Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = nebulized antimicrobials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 486 KiB  
Review
Nebulized Antibiotics for Preventing and Treating Gram-Negative Respiratory Infections in Critically Ill Patients: An Overview of Reviews
by Marios Karvouniaris, Despoina Koulenti, Konstantinos I. Bougioukas, Eirini Pagkalidou, Elizabeth Paramythiotou and Anna-Bettina Haidich
Antibiotics 2025, 14(4), 370; https://doi.org/10.3390/antibiotics14040370 - 2 Apr 2025
Viewed by 1045
Abstract
Background. Ventilator-associated tracheobronchitis (VAT) and pneumonia (VAP) are the most frequent nosocomial infections in the critical care setting and are associated with increased morbidity. At the same time, VAP is also associated with attributable mortality, especially when caused by difficult-to-treat (DTR) Gram-negative bacteria [...] Read more.
Background. Ventilator-associated tracheobronchitis (VAT) and pneumonia (VAP) are the most frequent nosocomial infections in the critical care setting and are associated with increased morbidity. At the same time, VAP is also associated with attributable mortality, especially when caused by difficult-to-treat (DTR) Gram-negative bacteria (GNB) that have limited treatment options. Studies have assessed the impact of nebulized aminoglycosides or colistin to improve VAT and VAP outcomes or as an adjunct to intravenous antimicrobial treatment or as a preventive approach. Objective. This overview aimed to assess systematic reviews that examine the efficacy and safety of antimicrobial nebulization for preventing and treating ventilator-associated infections in the critically ill. Methods. Systematic reviews, meta-analyses, and original randomized controlled trials and prospective observational studies were included. Searches were conducted in MEDLINE (via PubMed), the Cochrane, Epistemonikos, and PROSPERO. The methodological quality assessment was performed using standardized tools. Results. Regarding VAP treatment, the included systematic reviews presented critically low quality. The clinical response effect size to amikacin and colistin nebulization were RR 1.23 (95% CI 1.13–1.34), I2 = 47% and OR 1.39 (0.87–2.20), I2 = 56%. The main safety concern was bronchospasm with RR 2.55 (1.40–4.66), I2 = 0% and OR 5.19 (1.05–25.52), I2 = 0%. The certainty of evidence was usually very low. For VAT treatment, limited evidence showed a better clinical response and less emergence of resistant bacteria. Regarding VAP prevention, data are limited to two trials; however, only the larger one presented a low risk of bias and resulted in a reduced VAP rate. Conclusions. Delivery via nebulization might be considered in addition to IV antimicrobial treatment of GNB ventilator-associated infections. The available evidence is weak, and more studies focused on infections due to DTR-GNBs should be prioritized. Full article
Show Figures

Figure 1

16 pages, 2909 KiB  
Article
Development of Inhalable Bacteriophage Liposomes Against Pseudomonas aeruginosa
by Shruti S. Sawant, Maizbha Uddin Ahmed, Nathan-Gautham Gantala, Caitlin Chiu, Li Qu and Qi Zhou
Pharmaceutics 2025, 17(4), 405; https://doi.org/10.3390/pharmaceutics17040405 - 24 Mar 2025
Viewed by 978
Abstract
Background: Pseudomonas aeruginosa is one of the major pathogens that cause respiratory infections. The rise of antimicrobial resistance has prompted a need for alternatives to conventional antibiotics. Bacteriophages (phages), natural predators of bacteria, are gaining interest as an alternative therapeutic option against [...] Read more.
Background: Pseudomonas aeruginosa is one of the major pathogens that cause respiratory infections. The rise of antimicrobial resistance has prompted a need for alternatives to conventional antibiotics. Bacteriophages (phages), natural predators of bacteria, are gaining interest as an alternative therapeutic option against drug-resistant infections. However, phage viability can be lost during manufacturing and delivery. Recent studies show that phages can be taken up by lung epithelial cells, which makes fewer phages available for antibacterial action against extracellular bacteria P. aeruginosa in the airways. Methods: In this study, we encapsulated phages in liposomes using thin film hydration. The effect of processing conditions and phage loading titer on the phage encapsulation and viability was studied. The impact of nebulization on phage viability was tested using an air-jet nebulizer (PARI-LC Plus). Phage cellular uptake was evaluated using an in vitro H441 lung epithelial cell model, grown at the air–liquid interface. Results: Our results demonstrate favorable encapsulation (58 ± 6.02%) can be achieved with minimum loss in phage titer (0.64 ± 0.21 log) by using a low phage titer for hydration. The liposomal formulations exhibited controlled release of phages over 10 h. The formulation also reduced the loss of phage viability during nebulization from 1.55 ± 0.04 log (for phage suspension) to 1.08 ± 0.05 log (for phage liposomes). Encapsulation of phages in liposomes enabled a two-fold reduction in phage cellular uptake and longer extracellular phage retention in the human lung epithelial cell monolayer. Conclusions: Our results indicate that liposomal encapsulation favors phage protection and improves phage availability for antibacterial activity. These findings highlight the potential of liposomes for inhaled phage delivery. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 2980 KiB  
Article
Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells
by Sofia Giuliana Guerin Stabile, Noelia Perez, Horacio Emanuel Jerez, Yamila Roxana Simioni, Estefanía Butassi, Martin Daniel Mizrahi, Matias Leonardo Nobile, Ana Paula Perez, Maria Jose Morilla, Leticia Herminia Higa and Eder Lilia Romero
Int. J. Mol. Sci. 2025, 26(1), 392; https://doi.org/10.3390/ijms26010392 - 4 Jan 2025
Cited by 1 | Viewed by 3856
Abstract
The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea Halorubrum tebenquichense and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate (Ilex paraguariensis) [...] Read more.
The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea Halorubrum tebenquichense and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate (Ilex paraguariensis) extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.4 µg chlorogenic acid/ YME mg as a silver reductive agent, spherical, heterogeneously sized (~80 nm diameter), −27 mV ζ potential, 90% Ag0 and λmax 420 nm BSs were obtained. We further prepared ~100–200 nm diameter, −57 mV ζ potential BS-nanoARC and ~300 nm diameter, −37 mV ζ potential [BS + BS-nanoARCs]. Freshly prepared and nebulized BS-nanoARCs reduced the release of TNF-α, IL-6 and IL-8 by LPS-irritated THP-1-macrophages and were highly anti-planktonic against S. aureus (MIC90: 13 ± 0.8 µg Ag/mL). While the nanoARCs and BS-nanoARCs were innocuous, freshly prepared [BS + BS-nanoARCs] magnified the cytotoxicity of BSs (IC50 12 µg Ag/mL vs. IC50 ~36 µg Ag/mL) on A549 cells. Such cytotoxicity remained after 30 days in the dark at 4 °C, while that of BSs was lost. Freshly prepared BSs also lost activity upon nebulization, whereas freshly prepared [BS + BS-nanoARCs] did not. However, the cytotoxicity of the [BS + BS-nanoARCs] was also lost when nebulized after 30 days of storage. Despite the harmful effects of storage and mechanical stress on the structure of the more active [BS + BS-nanoARCs], hybrid nanoARCs are promising examples of nanomedicines combining the properties of archaeolipids with antimicrobial silver nanoparticles and anti-inflammatory polyphenols that could complement oncologic therapies, reducing the usage of classical antitumoral agents, corticosteroids, and, importantly, of antibiotics, as well as their waste. Full article
(This article belongs to the Special Issue Recent Research on Novel Lipid-Based Nano Drug Delivery Systems)
Show Figures

Figure 1

21 pages, 3732 KiB  
Article
Cellular Response of Immune Cells in the Upper Respiratory Tract After Treatment with Cold Atmospheric Plasma In Vitro
by Leonardo Zamorano Reichold, Michael Gruber, Petra Unger, Tim Maisch, Regina Lindner, Lisa Gebhardt, Robert Schober, Sigrid Karrer and Stephanie Arndt
Int. J. Mol. Sci. 2025, 26(1), 255; https://doi.org/10.3390/ijms26010255 - 30 Dec 2024
Viewed by 1214
Abstract
Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated [...] Read more.
Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT. In vitro experiments were conducted using PMNs isolated from human blood to assess cell migration, intracellular production of reactive oxygen species (ROS), NETosis, surface marker expression (CD11b, CD62L, and CD66b), and cell death with live cell imaging and flow cytometry. CAP was applied for 5 min using two distinct modalities: pressurized air plasma with a plasma intensive care (PIC) device and nebulized air plasma (NP) with a new humidity resistent surface microdischarge (SMD) plasma source, both developed by Terraplasma Medical GmbH. There were no significant signs of cell damage or overstimulation with either device under the conditions tested. However, the NP device caused milder effects on PMN functionality compared to the PIC device, but also demonstrated reduced antibacterial efficacy and reactive oxygen/nitrogen species (RONS) production, as analyzed with colorimetric/fluorimetric assay kits. These findings highlight a trade-off between the two CAP modalities, each with distinct advantages and limitations. Further studies are necessary to investigate these effects in the clinical setting and evaluate the long-term safety and efficacy of CAP treatment in the URT. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Biological Effects and Transport Processes)
Show Figures

Figure 1

26 pages, 10235 KiB  
Article
In Vitro Evaluation of Colistin Conjugated with Chitosan-Capped Gold Nanoparticles as a Possible Formulation Applied in a Metered-Dose Inhaler
by Narumon Changsan, Apichart Atipairin, Poowadon Muenraya, Rutthapol Sritharadol, Teerapol Srichana, Neelam Balekar and Somchai Sawatdee
Antibiotics 2024, 13(7), 630; https://doi.org/10.3390/antibiotics13070630 - 6 Jul 2024
Cited by 7 | Viewed by 2226
Abstract
Inhaled colistin is used to treat pneumonia and respiratory infections through nebulization or dry powder inhalers. Nevertheless, the development of a metered-dose inhaler (MDI) for colistin, which could enhance patient convenience and treatment efficacy, has not yet been developed. Colistin is known for [...] Read more.
Inhaled colistin is used to treat pneumonia and respiratory infections through nebulization or dry powder inhalers. Nevertheless, the development of a metered-dose inhaler (MDI) for colistin, which could enhance patient convenience and treatment efficacy, has not yet been developed. Colistin is known for its ability to induce cellular toxicity. Gold nanoparticles (AuNPs) can potentially mitigate colistin toxicity. Therefore, this study aimed to evaluate the antimicrobial effectiveness of colistin conjugated with chitosan-capped gold nanoparticles (Col-CS-AuNPs) and their potential formulation for use with MDIs to deliver the aerosol directly to the deep lung. Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and elemental analysis were used to characterize the synthesized Col-CS-AuNPs. Drug release profiles fitted with the most suitable release kinetic model were evaluated. An MDI formulation containing 100 µg of colistin per puff was prepared. The aerosol properties used to determine the MDI performance included the fine particle fraction, mass median aerodynamic diameter, and geometric standard deviation, which were evaluated using the Andersen Cascade Impactor. The delivered dose uniformity was also determined. The antimicrobial efficacy of the Col-CS-AuNP formulation in the MDI was assessed. The chitosan-capped gold nanoparticles (CS-AuNPs) and Col-CS-AuNPs had particle sizes of 44.34 ± 1.02 and 174.50 ± 4.46 nm, respectively. CS-AuNPs effectively entrapped 76.4% of colistin. Col-CS-AuNPs exhibited an initial burst release of up to 60% colistin within the first 6 h. The release mechanism was accurately described by the Korsmeyer–Peppas model, with an R2 > 0.95. The aerosol properties of the Col-CS-AuNP formulation in the MDI revealed a high fine particle fraction of 61.08%, mass median aerodynamic diameter of 2.34 µm, and geometric standard deviation of 0.21, with a delivered dose uniformity within 75–125% of the labeled claim. The Col-CS-AuNP MDI formulation completely killed Escherichia coli at 5× and 10× minimum inhibitory concentrations after 6 and 12 h of incubation, respectively. The toxicity of CS-AuNP and Col-CS-AuNP MDI formulations in upper and lower respiratory tract cell lines was lower than that of free colistin. The stability of the Col-CS-AuNP MDI formulation was maintained for at least 3 months. The Col-CS-AuNP MDI formulation effectively eradicated bacteria over a 12-h period, showing promise for advancing lung infection treatments. Full article
Show Figures

Figure 1

16 pages, 2022 KiB  
Case Report
Phage Therapy in a Burn Patient Colonized with Extensively Drug-Resistant Pseudomonas aeruginosa Responsible for Relapsing Ventilator-Associated Pneumonia and Bacteriemia
by Cécile Teney, Jean-Charles Poupelin, Thomas Briot, Myrtille Le Bouar, Cindy Fevre, Sophie Brosset, Olivier Martin, Florent Valour, Tiphaine Roussel-Gaillard, Gilles Leboucher, Florence Ader, Anne-Claire Lukaszewicz and Tristan Ferry
Viruses 2024, 16(7), 1080; https://doi.org/10.3390/v16071080 - 5 Jul 2024
Cited by 9 | Viewed by 2923
Abstract
Pseudomonas aeruginosa is one of the main causes of healthcare-associated infection in Europe that increases patient morbidity and mortality. Multi-resistant pathogens are a major public health issue in burn centers. Mortality increases when the initial antibiotic treatment is inappropriate, especially if the patient [...] Read more.
Pseudomonas aeruginosa is one of the main causes of healthcare-associated infection in Europe that increases patient morbidity and mortality. Multi-resistant pathogens are a major public health issue in burn centers. Mortality increases when the initial antibiotic treatment is inappropriate, especially if the patient is infected with P. aeruginosa strains that are resistant to many antibiotics. Phage therapy is an emerging option to treat severe P. aeruginosa infections. It involves using natural viruses called bacteriophages, which have the ability to infect, replicate, and, theoretically, destroy the P. aeruginosa population in an infected patient. We report here the case of a severely burned patient who experienced relapsing ventilator-associated pneumonia associated with skin graft infection and bacteremia due to extensively drug-resistant P. aeruginosa. The patient was successfully treated with personalized nebulized and intravenous phage therapy in combination with immunostimulation (interferon-γ) and last-resort antimicrobial therapy (imipenem-relebactam). Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

14 pages, 1718 KiB  
Article
Inactivation of Salmonella Typhimurium, Escherichia coli, and Staphylococcus aureus in Tilapia Fillets (Oreochromis niloticus) with Lactic and Peracetic Acid through Fogging and Immersion
by Matheus Barp Pierozan, Jordana dos Santos Alves, Liege Dauny Horn, Priscila Alonso dos Santos, Marco Antônio Pereira da Silva, Mariana Buranelo Egea, Cíntia Minafra, Leandro Pereira Cappato and Adriano Carvalho Costa
Foods 2024, 13(10), 1520; https://doi.org/10.3390/foods13101520 - 14 May 2024
Cited by 2 | Viewed by 1683
Abstract
This study investigated the antimicrobial effects of lactic acid (LA) (3%) and peracetic acid (PA) (300 ppm) on tilapia fillets (Oreochromis niloticus) by fogging (15 min) or by immersion (2 s) in a pool of Escherichia coli (NEWP 0022, ATCC 25922, [...] Read more.
This study investigated the antimicrobial effects of lactic acid (LA) (3%) and peracetic acid (PA) (300 ppm) on tilapia fillets (Oreochromis niloticus) by fogging (15 min) or by immersion (2 s) in a pool of Escherichia coli (NEWP 0022, ATCC 25922, and a field-isolated strain), Staphylococcus aureus (ATCC 25923 and a field-isolated strain), and Salmonella Typhimurium (ATCC 13311 and ATCC 14028), as well as the effects on the physicochemical characteristics of the fillets. Fogging was effective and the best application method to control S. Typhimurium regardless of the acid used, promoting reductions of 1.66 and 1.23 log CFU/g with PA and LA, respectively. Regarding E. coli, there were significant reductions higher than 1 log CFU/g, regardless of the treatment or acid used. For S. aureus, only immersion in PA showed no significant difference (p < 0.05). For other treatments, significant reductions of 0.98, 1.51, and 1.17 log CFU/g were observed for nebulized PA, immersion, and LA fogging, respectively. Concerning the pH of the samples, neither of the acids used differed from the control. However, treatments with LA, and fogging with PA, reduced the pH compared to immersion in PA. As for color parameters, L* and a* values showed changes regardless of the acid or method used, resulting in an improved perception of fillet quality. These results indicate that fogging and immersion are alternatives for reducing S. Typhimurium, E. coli, and S. aureus in tilapia fillets. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

15 pages, 1300 KiB  
Article
Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces
by Daniela Sateriale, Giuseppina Forgione, Giuseppa Anna De Cristofaro, Leonardo Continisio, Chiara Pagliuca, Roberta Colicchio, Paola Salvatore, Marina Paolucci and Caterina Pagliarulo
BioTech 2024, 13(2), 12; https://doi.org/10.3390/biotech13020012 - 26 Apr 2024
Cited by 2 | Viewed by 3628
Abstract
Bioaerosols and pathogens in indoor workplaces and residential environments are the primary culprits of several infections. Techniques for sanitizing air and surfaces typically involve the use of UV rays or chemical sanitizers, which may release chemical residues harmful to human health. Essential oils, [...] Read more.
Bioaerosols and pathogens in indoor workplaces and residential environments are the primary culprits of several infections. Techniques for sanitizing air and surfaces typically involve the use of UV rays or chemical sanitizers, which may release chemical residues harmful to human health. Essential oils, natural substances derived from plants, which exhibit broad antimicrobial properties, could be a viable alternative for air and surface sanitation. The objective of this study has been to investigate the efficacy of thyme essential oil (TEO) in environmental sanitation processes. In Vitro assays through agar well diffusion, disk volatilization and tube dilution methods revealed significant antimicrobial activity of TEO 100% against foodborne and environmental isolates, with both bacteriostatic/fungistatic and bactericidal/fungicidal effects. Therefore, aqueous solutions of TEO 2.5% and 5% were formulated for air sanitation through nebulization and surface disinfection via direct contact. Bioaerosol samples and surface swabs were analyzed before and after sanitation, demonstrating the efficacy of aqueous solutions of TEO in reducing mesophilic and psychrophilic bacteria and environmental fungi levels in both air and on surfaces. The obtained results prove the antimicrobial potential of aqueous solutions of TEO in improving indoor air quality and surface cleanliness, suggesting thyme essential oil as an effective and safe natural sanitizer with minimal environmental impact compared to dangerous chemical disinfectants. Full article
(This article belongs to the Section Environmental Biotechnology)
Show Figures

Graphical abstract

13 pages, 1705 KiB  
Article
Effect of Live and Fragmented Saccharomyces cerevisiae in the Feed of Pigs Challenged with Mycoplasma hyopneumoniae
by Gabriela Vega-Munguía, Alejandro Vargas Sánchez, Juan E. Camacho-Medina, Luis Suárez-Vélez, Gabriela Bárcenas-Morales, David Quintar Guerrero, Abel Ciprian-Carrasco and Susana Mendoza Elvira
Pathogens 2024, 13(4), 322; https://doi.org/10.3390/pathogens13040322 - 14 Apr 2024
Cited by 1 | Viewed by 2101
Abstract
Currently, the responsible use of antimicrobials in pigs has allowed the continuous development of alternatives to these antimicrobials. In this study, we describe the impact of treatments with two probiotics, one based on live Saccharomyces cerevisiae (S. cerevisiae) and another based [...] Read more.
Currently, the responsible use of antimicrobials in pigs has allowed the continuous development of alternatives to these antimicrobials. In this study, we describe the impact of treatments with two probiotics, one based on live Saccharomyces cerevisiae (S. cerevisiae) and another based on fragmented S. cerevisiae (beta-glucans), that were administered to piglets at birth and at prechallenge with Mycoplasma hyopneumoniae. Thirty-two pigs were divided into four groups of eight animals each. The animals had free access to water and food. The groups were as follows: Group A, untreated negative control; Group B, inoculated by nebulization with M. hyopneumoniae positive control; Group C, first treated with disintegrated S. cerevisiae (disintegrated Sc) and inoculated by nebulization with M. hyopneumoniae; and Group D, treated with live S. cerevisiae yeast (live Sc) and inoculated by nebulization with M. hyopneumoniae. In a previous study, we found that on Days 1 and 21 of blood sampling, nine proinflammatory cytokines were secreted, and an increase in their secretion occurred for only five of them: TNF-α, INF-α, INF-γ, IL-10, and IL-12 p40. The results of the clinical evolution, the degree of pneumonic lesions, and the productive parameters of treated Groups C and D suggest that S. cerevisiae has an immunomodulatory effect in chronic proliferative M. hyopneumoniae pneumonia characterized by delayed hypersensitivity, which depends on the alteration or modulation of the respiratory immune response. The data presented in this study showed that S. cerevisiae contributed to the innate resistance of infected pigs. Full article
Show Figures

Figure 1

17 pages, 1351 KiB  
Review
Stability Considerations for Bacteriophages in Liquid Formulations Designed for Nebulization
by Rohan Flint, Daniel R. Laucirica, Hak-Kim Chan, Barbara J. Chang, Stephen M. Stick and Anthony Kicic
Cells 2023, 12(16), 2057; https://doi.org/10.3390/cells12162057 - 12 Aug 2023
Cited by 17 | Viewed by 3863
Abstract
Pulmonary bacterial infections present a significant health risk to those with chronic respiratory diseases (CRDs) including cystic fibrosis (CF) and chronic-obstructive pulmonary disease (COPD). With the emergence of antimicrobial resistance (AMR), novel therapeutics are desperately needed to combat the emergence of resistant superbugs. [...] Read more.
Pulmonary bacterial infections present a significant health risk to those with chronic respiratory diseases (CRDs) including cystic fibrosis (CF) and chronic-obstructive pulmonary disease (COPD). With the emergence of antimicrobial resistance (AMR), novel therapeutics are desperately needed to combat the emergence of resistant superbugs. Phage therapy is one possible alternative or adjunct to current antibiotics with activity against antimicrobial-resistant pathogens. How phages are administered will depend on the site of infection. For respiratory infections, a number of factors must be considered to deliver active phages to sites deep within the lung. The inhalation of phages via nebulization is a promising method of delivery to distal lung sites; however, it has been shown to result in a loss of phage viability. Although preliminary studies have assessed the use of nebulization for phage therapy both in vitro and in vivo, the factors that determine phage stability during nebulized delivery have yet to be characterized. This review summarizes current findings on the formulation and stability of liquid phage formulations designed for nebulization, providing insights to maximize phage stability and bactericidal activity via this delivery method. Full article
(This article belongs to the Special Issue Bacteriophages and Their Enzymes as Antibacterial Agents)
Show Figures

Figure 1

10 pages, 2213 KiB  
Article
Intranasal and Serum Gentamicin Concentration: Comparison of Three Topical Administration Protocols in Dogs
by Tom Biénès, Aurélie Lyssens, Hélène Machiels, Marie Eve Hercot, Aline Fastres, Tutunaru Alexandru-Cosmin, Marine Deville, Corinne Charlier, Frédéric Billen and Cécile Clercx
Vet. Sci. 2023, 10(8), 490; https://doi.org/10.3390/vetsci10080490 - 28 Jul 2023
Cited by 4 | Viewed by 2641
Abstract
Antimicrobials’ topical administration efficacy has not been assessed in dogs with upper respiratory tract disease. The aim was to compare the concentration of gentamicin in nasal lavage fluid (NALF) and in serum after three topical protocols. This was a prospective crossover study of [...] Read more.
Antimicrobials’ topical administration efficacy has not been assessed in dogs with upper respiratory tract disease. The aim was to compare the concentration of gentamicin in nasal lavage fluid (NALF) and in serum after three topical protocols. This was a prospective crossover study of ten healthy dogs. Gentamicin was nebulized for a duration of 1 week, twice a day, for 10 min in the first protocol (10-min protocol) and for 3 min in the second protocol (3-min protocol), while the third protocol consisted of the administration of 0.25 mL of gentamicin in each nostril (drop protocol). Median concentrations of gentamicin in NALF were 9.39 µg/mL (8.12–19.97 interquartile range), 4.96 µg/mL (4.60–6.43) and 137.00 µg/mL (110.5–162.00) in the 10-min protocol, 3-min protocol and drop protocol, respectively. The result for the drop protocol was significantly higher than those of both nebulization protocols in NALF (p = 0.039). In serum, the gentamicin concentration was 0.98 µg/mL (0.65–1.53) and 0.25 µg/mL (0.25–0.44) in the 10-min and 3-min protocols, respectively. Gentamicin was not detected in the serum of seven out of ten dogs in the drop protocol, and gentamicin was significantly higher in the 10-min protocol compared to the drop protocol (p = 0.001). This study found that the 10-min, 3-min and drop protocols achieved superior concentrations in NALF compared to the minimum inhibitory concentration for gentamicin-sensitive bacteria, while remaining below the toxic values in blood. Full article
(This article belongs to the Special Issue Respiratory Diseases of Small Animals)
Show Figures

Figure 1

18 pages, 7027 KiB  
Article
Phaeanthus vietnamensis Ban Ameliorates Lower Airway Inflammation in Experimental Asthmatic Mouse Model via Nrf2/HO-1 and MAPK Signaling Pathway
by Thi Van Nguyen, Chau Tuan Vo, Van Minh Vo, Cong Thuy Tram Nguyen, Thi My Pham, Chun Hua Piao, Yan Jing Fan, Ok Hee Chai and Thi Tho Bui
Antioxidants 2023, 12(6), 1301; https://doi.org/10.3390/antiox12061301 - 19 Jun 2023
Cited by 5 | Viewed by 2640
Abstract
Asthma is a chronic airway inflammatory disease listed as one of the top global health problems. Phaeanthus vietnamensis BÂN is a well-known medicinal plant in Vietnam with its anti-oxidant, anti-microbial, anti-inflammatory potential, and gastro-protective properties. However, there is no study about P. vietnamensis [...] Read more.
Asthma is a chronic airway inflammatory disease listed as one of the top global health problems. Phaeanthus vietnamensis BÂN is a well-known medicinal plant in Vietnam with its anti-oxidant, anti-microbial, anti-inflammatory potential, and gastro-protective properties. However, there is no study about P. vietnamensis extract (PVE) on asthma disease. Here, an OVA-induced asthma mouse model was established to evaluate the anti-inflammatory and anti-asthmatic effects and possible mechanisms of PVE. BALB/c mice were sensitized by injecting 50 μg OVA into the peritoneal and challenged by nebulization with 5% OVA. Mice were orally administered various doses of PVE once daily (50, 100, 200 mg/kg) or dexamethasone (Dex; 2.5 mg/kg) or Saline 1 h before the OVA challenge. The cell infiltrated in the bronchoalveolar lavage fluid (BALF) was analyzed; levels of OVA-specific immunoglobulins in serum, cytokines, and transcription factors in the BALF were measured, and lung histopathology was evaluated. PVE, especially PVE 200mg/kg dose, could improve asthma exacerbation by balancing the Th1/Th2 ratio, reducing inflammatory cells in BALF, depressing serum anti-specific OVA IgE, anti-specific OVA IgG1, histamine levels, and retrieving lung histology. Moreover, the PVE treatment group significantly increased the expressions of antioxidant enzymes Nrf2 and HO-1 in the lung tissue and the level of those antioxidant enzymes in the BALF, decreasing the oxidative stress marker MDA level in the BALF, leading to the relieving the activation of MAPK signaling in asthmatic condition. The present study demonstrated that Phaeanthus vietnamensis BÂN, traditionally used in Vietnam as a medicinal plant, may be used as an efficacious agent for treating asthmatic disease. Full article
(This article belongs to the Special Issue Oxidative Stress and Lung Inflammation)
Show Figures

Graphical abstract

17 pages, 4174 KiB  
Article
Microscopic Droplet Size Analysis (MDSA) of “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Essential Oil after the Nebulization Process
by Wojciech Smułek, Maciej Jarzębski, Marek Ochowiak, Magdalena Matuszak, Jan Kaczorek, Jerzy Stangierski, Jarosław Pawlicz, Paweł Drobnik, Piotr T. Nowakowski, Joanna Dyrda-Muskus, Grzegorz Fiutak, Mieczysław Gorzelak, Sirsendu S. Ray and Kunal Pal
Molecules 2023, 28(11), 4368; https://doi.org/10.3390/molecules28114368 - 26 May 2023
Viewed by 2627
Abstract
Nowadays, due to a higher resistance to drugs, antibiotics, and antiviral medicaments, new ways of fighting pathogens are intensively studied. The alternatives for synthesized compositions are natural products, most of which have been known in natural medicine for a long time. One of [...] Read more.
Nowadays, due to a higher resistance to drugs, antibiotics, and antiviral medicaments, new ways of fighting pathogens are intensively studied. The alternatives for synthesized compositions are natural products, most of which have been known in natural medicine for a long time. One of the best-known and intensively investigated groups are essential oils (EOs) and their compositions. However, it is worth noting that the method of application can play a second crucial part in the effectiveness of the antimicrobial activity. EOs possess various natural compounds which exhibit antimicrobial activity. One of the compositions which is based on the five main ingredients of eucalyptus, cinnamon, clove, rosemary, and lemon is named “five thieves’ oil” (Polish name: olejek pięciu złodziei) (5TO) and is used in natural medicine. In this study, we focused on the droplet size distribution of 5TO during the nebulization process, evaluated by the microscopic droplet size analysis (MDSA) method. Furthermore, viscosity studies, as well as UV-Vis of the 5TO suspensions in medical solvents such as physiological salt and hyaluronic acid, were presented, along with measurements of refractive index, turbidity, pH, contact angle, and surface tension. Additional studies on the biological activity of 5TO solutions were made on the P. aeruginosa strain NFT3. This study opens a way for the possible use of 5TO solutions or emulsion systems for active antimicrobial applications, i.e., for surface spraying. Full article
(This article belongs to the Special Issue Essential Oils II)
Show Figures

Figure 1

13 pages, 2795 KiB  
Article
Quiescence of Escherichia coli Aerosols to Survive Mechanical Stress during High-Velocity Collection
by Brooke L. Smith and Maria D. King
Microorganisms 2023, 11(3), 647; https://doi.org/10.3390/microorganisms11030647 - 3 Mar 2023
Cited by 4 | Viewed by 2610
Abstract
A low cutpoint wetted wall bioaerosol sampling cyclone (LCP-WWC), with an aerosol sampling flow rate of 300 L/min at 55″ H2O pressure drop and a continuous liquid outflow rate of about 0.2 mL/min, was developed by upgrading an existing system. The [...] Read more.
A low cutpoint wetted wall bioaerosol sampling cyclone (LCP-WWC), with an aerosol sampling flow rate of 300 L/min at 55″ H2O pressure drop and a continuous liquid outflow rate of about 0.2 mL/min, was developed by upgrading an existing system. The laboratory strain Escherichia coli MG1655 was aerosolized using a six-jet Collison Nebulizer and collected at high velocity using the LCP-WWC for 10 min with different collection liquids. Each sample was quantitated during a 15-day archiving period after aerosolization for culturable counts (CFUs) and gene copy numbers (GCNs) using microbial plating and whole-cell quantitative polymerase chain (qPCR) reaction. The samples were analyzed for protein composition and antimicrobial resistance using protein gel electrophoresis and disc diffusion susceptibility testing. Aerosolization and collection were followed by an initial period of quiescence or dormancy. After 2 days of archiving at 4 °C and RT, the bacteria exhibited increased culturability and antibiotic resistance (ABR), especially to cell wall inhibitors (ampicillin and cephalothin). The number of resistant bacteria on Day 2 increased nearly four-times compared to the number of cells at the initial time of collection. The mechanical stress of aerosolization and high-velocity sampling likely stunned the cells triggering a response of dormancy, though with continued synthesis of vital proteins for survival. This study shows that an increase in intensity in environmental conditions surrounding airborne bacteria affects their ability to grow and their potential to develop antimicrobial resistance. Full article
(This article belongs to the Special Issue Bacterial and Antibiotic Resistance in the Environment)
Show Figures

Figure 1

12 pages, 933 KiB  
Article
Pharmacokinetic Characteristics of Nebulized Colistimethate Sodium Using Two Different Types of Nebulizers in Critically Ill Patients with Ventilator-Associated Respiratory Infections
by Anna Kyriakoudi, Konstantinos Pontikis, Georgia Valsami, Stavrina Avgeropoulou, Efthymios Neroutsos, Eirini Christodoulou, Eleni Moraitou, Sophia L. Markantonis, Aristides Dokoumetzidis, Jordi Rello and Antonia Koutsoukou
Antibiotics 2022, 11(11), 1528; https://doi.org/10.3390/antibiotics11111528 - 1 Nov 2022
Cited by 6 | Viewed by 3450
Abstract
Background: Rising antimicrobial resistance has led to a revived interest in inhaled colistin treatment in the critically ill patient with ventilator-associated respiratory infection (VARI). Nebulization via vibrating mesh nebulizers (VMNs) is considered the current standard-of-care, yet the use of generic jet nebulizers (JNs) [...] Read more.
Background: Rising antimicrobial resistance has led to a revived interest in inhaled colistin treatment in the critically ill patient with ventilator-associated respiratory infection (VARI). Nebulization via vibrating mesh nebulizers (VMNs) is considered the current standard-of-care, yet the use of generic jet nebulizers (JNs) is more widespread. Few data exist on the intrapulmonary pharmacokinetics of colistin when administered through VMNs, while there is a complete paucity regarding the use of JNs. Methods: In this study, 18 VARI patients who received 2 million international units of inhaled colistimethate sodium (CMS) through a VMN were pharmacokinetically compared with six VARI patients who received the same drug dose through a JN, in the absence of systemic CMS administration. Results: Surprisingly, VMN and JN led to comparable formed colistin exposures in the epithelial lining fluid (ELF) (median (IQR) AUC0–24: 86.2 (46.0–185.9) mg/L∙h with VMN and 91.5 (78.1–110.3) mg/L∙h with JN). The maximum ELF concentration was 10.4 (4.7–22.6) mg/L and 7.4 (6.2–10.3) mg/L, respectively. Conclusions: Based on our results, JN might be considered a viable alternative to the theoretically superior VMN. Therapeutic drug monitoring in the ELF can be advised due to the observed low exposure, high variability, and appreciable systemic absorption. Full article
Show Figures

Figure 1

Back to TopTop