Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sanitizing Agents
2.2. Microbial Strains
2.3. Preliminary Antimicrobial Assays
2.3.1. Agar Well Diffusion Method
2.3.2. Disk Volatilization Method
2.3.3. Tube Dilution Method
2.4. Experimental Sanitization Procedure Location
2.5. Sanitization of Indoor Environment through Nebulization
2.6. Indoor Bioaerosol Sampling
2.7. Indoor Environmental Surface Sanitization
2.8. Indoor Environmental Surface Sampling
3. Results
3.1. In Vitro Antimicrobial Activity of TEO 100%
3.2. Indoor Sanitization
3.2.1. Indoor Air Sanitization with TEO 2.5% and TEO 5% Aqueous Solutions
3.2.2. Surface Sanitization with TEO 2.5% and TEO 5% Aqueous Solutions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imperatore, R.; Pagliarulo, C.; Orso, G.; De Cristofaro, G.A.; Sateriale, D.; Paolucci, M. Olive Mill Wastewater Bioactive Molecules: Applications in Animal Farming BT. In Wastewater from Olive Oil Production: Environmental Impacts, Treatment and Valorisation; Souabi, S., Anouzla, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 107–141. ISBN 978-3-031-23449-1. [Google Scholar]
- Sateriale, D.; Forgione, G.; Di Rosario, M.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Vine-Winery Byproducts as Precious Resource of Natural Antimicrobials: In Vitro Antibacterial and Antibiofilm Activity of Grape Pomace Extracts against Foodborne Pathogens. Microorganisms 2024, 12, 437. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, D.; Imperatore, R.; Colicchio, R.; Pagliuca, C.; Varricchio, E.; Volpe, M.G.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Phytocompounds vs. Dental Plaque Bacteria: In Vitro Effects of Myrtle and Pomegranate Polyphenolic Extracts Against Single-Species and Multispecies Oral Biofilms. Front. Microbiol. 2020, 11, 592265. [Google Scholar] [CrossRef] [PubMed]
- Orso, G.; Solovyev, M.M.; Facchiano, S.; Tyrikova, E.; Sateriale, D.; Kashinskaya, E.; Pagliarulo, C.; Hoseinifar, H.S.; Simonov, E.; Varricchio, E.; et al. Chestnut Shell Tannins: Effects on Intestinal Inflammation and Dysbiosis in Zebrafish. Animals 2021, 11, 1538. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int. J. Mol. Sci. 2023, 24, 6936. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Salgueiro, L. Essential Oils Chemistry BT. In Bioactive Essential Oils and Cancer; de Sousa, D.P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–61. ISBN 978-3-319-19144-7. [Google Scholar]
- Serag, M.S.; Elfayoumy, R.A.; Mohesien, M.T. Essential Oils as Antimicrobial and Food Preservatives. In Essential Oils—Advances in Extractions and Biological Applications; de Oliveira, M.S., de Aguiar Andrade, E.H., Eds.; IntechOpen: Rijeka, Croatia, 2022; p. Ch. 4. ISBN 978-1-80355-754-0. [Google Scholar]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Milhem, S.; Verriele, M.; Nicolas, M.; Thevenet, F. Indoor Use of Essential Oils: Emission Rates, Exposure Time and Impact on Air Quality. Atmos. Environ. 2021, 244, 117863. [Google Scholar] [CrossRef]
- Usachev, E.V.; Pyankov, O.V.; Usacheva, O.V.; Agranovski, I.E. Antiviral Activity of Tea Tree and Eucalyptus Oil Aerosol and Vapour. J. Aerosol Sci. 2013, 59, 22–30. [Google Scholar] [CrossRef]
- Collins, D.B.; Farmer, D.K. Unintended Consequences of Air Cleaning Chemistry. Environ. Sci. Technol. 2021, 55, 12172–12179. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.; Abe, S.; Yamaguchi, H.; Asakura, M. Comparative Study of Antimicrobial and Cytotoxic Effects of Selected Essential Oils by Gaseous and Solution Contacts. Int. J. Aromather. 2003, 13, 33–41. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid.-Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef]
- Oulkheir, S.; Aghrouch, M.; El Mourabit, F.; Dalha, F.; Graich, H.; Amouch, F.; Ouzaid, K.; Moukale, A.; Chadli, S. Antibacterial Activity of Essential Oils Extracts from Cinnamon, Thyme, Clove and Geranium Against a Gram Negative and Gram Positive Pathogenic Bacteria. J. Dis. Med. Plants 2017, 3, 1–5. [Google Scholar] [CrossRef]
- Sateriale, D.; Forgione, G.; De Cristofaro, G.A.; Facchiano, S.; Boscaino, F.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Towards Green Strategies of Food Security: Antibacterial Synergy of Essential Oils from Thymus vulgaris and Syzygium aromaticum to Inhibit Escherichia coli and Staphylococcus aureus Pathogenic Food Isolates. Microorganisms 2022, 10, 2446. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, D.; Forgione, G.; De Cristofaro, G.A.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Antibacterial and Antibiofilm Efficacy of Thyme (Thymus vulgaris L.) Essential Oil against Foodborne Illness Pathogens, Salmonella enterica subsp. enterica Serovar Typhimurium and Bacillus cereus. Antibiotics 2023, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.; Pauli, M.; Bazerque, P. An Antibiotic Assay by the Agar Well Diffusion Method. Acta Biol. Med. Exp. 1990, 15, 113–115. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; ISBN 978-1-68440-134-5. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Guidelines for Environmental Infection Control in Health-Care Facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC); U.S. Department of Health and Human Services: Atlanta, GA, USA, 2003.
- Soleimani, M.; Arzani, A.; Arzani, V.; Roberts, T.H. Phenolic Compounds and Antimicrobial Properties of Mint and Thyme. J. Herb. Med. 2022, 36, 100604. [Google Scholar] [CrossRef]
- Casaburi, A.; Piombino, P.; Nychas, G.-J.; Villani, F.; Ercolini, D. Bacterial Populations and the Volatilome Associated to Meat Spoilage. Food Microbiol. 2015, 45, 83–102. [Google Scholar] [CrossRef]
- Srey, S.; Jahid, I.K.; Ha, S.-D. Biofilm Formation in Food Industries: A Food Safety Concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Angelosi, G.A.; Freitag, N.E.; Buckley, M.R. From Outside to Inside: Environmental Microorganisms as Human Pathogens; American Academy of Microbiology: Washington, DC, USA, 2004; pp. 1–6. [Google Scholar]
- Meenu, M.; Padhan, B.; Patel, M.; Patel, R.; Xu, B. Antibacterial Activity of Essential Oils from Different Parts of Plants against Salmonella and Listeria spp. Food Chem. 2023, 404, 134723. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Kang, J.; Liu, L. Thymol as a Critical Component of Thymus vulgaris L. Essential Oil Combats Pseudomonas aeruginosa by Intercalating DNA and Inactivating Biofilm. LWT 2021, 136, 110354. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential Oils as Antimicrobials in Food Systems—A Review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, N.A.; Perveen, K. Susceptibility of Fluconazole-Resistant Candida albicans to Thyme Essential Oil. Microorganisms 2021, 9, 2454. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.C.; Carvajal-Moreno, M.; Correa, B.; Rojo-Callejas, F. Cellular, Physiological and Molecular Approaches to Investigate the Antifungal and Anti-Aflatoxigenic Effects of Thyme Essential Oil on Aspergillus flavus. Food Chem. 2020, 315, 126096. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; López-Malo, A.; Ávila-Sosa, R. Essential Oils in Vapor Phase as Alternative Antimicrobials: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Falcó, I.; Verdeguer, M.; Aznar, R.; Sánchez, G.; Randazzo, W. Sanitizing Food Contact Surfaces by the Use of Essential Oils. Innov. Food Sci. Emerg. Technol. 2019, 51, 220–228. [Google Scholar] [CrossRef]
- Gelmini, F.; Belotti, L.; Vecchi, S.; Testa, C.; Beretta, G. Air Dispersed Essential Oils Combined with Standard Sanitization Procedures for Environmental Microbiota Control in Nosocomial Hospitalization Rooms. Complement. Ther. Med. 2016, 25, 113–119. [Google Scholar] [CrossRef]
- Shetty, V.; Varalakshmi, K.S.; Prakash, A.J.; Lakshmi, M.V.; Harsha, M. Evaluation of Effects of Essential Oil Vapors on the Bacterial Count in Bioaerosols. J. Oral Maxillofac. Pathol. 2022, 26, 601. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, E.; Keck, G.; Blanchard, J.-M.; Vermande, P.; Perrodin, Y. Toxicological Effects of Disinfections Using Sodium Hypochlorite on Aquatic Organisms and Its Contribution to AOX Formation in Hospital Wastewater. Environ. Int. 2004, 30, 891–900. [Google Scholar] [CrossRef]
- Su, H.-J.; Chao, C.-J.; Chang, H.-Y.; Wu, P.-C. The Effects of Evaporating Essential Oils on Indoor Air Quality. Atmos. Environ. 2007, 41, 1230–1236. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.D.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef]
- Fuentes, C.; Fuentes, A.; Barat, J.M.; Ruiz, M.J. Relevant Essential Oil Components: A Minireview on Increasing Applications and Potential Toxicity. Toxicol. Mech. Methods 2021, 31, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Milhem, S.; Verriele, M.; Nicolas, M.; Thevenet, F. Full-Scale Determination of Essential Oil Diffusion: Impact on Indoor Air Quality. Atmos. Environ. 2023, 315, 120141. [Google Scholar] [CrossRef]
Microorganisms | Volumes Tested | MDIZ (mm) | Positive Control | ||
---|---|---|---|---|---|
TEO 100% | NaClO 3% | H2O2 3% | |||
E. coli ATCC 25922 | 10 µL/well | 21.00 ± 2.83 a | 13.00 ± 1.41 c * | 19.00 ± 1.41 a | GNT (0.6 mg/well) 19.00 ± 1.41 a |
20 µL/well | 30.50 ± 4.95 b **** | 21.00 ± 1.41 a | 20.50 ± 0.71 a | ||
40 µL/well | 33.00 ± 1.41 b **** | 31.00 ± 2.83 b **** | 23.50 ± 0.71 a | ||
S. aureus ATCC 25923 | 10 µL/well | 24.00 ± 1.41 a * | 14.50 ± 0.71 c * | 32.00 ± 1.41 b **** | VNC (0.4 mg/well) 19.50 ± 0.71 a |
20 µL/well | 27.00 ± 0.00 a *** | 20.00 ± 1.41 a | 34.50 ± 0.71 b **** | ||
40 µL/well | 31.50 ± 3.54 b **** | 31.00 ± 2.83 b **** | 37.50 ± 0.71 b **** | ||
B. cereus ATCC 14579 | 10 µL/well | 25.50 ± 2.12 a | 0.00 ± 0.00 b | 11.50 ± 2.12 c | AMX (0.5 mg/well) 29.00 ± 2.83 a |
20 µL/well | 27.00 ± 0.00 a | 0.00 ± 0.00 b | 17.50 ± 0.71 d | ||
40 µL/well | 27.00 ± 0.00 a | 0.00 ± 0.00 b | 20.50 ± 0.71 e | ||
S. enterica ATCC 14028 | 10 µL/well | 24.50 ± 3.54 a *** | 11.50 ± 0.71 b | 20.50 ± 0.71 a | GNT (0.6 mg/well) 16.00 ± 1.41 b |
20 µL/well | 26.00 ± 4.24 a **** | 20.50 ± 0.71 a | 23.50 ± 0.71 a ** | ||
40 µL/well | 29.00 ± 1.41 a **** | 29.50 ± 2.12 a **** | 26.50 ± 0.71 a **** | ||
P. fluorescens | 10 µL/well | 17.00 ± 0.00 a **** | 13.50 ± 0.71 d **** | 15.00 ± 0.00 d **** | GNT (0.25 mg/well) 21.50 ± 0.71 b |
20 µL/well | 19.50 ± 0.71 b * | 18.00 ± 1.41 a **** | 23.50 ± 0.71 e * | ||
40 µL/well | 30.00 ± 0.00 c **** | 25.50 ± 0.71 e **** | 28.50 ± 0.71 c **** | ||
P. aeruginosa | 10 µL/well | 25.50 ± 0.71 a | 10.50 ± 3.54 b **** | 12.00 ± 2.83 b **** | GNT (0.25 mg/well) 28.50 ± 0.71 a |
20 µL/well | 28.50 ± 3.54 a | 13.00 ± 2.83 b *** | 28.00 ± 1.41 a | ||
40 µL/well | 31.50 ± 7.78 a | 22.50 ± 2.12 c | 34.00 ± 1.41 a | ||
R. radiobacter | 10 µL/well | 9.00 ± 1.41 a **** | 26.00 ± 1.41 b | 31.50 ± 0.71 e | GNT (0.25 mg/well) 29.00 ± 0.00 b |
20 µL/well | 10.00 ± 0.00 a **** | 39.50 ± 3.54 c **** | 37.00 ± 0.00 c *** | ||
40 µL/well | 11.00 ± 0.00 a **** | 59.00 ± 1.41 d **** | 42.50 ± 3.54 c **** | ||
Y. enterocolitica | 10 µL/well | 21.50 ± 0.71 a | 17.00 ± 4.24 a *** | 16.00 ± 1.41 a | GNT (0.25 mg/well) 27.50 ± 0.71 a |
20 µL/well | 30.00 ± 0.00 b | 24.00 ± 0.00 a | 25.50 ± 4.95 a | ||
40 µL/well | 36.50 ± 2.12 b * | 34.00 ± 4.24 b * | 34.50 ± 0.71 b * | ||
C. albicans | 10 µL/well | 25.00 ± 2.83 a | 44.50 ± 0.71 c **** | 10.00 ± 1.41 f **** | TCZ (0.25 mg/well) 27.50 ± 2.12 a |
20 µL/well | 32.50 ± 0.71 b ** | 59.50 ± 0.71 d **** | 16.50 ± 0.71 g **** | ||
40 µL/well | 34.00 ± 1.41 b *** | 80.50 ± 0.71 e **** | 25.00 ± 1.41 a | ||
A. flavus | 10 µL/well | 18.50 ± 2.12 a *** | 17.50 ± 0.71 a *** | 11.50 ± 0.71 d **** | TCZ (0.25 mg/well) 27.00 ± 1.41 b |
20 µL/well | 26.00 ± 1.41 b | 32.50 ± 0.71 b ** | 17.50 ± 3.54 a **** | ||
40 µL/well | 31.00 ± 1.41 b | 42.00 ± 2.83 c **** | 26.50 ± 0.71 b |
Microorganisms | MDIZ (mm) | ||
---|---|---|---|
TEO 100% (10 µL) | NaClO 3% (10 µL) | H2O2 3% (10 µL) | |
E. coli ATCC 25922 | 40.50 ± 2.12 | 25.50 ± 0.71 **** | 0.00 ± 0.00 #### |
S. aureus ATCC 25923 | 34.00 ± 1.41 | 18.00 ± 4.42 *** | 26.00 ± 1.41 # |
B. cereus ATCC 14579 | 33.50 ± 0.71 | 0.00 ± 0.00 **** | 0.00 ± 0.00 #### |
S. enterica ATCC 14028 | 26.50 ± 2.12 | 36.50 ± 2.12 *** | 0.00 ± 0.00 #### |
P. fluorescens | 45.00 ± 7.07 | 60.00 ± 0.00 * | 10.00 ± 2.83 ### |
P. aeruginosa | 41.00 ± 4.24 | 0.00 ± 0.00 **** | 0.00 ± 0.00 #### |
R. radiobacter | 60.00 ± 0.00 | 60.00 ± 0.00 | 60.00 ± 0.00 |
Y. enterocolitica | 55.50 ± 0.71 | 46.00 ± 1.41 **** | 0.00 ± 0.00 #### |
C. albicans | 46.50 ± 0.71 | 49.50 ± 2.12 | 0.00 ± 0.00 #### |
A. flavus | 42.00 ± 0.00 | 0.00 ± 0.00 **** | 0.00 ± 0.00 #### |
Microorganisms | TEO 100% [µL mL−1] | NaClO 3% [µL mL−1] | H2O2 3% [µL mL−1] | GNT [µg mL−1] | VNC [µg mL−1] | AMX [µg mL−1] | TCZ [µg mL−1] | |
---|---|---|---|---|---|---|---|---|
E. coli ATCC 25922 | MIC | 0.2 | 15 | 2 | 4 | nt | nt | nt |
MBC | 0.5 | 25 | 5 | 10 | ||||
S. aureus ATCC 25923 | MIC | 0.5 | 15 | 20 | nt | 1.5 | nt | nt |
MBC | 1 | 25 | 50 | 2.5 | ||||
B. cereus ATCC 14579 | MIC | 150 | 150 | 20 | nt | nt | 50 | nt |
MBC | 250 | 250 | 50 | 200 | ||||
S. enterica ATCC 14028 | MIC | <0.1 | 15 | 20 | 25 | nt | nt | nt |
MBC | 0.1 | 25 | 40 | 100 | ||||
P. fluorescens | MIC | 0.4 | 10 | 20 | 0.1 | nt | nt | nt |
MBC | 1.5 | 20 | 40 | 0.5 | ||||
P. aeruginosa | MIC | 20 | 40 | 20 | <0.1 | nt | nt | nt |
MBC | 80 | 100 | 100 | 0.1 | ||||
R. radiobacter | MIC | 0.2 | 2.5 | 1.5 | <0.1 | nt | nt | nt |
MBC | 0.8 | 10 | 5 | 0.1 | ||||
Y. enterocolitica | MIC | 0.4 | 10 | 10 | 0.1 | nt | nt | nt |
MBC | 0.8 | 20 | 20 | 1 | ||||
C. albicans | MIC | 0.2 | 2 | 10 | nt | nt | nt | 100 |
MFC | 0.8 | 5 | 20 | 250 | ||||
A. flavus | MIC | nd | nd | nd | nt | nt | nt | nd |
MFC | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sateriale, D.; Forgione, G.; De Cristofaro, G.A.; Continisio, L.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces. BioTech 2024, 13, 12. https://doi.org/10.3390/biotech13020012
Sateriale D, Forgione G, De Cristofaro GA, Continisio L, Pagliuca C, Colicchio R, Salvatore P, Paolucci M, Pagliarulo C. Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces. BioTech. 2024; 13(2):12. https://doi.org/10.3390/biotech13020012
Chicago/Turabian StyleSateriale, Daniela, Giuseppina Forgione, Giuseppa Anna De Cristofaro, Leonardo Continisio, Chiara Pagliuca, Roberta Colicchio, Paola Salvatore, Marina Paolucci, and Caterina Pagliarulo. 2024. "Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces" BioTech 13, no. 2: 12. https://doi.org/10.3390/biotech13020012
APA StyleSateriale, D., Forgione, G., De Cristofaro, G. A., Continisio, L., Pagliuca, C., Colicchio, R., Salvatore, P., Paolucci, M., & Pagliarulo, C. (2024). Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces. BioTech, 13(2), 12. https://doi.org/10.3390/biotech13020012