to Mixed Flow Assembly Workshop Scheduling System with Constraints of Continuous Processing and Mold Changing
by Bihao Yang, Jie Chen, Xiongxin Xiao, Sidi Li and Teng Ren
Systems 2025, 13(8), 659; https://doi.org/10.3390/systems13080659 - 4 Aug 2025
Viewed by 154
Abstract
Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach [...] Read more.
Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach struggles to meet the processing constraints of workpieces with higher production difficulty, while the second approach requires the development of suitable scheduling schemes to balance mold changes and continuous processing. Therefore, under the second approach, developing an excellent scheduling scheme is a challenging problem. This study addresses the mixed-flow assembly shop scheduling problem, considering continuous processing and mold-changing constraints, by developing a multi-objective optimization model to minimize additional production time and customer waiting time. As this NP-hard problem poses significant challenges in solution space exploration, the conventional NSGA-II algorithm suffers from limited local search capability. To address this, we propose an enhanced NSGA-II algorithm (RLVNS-NSGA-II) integrating deep reinforcement learning. Our approach combines multiple neighborhood search operators with deep reinforcement learning, which dynamically utilizes population diversity and objective function data to guide and strengthen local search. Simulation experiments confirm that the proposed algorithm surpasses existing methods in local search performance. Compared to VNS-NSGA-II and SVNS-NSGA-II, the RLVNS-NSGA-II algorithm achieved hypervolume improvements ranging from 19.72% to 42.88% and 12.63% to 31.19%, respectively. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

26 pages, 2036 KiB  
Article
Mission Planning for UAV Swarm with Aircraft Carrier Delivery: A Decoupled Framework
by Hongyun Zhang, Bin Li, Lei Wang, Yujie Cheng, Yu Ding, Chen Lu, Haijun Peng and Xinwei Wang
Aerospace 2025, 12(8), 691; https://doi.org/10.3390/aerospace12080691 - 31 Jul 2025
Viewed by 118
Abstract
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier [...] Read more.
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier (AC) and multiple UAVs, which makes unified task planning for included heterogeneous platforms to maximize the efficiency of the entire combat system. The carrier-based UAV swarm mission planning problem is formulated to minimize completion time and resource utilization, taking into account large-scale targets, multi-type tasks, and multi-obstacle environments. Since the problem is complex, we design a decoupled framework to simplify the solution by decomposing it into two levels: upper-level AC path planning and bottom-level multi-UAV cooperative mission planning. At the upper level, a drop point determination method and a discrete genetic algorithm incorporating improved A* (DGAIIA) are proposed to plan the AC’s path in the presence of no-fly zones and radar threats. At the bottom level, an improved differential evolution algorithm with a market mechanism (IDEMM) is proposed to minimize task completion time and maximize UAV utilization. Specifically, a dual-switching search strategy and a neighborhood-first buying-and-selling mechanism are developed to improve the search efficiency of the IDEMM. Simulation results validate the effectiveness of both the DGAIIA and IDEMM. An animation of the simulation results is available at simulation section. Full article
Show Figures

Figure 1

19 pages, 3294 KiB  
Article
Rotation- and Scale-Invariant Object Detection Using Compressed 2D Voting with Sparse Point-Pair Screening
by Chenbo Shi, Yue Yu, Gongwei Zhang, Shaojia Yan, Changsheng Zhu, Yanhong Cheng and Chun Zhang
Electronics 2025, 14(15), 3046; https://doi.org/10.3390/electronics14153046 - 30 Jul 2025
Viewed by 188
Abstract
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that [...] Read more.
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that compresses the 4-D search space into a concise 2-D voting scheme by combining two-level sparse point-pair screening with an accelerated lookup. In the offline stage, template edges are extracted using an adaptive Canny operator with Otsu-determined thresholds, and gradient-direction differences for all point pairs are quantized to retain only those in the dominant bin, yielding rotation- and scale-invariant descriptors that populate a compact 2-D reference table. During the online stage, an adaptive grid selects only the highest-gradient pixels per cell as a base points, while a precomputed gradient-direction bucket table enables constant-time retrieval of compatible subpoints. Each valid base–subpoint pair is mapped to indices in the lookup table, and “fuzzy” votes are cast over a 3 × 3 neighborhood in the 2-D accumulator, whose global peak determines the object center. Evaluation on 200 real industrial parts—augmented to 1000 samples with noise, blur, occlusion, and nonlinear illumination—demonstrates that our method maintains over 90% localization accuracy, matches the classical GHT, and achieves a ten-fold speedup, outperforming IGHT and LI-GHT variants by 2–3×, thereby delivering a robust, real-time solution for industrial rigid object localization. Full article
Show Figures

Figure 1

52 pages, 3733 KiB  
Article
A Hybrid Deep Reinforcement Learning and Metaheuristic Framework for Heritage Tourism Route Optimization in Warin Chamrap’s Old Town
by Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Natthapong Nanthasamroeng, Arunrat Sawettham, Paweena Khampukka, Sairoong Dinkoksung, Kanya Jungvimut, Ganokgarn Jirasirilerd, Chawapot Supasarn, Pornpimol Mongkhonngam and Yong Boonarree
Heritage 2025, 8(8), 301; https://doi.org/10.3390/heritage8080301 - 28 Jul 2025
Viewed by 712
Abstract
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework [...] Read more.
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework that integrates Deep Reinforcement Learning (DRL) for policy-guided initialization, an Improved Multiverse Optimizer (IMVO) for global search, and a Generative Adversarial Network (GAN) for local refinement and solution diversity. The model operates within a digital twin of Warin Chamrap’s old town, leveraging 92 POIs, congestion heatmaps, and behaviorally clustered tourist profiles. The proposed method was benchmarked against seven state-of-the-art techniques, including PSO + DRL, Genetic Algorithm with Multi-Neighborhood Search (Genetic + MNS), Dual-ACO, ALNS-ASP, and others. Results demonstrate that DRL–IMVO–GAN consistently dominates across key metrics. Under equal-objective weighting, it attained the highest heritage score (74.2), shortest travel time (21.3 min), and top satisfaction score (17.5 out of 18), along with the highest hypervolume (0.85) and Pareto Coverage Ratio (0.95). Beyond performance, the framework exhibits strong generalization in zero- and few-shot scenarios, adapting to unseen POIs, modified constraints, and new user profiles without retraining. These findings underscore the method’s robustness, behavioral coherence, and interpretability—positioning it as a scalable, intelligent decision-support tool for sustainable and user-centered cultural tourism planning in secondary cities. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
Show Figures

Figure 1

25 pages, 3093 KiB  
Article
Research of Hierarchical Vertiport Location Based on Lagrange Relaxation
by Yuzhen Guo, Junjie Yao, Jing Jiang and Dongxiao Qiao
Aerospace 2025, 12(8), 672; https://doi.org/10.3390/aerospace12080672 - 28 Jul 2025
Viewed by 186
Abstract
With the rise of the low-altitude urban traffic system, urban air mobility (UAM) has developed rapidly. As a critical component of the UAM system, the strategic layout of vertiports helps divert ground traffic pressure. To satisfy various demand patterns, different vertiport levels are [...] Read more.
With the rise of the low-altitude urban traffic system, urban air mobility (UAM) has developed rapidly. As a critical component of the UAM system, the strategic layout of vertiports helps divert ground traffic pressure. To satisfy various demand patterns, different vertiport levels are needed, so we focus on the hierarchical vertiport location problem. Considering the capacity limitation, a median location model is established to minimize vertiport construction cost, passenger commuting cost, and penalty cost. For the nonlinear term in the objective function, the Big-M method is employed. Based on the reformulated model, we improve the branch-and-bound algorithm (LVBB) to solve it, where the Lagrange relaxation method is used to decompose the large-scale problem into parallel subproblems and compute the lower bound, and the variable neighborhood search algorithm is used to obtain the upper bound. Numerical experiments are performed in the 11 administrative districts of Nanjing, China. The results demonstrate that the proposed location scheme effectively balances vertiport construction cost and passenger commuting cost while satisfying capacity limitations. It also significantly reduces commuting time to improve passenger satisfaction. This scheme can offer strategic guidance for infrastructure planning in UAM. Full article
(This article belongs to the Special Issue Research and Applications of Low-Altitude Urban Traffic System)
Show Figures

Figure 1

22 pages, 1816 KiB  
Article
Graph Knowledge-Enhanced Iterated Greedy Algorithm for Hybrid Flowshop Scheduling Problem
by Yingli Li, Biao Zhang, Kaipu Wang, Liping Zhang, Zikai Zhang and Yong Wang
Mathematics 2025, 13(15), 2401; https://doi.org/10.3390/math13152401 - 25 Jul 2025
Viewed by 168
Abstract
This study presents a graph knowledge-enhanced iterated greedy algorithm that incorporates dual directional decoding strategies, disjunctive graphs, neighborhood structures, and a rapid evaluation method to demonstrate its superior performance for the hybrid flowshop scheduling problem (HFSP). The proposed algorithm addresses the trade-off between [...] Read more.
This study presents a graph knowledge-enhanced iterated greedy algorithm that incorporates dual directional decoding strategies, disjunctive graphs, neighborhood structures, and a rapid evaluation method to demonstrate its superior performance for the hybrid flowshop scheduling problem (HFSP). The proposed algorithm addresses the trade-off between the finite solution space corresponding to solution representation and the search space for the optimal solution, as well as constructs a decision mechanism to determine which search operator should be used in different search stages to minimize the occurrence of futile searching and the low computational efficiency caused by individuals conducting unordered neighborhood searches. The algorithm employs dual decoding with a novel disturbance operation to generate initial solutions and expand the search space. The derivation of the critical path and the design of neighborhood structures based on it provide a clear direction for identifying and prioritizing operations that have a significant impact on the objective. The use of a disjunctive graph provides a clear depiction of the detailed changes in the job sequence both before and after the neighborhood searches, providing a comprehensive view of the operational sequence transformations. By integrating the rapid evaluation technique, it becomes feasible to identify promising regions within a constrained timeframe. The numerical evaluation with well-known benchmarks verifies that the performance of the graph knowledge-enhanced algorithm is superior to that of a prior algorithm, and seeks new best solutions for 183 hard instances. Full article
Show Figures

Figure 1

22 pages, 2652 KiB  
Article
Niching-Driven Divide-and-Conquer Hill Exploration
by Junchen Wang, Changhe Li and Yiya Diao
Appl. Syst. Innov. 2025, 8(4), 101; https://doi.org/10.3390/asi8040101 - 22 Jul 2025
Viewed by 310
Abstract
Optimization problems often feature local optima with a significant difference in the basin of attraction (BoA), making evolutionary computation methods prone to discarding solutions located in less-attractive BoAs, thereby posing challenges to the search for optima in these BoAs. To enhance the ability [...] Read more.
Optimization problems often feature local optima with a significant difference in the basin of attraction (BoA), making evolutionary computation methods prone to discarding solutions located in less-attractive BoAs, thereby posing challenges to the search for optima in these BoAs. To enhance the ability to find these optima, various niching methods have been proposed to restrict the competition scope of individuals to their specific neighborhoods. However, redundant searches in more-attractive BoAs as well as necessary searches in less-attractive BoAs can only be promoted simultaneously by these methods. To address this issue, we propose a general framework for niching methods named niching-driven divide-and-conquer hill exploration (NDDCHE). Through gradually learning BoAs from the search results of a niching method and dividing the problem into subproblems with a much smaller number of optima, NDDCHE aims to bring a more balanced distribution of searches in the BoAs of optima found so far, and thus enhance the niching method’s ability to find optima in less-attractive BoAs. Through experiments where niching methods with different categories of niching techniques are integrated with NDDCHE and tested on problems with significant differences in the size of the BoA, the effectiveness and the generalization ability of NDDCHE are proven. Full article
Show Figures

Figure 1

25 pages, 2760 KiB  
Article
Flow Shop Scheduling with Limited Buffers by an Improved Discrete Pathfinder Algorithm with Multi-Neighborhood Local Search
by Yuming Dong, Shunzeng Wang and Xiaoming Liu
Processes 2025, 13(8), 2325; https://doi.org/10.3390/pr13082325 - 22 Jul 2025
Viewed by 238
Abstract
A green scheduling problem is proposed in this work, where both constraints on intermediate storage capacity and job transportation requirements are simultaneously considered. An improved discrete pathfinder algorithm (IDPFA) with multi-neighborhood local search is proposed to minimize the maximum completion time and total [...] Read more.
A green scheduling problem is proposed in this work, where both constraints on intermediate storage capacity and job transportation requirements are simultaneously considered. An improved discrete pathfinder algorithm (IDPFA) with multi-neighborhood local search is proposed to minimize the maximum completion time and total energy consumption. The algorithm addresses the green flow shop scheduling problem with limited buffers and automated guided vehicle (GFSSP_LBAGV). Firstly, based on the machine speed constraints, the transportation time for moving jobs by the automated guided vehicle (AGV) is incorporated to establish a mathematical model. Secondly, the core idea of the pathfinder algorithm (PFA) is applied to the evolutionary process of the discrete PFA, where three different crossover operations are used to replace the exploration process of the pathfinder, the influence of the pathfinder on the followers, and the mutual learning among the followers. Then, a multi-neighborhood local search is employed to conduct a detailed exploration of high-quality solution spaces. Finally, extensive standard test sets are used to verify the effectiveness of the proposed IDPFA in solving GFSSP_LBAGV. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 1356 KiB  
Article
Using Transformers and Reinforcement Learning for the Team Orienteering Problem Under Dynamic Conditions
by Antoni Guerrero, Marc Escoto, Majsa Ammouriova, Yangchongyi Men and Angel A. Juan
Mathematics 2025, 13(14), 2313; https://doi.org/10.3390/math13142313 - 20 Jul 2025
Viewed by 316
Abstract
This paper presents a reinforcement learning (RL) approach for solving the team orienteering problem under both deterministic and dynamic travel time conditions. The proposed method builds on the transformer architecture and is trained to construct routes that adapt to real-time variations, such as [...] Read more.
This paper presents a reinforcement learning (RL) approach for solving the team orienteering problem under both deterministic and dynamic travel time conditions. The proposed method builds on the transformer architecture and is trained to construct routes that adapt to real-time variations, such as traffic and environmental changes. A key contribution of this work is the model’s ability to generalize across problem instances with varying numbers of nodes and vehicles, eliminating the need for retraining when problem size changes. To assess performance, a comprehensive set of experiments involving 27,000 synthetic instances is conducted, comparing the RL model with a variable neighborhood search metaheuristic. The results indicate that the RL model achieves competitive solution quality while requiring significantly less computational time. Moreover, the RL approach consistently produces feasible solutions across all dynamic instances, demonstrating strong robustness in meeting time constraints. These findings suggest that learning-based methods can offer efficient, scalable, and adaptable solutions for routing problems in dynamic and uncertain environments. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

30 pages, 2371 KiB  
Article
Optimization of Joint Distribution Routes for Automotive Parts Considering Multi-Manufacturer Collaboration
by Lingsan Dong, Jian Wang and Xiaowei Hu
Sustainability 2025, 17(14), 6615; https://doi.org/10.3390/su17146615 - 19 Jul 2025
Viewed by 463
Abstract
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production [...] Read more.
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production efficiency and cuts costs for automotive manufacturers but also enhances supply chain management and advances sustainable development. This study focuses on the optimization of automotive parts distribution routes under a multi-manufacturer collaboration framework. An optimization model is proposed to minimize the total operational costs within a joint distribution system, incorporating an improved Ant Colony Optimization (ACO) algorithm to formulate an effective solution approach. The model considers complex factors such as dynamic demand, time-window constraints, and periodic distribution. A PIVNS algorithm integrating a virtual distribution center with an enhanced variable neighborhood search is designed to efficiently address the problem. The efficacy of the proposed model and algorithm is substantiated through extensive experiments grounded in real-world case studies. The results confirm the high computational efficiency of the proposed approach in solving large-scale problems, which significantly reduces distribution costs while improving overall supply chain performance. Specifically, the PIVNS algorithm achieves an average travel distance of 2020.85 km, an average runtime of 112.25 s, a total transportation cost of CNY 12,497.99, and a loading rate of 86.775%. These findings collectively highlight the advantages of the proposed method in enhancing efficiency, reducing costs, and optimizing resource utilization. Overall, this study provides valuable insights for logistics optimization in automotive manufacturing and offers a significant reference for future research and practical applications in the field. Full article
Show Figures

Figure 1

32 pages, 2992 KiB  
Article
An Inter-Regional Lateral Transshipment Model to Massive Relief Supplies with Deprivation Costs
by Shuanglin Li, Na Zhang and Jin Qin
Mathematics 2025, 13(14), 2298; https://doi.org/10.3390/math13142298 - 17 Jul 2025
Viewed by 346
Abstract
Massive relief supplies inter-regional lateral transshipment (MRSIRLT) can significantly enhance the efficiency of disaster response, meet the needs of affected areas (AAs), and reduce deprivation costs. This paper develops an integrated allocation and intermodality optimization model (AIOM) to address the MRSIRLT challenge. A [...] Read more.
Massive relief supplies inter-regional lateral transshipment (MRSIRLT) can significantly enhance the efficiency of disaster response, meet the needs of affected areas (AAs), and reduce deprivation costs. This paper develops an integrated allocation and intermodality optimization model (AIOM) to address the MRSIRLT challenge. A phased interactive framework incorporating adaptive differential evolution (JADE) and improved adaptive large neighborhood search (IALNS) is designed. Specifically, JADE is employed in the first stage to allocate the volume of massive relief supplies, aiming to minimize deprivation costs, while IALNS optimizes intermodal routing in the second stage to minimize the weighted sum of transportation time and cost. A case study based on a typhoon disaster in the Chinese region of Bohai Rim demonstrates and verifies the effectiveness and applicability of the proposed model and algorithm. The results and sensitivity analysis indicate that reducing loading and unloading times and improving transshipment efficiency can effectively decrease transfer time. Additionally, the weights assigned to total transfer time and costs can be balanced depending on demand satisfaction levels. Full article
Show Figures

Figure 1

26 pages, 8154 KiB  
Article
Investigation into the Efficient Cooperative Planning Approach for Dual-Arm Picking Sequences of Dwarf, High-Density Safflowers
by Zhenguo Zhang, Peng Xu, Binbin Xie, Yunze Wang, Ruimeng Shi, Junye Li, Wenjie Cao, Wenqiang Chu and Chao Zeng
Sensors 2025, 25(14), 4459; https://doi.org/10.3390/s25144459 - 17 Jul 2025
Viewed by 230
Abstract
Path planning for picking safflowers is a key component in ensuring the efficient operation of robotic safflower-picking systems. However, existing single-arm picking devices have become a bottleneck due to their limited operating range, and a breakthrough in multi-arm cooperative picking is urgently needed. [...] Read more.
Path planning for picking safflowers is a key component in ensuring the efficient operation of robotic safflower-picking systems. However, existing single-arm picking devices have become a bottleneck due to their limited operating range, and a breakthrough in multi-arm cooperative picking is urgently needed. To address the issue of inadequate adaptability in current path planning strategies for dual-arm systems, this paper proposes a novel path planning method for dual-arm picking (LTSACO). The technique centers on a dynamic-weight heuristic strategy and achieves optimization through the following steps: first, the K-means clustering algorithm divides the target area; second, the heuristic mechanism of the Ant Colony Optimization (ACO) algorithm is improved by dynamically adjusting the weight factor of the state transition probability, thereby enhancing the diversity of path selection; third, a 2-OPT local search strategy eliminates path crossings through neighborhood search; finally, a cubic Bézier curve heuristically smooths and optimizes the picking trajectory, ensuring the continuity of the trajectory’s curvature. Experimental results show that the length of the parallelogram trajectory, after smoothing with the Bézier curve, is reduced by 20.52% compared to the gantry trajectory. In terms of average picking time, the LTSACO algorithm reduces the time by 2.00%, 2.60%, and 5.60% compared to DCACO, IACO, and the traditional ACO algorithm, respectively. In conclusion, the LTSACO algorithm demonstrates high efficiency and strong robustness, providing an effective optimization solution for multi-arm cooperative picking and significantly contributing to the advancement of multi-arm robotic picking systems. Full article
Show Figures

Figure 1

23 pages, 2062 KiB  
Review
A Systematic Review of the Bibliometrics and Methodological Research Used on Studies Focused on School Neighborhood Built Environment and the Physical Health of Children and Adolescents
by Iris Díaz-Carrasco, Sergio Campos-Sánchez, Ana Queralt and Palma Chillón
Children 2025, 12(7), 943; https://doi.org/10.3390/children12070943 - 17 Jul 2025
Viewed by 485
Abstract
Objectives: The aim of this systematic review is to analyze the research journals, sample characteristics and research methodology used in the studies about school neighborhood built environment (SNBE) and the physical health of children and adolescents. Methods: Using 124 key terms [...] Read more.
Objectives: The aim of this systematic review is to analyze the research journals, sample characteristics and research methodology used in the studies about school neighborhood built environment (SNBE) and the physical health of children and adolescents. Methods: Using 124 key terms across four databases (Web of Science, PubMed, Sportdiscus and Transportation Research Board), 8837 studies were identified, and 55 were selected. The research question and evidence search were guided by the “Population, Intervention, Comparison, Outcomes” (PICO) framework. Results: Most studies were published in health-related research journals (67.3%) and conducted in 16 countries, primarily urban contexts (44.4%). Cross-sectional designs dominated (89.1%), with participation ranging from a minimum of 7 schools and 94 students to a maximum of 6362 schools and 979,119 students. Street network distances are often defined by 1000 or 800 m. The SNBE variables (135 total) were often measured via GIS (67.2%). In contrast, 70.6% of the 45 physical health measures relied on self-reports. Conclusions: This systematic review highlights the diverse approaches, gaps, and common patterns in studying the association between the SNBE and the physical health of children and adolescents. Therefore, this manuscript may serve as a valuable resource to examine the current landscape of knowledge and to guide future research on this topic. Full article
Show Figures

Figure 1

29 pages, 8563 KiB  
Article
A Bridge Crack Segmentation Algorithm Based on Fuzzy C-Means Clustering and Feature Fusion
by Yadong Yao, Yurui Zhang, Zai Liu and Heming Yuan
Sensors 2025, 25(14), 4399; https://doi.org/10.3390/s25144399 - 14 Jul 2025
Viewed by 367
Abstract
In response to the limitations of traditional image processing algorithms, such as high noise sensitivity and threshold dependency in bridge crack detection, and the extensive labeled data requirements of deep learning methods, this study proposes a novel crack segmentation algorithm based on fuzzy [...] Read more.
In response to the limitations of traditional image processing algorithms, such as high noise sensitivity and threshold dependency in bridge crack detection, and the extensive labeled data requirements of deep learning methods, this study proposes a novel crack segmentation algorithm based on fuzzy C-means (FCM) clustering and multi-feature fusion. A three-dimensional feature space is constructed using B-channel pixels and fuzzy clustering with c = 3, justified by the distinct distribution patterns of these three regions in the image, enabling effective preliminary segmentation. To enhance accuracy, connected domain labeling combined with a circularity threshold is introduced to differentiate linear cracks from granular noise. Furthermore, a 5 × 5 neighborhood search strategy, based on crack pixel amplitude, is designed to restore the continuity of fragmented cracks. Experimental results on the Concrete Crack and SDNET2018 datasets demonstrate that the proposed algorithm achieves an accuracy of 0.885 and a recall rate of 0.891, outperforming DeepLabv3+ by 4.2%. Notably, with a processing time of only 0.8 s per image, the algorithm balances high accuracy with real-time efficiency, effectively addressing challenges, such as missed fine cracks and misjudged broken cracks in noisy environments by integrating geometric features and pixel distribution characteristics. This study provides an efficient unsupervised solution for bridge damage detection. Full article
Show Figures

Figure 1

21 pages, 1830 KiB  
Article
Optimization Model of Express–Local Train Schedules Under Cross-Line Operation of Suburban Railway
by Jingyi Zhu, Xin Guo and Jianju Pan
Appl. Sci. 2025, 15(14), 7853; https://doi.org/10.3390/app15147853 - 14 Jul 2025
Viewed by 228
Abstract
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization [...] Read more.
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization of cross-line operation and express–local scheduling by proposing a novel train timetable model. The model determines train service plans and departure times to minimize total system cost, including train operating and passenger travel costs. A space–time network represents integrated train–passenger interactions, and an extended adaptive large neighborhood search (E-ALNS) algorithm is developed to solve the model efficiently. Numerical experiments verify the effectiveness of the proposed approach. The E-ALNS achieves near-optimal solutions with less than 4% deviation from Gurobi. Comparative analysis shows that the proposed hybrid operation mode reduces total passenger travel cost by 6% and improves the cost efficiency ratio by 13% compared to independent operations. Sensitivity analyses further confirm the model’s robustness to variations in transfer walking time, passenger penalties, and waiting thresholds. This study provides a practical and scalable framework for optimizing train timetables in complex cross-line transit systems, offering insights for enhancing system coordination and passenger service quality. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

Back to TopTop