Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = near-surface defects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3506 KiB  
Review
Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables
by Haiyan He, Zhoutao Li, Qian Qin, Yue Yu, Yuanxin Guo, Sheng Cai and Zhanming Li
Foods 2025, 14(15), 2679; https://doi.org/10.3390/foods14152679 - 30 Jul 2025
Viewed by 251
Abstract
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and [...] Read more.
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and equipment. In recent years, the combination of spectroscopic techniques and imaging technologies with machine learning algorithms has developed rapidly, providing a new attempt to solve this problem. This review focuses on the research progress of the combination of spectroscopic techniques (near-infrared spectroscopy (NIRS), hyperspectral imaging technology (HSI), surface-enhanced Raman scattering (SERS), laser-induced breakdown spectroscopy (LIBS), and imaging techniques (visible light (VIS) imaging, NIRS imaging, HSI technology, terahertz imaging) with machine learning algorithms in the detection of pesticide residues in fruits and vegetables. It also explores the huge challenges faced by the application of spectroscopic and imaging technologies combined with machine learning algorithms in the intelligent perception of pesticide residues in fruits and vegetables: the performance of machine learning models requires further enhancement, the fusion of imaging and spectral data presents technical difficulties, and the commercialization of hardware devices remains underdeveloped. This review has proposed an innovative method that integrates spectral and image data, enhancing the accuracy of pesticide residue detection through the construction of interpretable machine learning algorithms, and providing support for the intelligent sensing and analysis of agricultural and food products. Full article
Show Figures

Figure 1

21 pages, 13574 KiB  
Article
Effect of Processing-Induced Oxides on the Fatigue Life Variability of 6082 Al-Mg-Si Alloy Extruded Components
by Viththagan Vivekanandam, Shubham Sanjay Joshi, Jaime Lazaro-Nebreda and Zhongyun Fan
J. Manuf. Mater. Process. 2025, 9(7), 247; https://doi.org/10.3390/jmmp9070247 - 21 Jul 2025
Viewed by 392
Abstract
Aluminium alloy 6082 is widely used in the automotive and aerospace industries due to its high strength-to-weight ratio. However, its structural integrity can sometimes be affected by an early fatigue failure. This study investigates the fatigue performance of extruded 6082-T6 samples through a [...] Read more.
Aluminium alloy 6082 is widely used in the automotive and aerospace industries due to its high strength-to-weight ratio. However, its structural integrity can sometimes be affected by an early fatigue failure. This study investigates the fatigue performance of extruded 6082-T6 samples through a series of fatigue tests conducted at varying stress levels. The material showed significant variability under identical fatigue conditions, suggesting the presence of microstructural defects. Scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) and scanning transmission electron microscopy (S/TEM) were used to identify the nature and location of the defects and evaluate the underlying mechanisms influencing the fatigue performance. Computer tomography (CT) also confirmed the presence of oxide inclusions on the fracture surface and near the edges of the samples. These oxide inclusions are distributed throughout the material heterogeneously and in the form of broken oxide films, suggesting that they might have originated during the material’s early processing stages. These oxides acted as stress concentrators, initiating microcracks that led to catastrophic and unpredictable early failure, ultimately reducing the fatigue life of micro-oxide-containing samples. These results highlight the need for better casting control and improved post-processing techniques to minimise the effect of oxide presence in the final components, thus enhancing their fatigue life. Full article
Show Figures

Figure 1

11 pages, 1703 KiB  
Article
Influence of Electrolytic Hydrogen Charging and Effusion Aging on the Rotating Bending Fatigue Resistance of SAE 52100 Steel
by Johannes Wild, Stefan Wagner, Astrid Pundt and Stefan Guth
Corros. Mater. Degrad. 2025, 6(3), 30; https://doi.org/10.3390/cmd6030030 - 9 Jul 2025
Viewed by 209
Abstract
Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel [...] Read more.
Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel SAE 52100 (100Cr6) quenched and tempered at 180 °C and 400 °C were electrochemically charged with hydrogen. Charged and non-charged specimens then underwent rotating bending fatigue testing, either immediately after charging or after aging at room temperature up to 72 h. The hydrogen-charged specimens annealed at 180 °C showed a sizeable drop in fatigue limit and fatigue lifetime compared to the non-charged specimens with cracks mainly originating from near-surface non-metallic inclusions. In comparison, the specimens annealed at 400 °C exhibited a moderate drop in fatigue limit and lifetime due to hydrogen charging with cracks originating mostly from the surface. Aging had only insignificant effects on the fatigue lifetime. Notably, annealing of charged samples for 2 h at 180 °C restored their lifetime to that of non-charged specimens. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

15 pages, 2167 KiB  
Article
Modal Mode Simulation of Near-Unstable Cavities with Realistic Mirror Maps
by Mengdi Cao, Haoyu Wang, Andreas Freise, Daniel Brown and Zong-Hong Zhu
Photonics 2025, 12(7), 670; https://doi.org/10.3390/photonics12070670 - 2 Jul 2025
Viewed by 261
Abstract
Near-unstable cavities hold promise for reducing thermal noise in next-generation gravitational wave detectors and for enhancing light–matter interactions in quantum electrodynamics. However, operating close to the edge of geometrical stability presents significant challenges, including increased coupling to higher-order modes and heightened sensitivity to [...] Read more.
Near-unstable cavities hold promise for reducing thermal noise in next-generation gravitational wave detectors and for enhancing light–matter interactions in quantum electrodynamics. However, operating close to the edge of geometrical stability presents significant challenges, including increased coupling to higher-order modes and heightened sensitivity to small cavity length changes and mirror imperfections. This study employs Finesse v3 simulations to systematically investigate the modal behavior of a plano-concave cavity as it approaches instability, incorporating measured mirror surface defects and anisotropic curvature to replicate realistic conditions. The simulations highlight the degradation of beam purity and control signals as the cavity approaches instability. By validating the simulations against experimental data, we confirm Finesse’s reliability for modeling cavities while identifying critical limitations in regimes close to the edge of stability. These findings provide essential guidance for optimizing cavity designs in future gravitational wave detectors, balancing performance gains against the challenges of operating at the stability edge. Full article
Show Figures

Figure 1

28 pages, 5550 KiB  
Article
Physics-Informed Preform Design for Flashless 3D Forging via Material Point Backtracking and Finite Element Simulations
by Gracious Ngaile and Karthikeyan Kumaran
J. Manuf. Mater. Process. 2025, 9(6), 202; https://doi.org/10.3390/jmmp9060202 - 18 Jun 2025
Viewed by 387
Abstract
Accurate preform design in forging processes is critical for improving part quality, conserving material, reducing manufacturing costs, and eliminating secondary operations. This paper presents a finite element (FE) simulation-based methodology for preform design aimed at achieving flashless and near-flashless forging. The approach leverages [...] Read more.
Accurate preform design in forging processes is critical for improving part quality, conserving material, reducing manufacturing costs, and eliminating secondary operations. This paper presents a finite element (FE) simulation-based methodology for preform design aimed at achieving flashless and near-flashless forging. The approach leverages material point backtracking within FE models to generate physics-informed preform geometries that capture complex material flow, die geometry interactions, and thermal gradients. An iterative scheme combining backtracking, surface reconstruction, and point-cloud solid modeling was developed and applied to several three-dimensional forging case studies, including a cross-joint and a three-lobe drive hub. The methodology demonstrated significant reductions in flash formation, particularly in parts that traditionally exhibit severe flash under conventional forging. Beyond supporting the development of new flashless forging sequences, the method also offers a framework for modifying preforms during production to minimize waste and for diagnosing preform defects linked to variability in frictional conditions, die temperatures, or material properties. Future integration of the proposed method with design of experiments (DOE) and surrogate modeling techniques could further enhance its applicability by optimizing preform designs within a localized design space. The findings suggest that this approach provides a practical and powerful tool for advancing both new and existing forging production lines toward higher efficiency and sustainability. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

13 pages, 6653 KiB  
Article
Microstructure and Mechanical Properties of Tungsten Zircaloy-4 Diffusion Welding Interface
by Shaohong Wei, Yan Li, Ruiqiang Zhang, Bingfeng Wang, Tianjiao Liang and Wen Yin
Materials 2025, 18(12), 2823; https://doi.org/10.3390/ma18122823 - 16 Jun 2025
Viewed by 359
Abstract
The tungsten target block is widely used as a target material in spallation neutron sources. However, due to the poor corrosion resistance of tungsten, a corrosion-resistant metal layer needs to be coated on the surface. In this study, Zircaloy-4 coating on tungsten was [...] Read more.
The tungsten target block is widely used as a target material in spallation neutron sources. However, due to the poor corrosion resistance of tungsten, a corrosion-resistant metal layer needs to be coated on the surface. In this study, Zircaloy-4 coating on tungsten was prepared by hot isostatic pressure diffusion welding in the temperature range of 900 °C to 1400 °C. The microstructure and mechanical properties of the zirconium–tungsten interface were studied. The results show that a clear intermediate diffusion layer was formed at the interfaces, and no obvious defects were found. As the HIP temperature increased from 900 °C to 1400 °C, the thickness of the diffusion layer gradually increased from 0.28 μm to 10.74 μm. Composition and phase structure analysis of the intermediate diffusion layer showed that the main phase of the diffusion layer is ZrW2. The nanoindentation hardness results near the interface showed that the hardness of the ZrW2 diffusion layer was significantly higher than that of W and the zirconium alloy, reaching around 17.96 GPa. As the HIP temperature increased, the bonding strength between Zry-4 and W matrix first increased and then decreased, with the highest bonding strength of 83.9 MPa when the HIP temperature was 1000 °C. Full article
Show Figures

Figure 1

17 pages, 6147 KiB  
Article
Complex-Valued CNN-Based Defect Reconstruction of Carbon Steel from Eddy Current Signals
by Bing Chen and Tengwei Yu
Appl. Sci. 2025, 15(12), 6599; https://doi.org/10.3390/app15126599 - 12 Jun 2025
Viewed by 470
Abstract
Eddy current testing (ECT) has become a widely adopted technique for non-destructive testing (NDT) due to its effectiveness in detecting surface and near-surface defects in conductive materials. However, traditional methods mainly focus on defect detection and face significant challenges in extracting geometric information [...] Read more.
Eddy current testing (ECT) has become a widely adopted technique for non-destructive testing (NDT) due to its effectiveness in detecting surface and near-surface defects in conductive materials. However, traditional methods mainly focus on defect detection and face significant challenges in extracting geometric information such as defect size and shape, which is crucial for structural health monitoring (SHM) and remaining useful life (RUL) assessment. To address these challenges, this study proposes a defect reconstruction approach based on a complex-valued convolutional neural network (CV-CNN), which directly leverages both amplitude and phase information inherent in complex-valued impedance signals. The proposed framework employs convolution, pooling, and activation operations specifically designed within the complex-valued domain to facilitate the high-fidelity reconstruction of defect morphology as well as precise multi-class defect classification. Notably, this approach processes the complete complex-valued signal without relying on prior structural parameters or baseline data, thereby achieving substantial improvements in both defect visualization and classification performance. Moreover, when compared to a complex-valued fully convolutional neural network (CV-FCNN), CV-CNN demonstrates a superior average classification accuracy of 85%, significantly outperforming the CV-FCNN model. Experimental results on carbon steel specimens with standard electrical discharge machining (EDM) notches under multi-frequency excitation confirm these advantages. This contribution provides a promising solution in the field of NDT for intelligent and precise defect detection. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
Amorphous Fe-Doped Manganese Carbonate for Efficient Activation of Peroxymonosulfate: Mechanism and Performance Toward Orange II Degradation
by Peng Cheng, Yuqing Li, Yunlong Ma, Cui Qiu, Tengfei Fu, Yajie Wang and Feng Wu
Molecules 2025, 30(11), 2325; https://doi.org/10.3390/molecules30112325 - 26 May 2025
Viewed by 401
Abstract
A novel amorphous Fe-doped manganese carbonate (a-FeMn-1) was synthesized via a facile co-precipitation method and evaluated as an efficient heterogeneous catalyst for the activation of peroxymonosulfate (PMS) in the degradation of Orange II. Among various Fe/Mn molar ratios, the 1:1 composition (a-FeMn-1) showed [...] Read more.
A novel amorphous Fe-doped manganese carbonate (a-FeMn-1) was synthesized via a facile co-precipitation method and evaluated as an efficient heterogeneous catalyst for the activation of peroxymonosulfate (PMS) in the degradation of Orange II. Among various Fe/Mn molar ratios, the 1:1 composition (a-FeMn-1) showed optimal catalytic activity, achieving 98% removal efficiency within 60 min under near-neutral pH conditions. Characterization results indicated that Fe doping effectively induced an amorphous structure and increased surface area and oxygen defects, promoting PMS activation. The system displayed broad pH applicability and resistance to Cl and natural organic matter, while degradation was inhibited by HCO3 and PO43−. EPR and quenching experiments confirmed that surface-bound sulfate radicals (SO4•−), hydroxyl radicals (OH), and singlet oxygen (1O2) were the primary reactive species. XPS analysis further revealed the redox cycling of Fe and Mn and the involvement of defect oxygen in the PMS activation process. The catalyst also demonstrated excellent reusability over five cycles without significant loss in efficiency. This work provides insights into the rational design of amorphous bimetallic materials for sulfate radical-based advanced oxidation processes. Full article
Show Figures

Figure 1

16 pages, 4930 KiB  
Article
Trade-Off for CFRP Quality Using High-Frequency Ultrasonic-Assisted Drilling Under Lubricant Absence
by Khaled Hamdy and Saood Ali
Lubricants 2025, 13(6), 241; https://doi.org/10.3390/lubricants13060241 - 26 May 2025
Viewed by 446
Abstract
Carbon fiber reinforced polymers (CFRPs) are significantly vital for industries. However, the drilling process of a CFRP is considered a challenge due to its nature, which causes delamination, fiber pull-out, peel-up, high friction, and a decrease in cutting tool life. Wet drilling is [...] Read more.
Carbon fiber reinforced polymers (CFRPs) are significantly vital for industries. However, the drilling process of a CFRP is considered a challenge due to its nature, which causes delamination, fiber pull-out, peel-up, high friction, and a decrease in cutting tool life. Wet drilling is necessary for minimizing defects, and lubricants are very costly. In the current work, ultrasonic-assisted drilling (UAD) with a longitudinal vibration of 39.7 kHz was applied to the drill bit in the feed direction, used for CFRPs, and compared with conventional drilling (CD). Low spindle speeds under 5000 rpm were applied with different feed rates. The morphology, delamination factor, and cutting forces were investigated through the specific input machining parameters for CD and UAD. SEM was applied to study the morphology of the hole entrance and exit as well as the burr heights of evacuated chips. UAD with 39.7 kHz succeeded in minimizing the surface roughness by 50% compared with the surface roughness resulting from CD and could drill high-precision holes for CFRPs with a trade-off concept, besides achieving near-zero delamination (K ≃ 1) in the absence of a lubricant, which is being extended for industrial application. Full article
Show Figures

Figure 1

11 pages, 883 KiB  
Article
Rate Equation Analysis of the Effect of Damage Distribution on Defect Evolution in Self-Ion Irradiated Fe
by Toshimasa Yoshiie
Metals 2025, 15(5), 555; https://doi.org/10.3390/met15050555 - 17 May 2025
Viewed by 339
Abstract
Ion irradiations have a damage peak near the beam incident surface. A simulation model with reaction kinetic analysis using rate equations was employed to study the defect evolution caused by localized damage distribution in self-ion irradiated iron. Comparisons were made between the localized [...] Read more.
Ion irradiations have a damage peak near the beam incident surface. A simulation model with reaction kinetic analysis using rate equations was employed to study the defect evolution caused by localized damage distribution in self-ion irradiated iron. Comparisons were made between the localized damage irradiation by ions (the damage peak near the specimen surface) and homogeneous damage irradiation (the flat damage rate across the specimen) such as those caused by neutron irradiation. The irradiation conditions were as follows: the accelerating voltage was 2 MeV and 100 MeV, the irradiation temperatures was 273 K and 573 K, the damage rate was 1 × 10−5 dpa/s, and the total damage was 1 dpa. The distribution of residual point defects in clusters is complex due to the influence of the surface and the sharp distribution of the damage peak. The effects of the damage distributions on defect production were obtained, revealing a dependence on irradiation temperatures. At 573 K irradiation, localized damage irradiation produced higher residual interstitials than homogeneous damage irradiation when using the peak damage rate. The 100 MeV irradiation was more prominent than 2 MeV irradiation. However, the remaining vacancies were almost identical. At 273 K irradiation, the residual point defects, interstitials, and vacancies, were nearly identical in both the localized and homogeneous damage irradiations, even if the accelerating voltage was different. Full article
Show Figures

Graphical abstract

13 pages, 3747 KiB  
Article
Elastic–Plastic Fracture Analysis on Defective Q345 Steel in the Process of Small-Scale Creep Crack Propagation
by Huajing Guo, Wenjie Tang, Xiaolong Tong and Bin Sun
Buildings 2025, 15(10), 1662; https://doi.org/10.3390/buildings15101662 - 15 May 2025
Viewed by 397
Abstract
Q345 steel is usually used on structures working under high temperature where creep deformation could endanger their structural integrity. In order to support the application of steel structures made of Q345 under high temperature, a fracture analysis on defective Q345 steel in the [...] Read more.
Q345 steel is usually used on structures working under high temperature where creep deformation could endanger their structural integrity. In order to support the application of steel structures made of Q345 under high temperature, a fracture analysis on defective Q345 steel in the process of small-scale creep crack propagation has been performed. Three-dimensional finite element models with a semi-elliptical surface crack have been established, and the crack propagation process of Q345 steel has been simulated at 400 °C. The constraint effect near the crack tip in the process of creep crack propagation has been analyzed using the J-A2 two-parameter method in which the influence of the crack aspect ratio, loading level, and biaxial loading ratio was studied. The previously developed constraint-based R6 procedure was adopted to assess the structural integrity of the cracked structure under small-scale creep conditions. The results showed that small-scale creep crack propagation behavior exhibits great influence on both crack tip fields and a constraint effect near the crack tip. The increase in the biaxial loading ratio, loading level, and aspect ratio of the crack could lead to an increase in the J integral, an enhancement of the constraint effect, and a decrease in the safe area in the failure assessment diagram for the cracked structure in the process of small-scale creep crack propagation. Full article
Show Figures

Figure 1

17 pages, 6785 KiB  
Article
Effects of Pore Defects on Stress Concentration of Laser Melting Deposition-Manufactured AlSi10Mg via Crystal Plasticity Finite Element Method
by Wang Zhang, Jianhua Liu, Yanming Xing, Xiaohui Ao, Ruoxian Yang, Chunguang Yang and Jintao Tan
Materials 2025, 18(10), 2285; https://doi.org/10.3390/ma18102285 - 14 May 2025
Cited by 1 | Viewed by 475
Abstract
Compared with powder metallurgy, centrifugal casting, jet molding, and other technologies, Laser Melting Deposition (LMD) stands out as an advanced additive manufacturing technology that provides substantial advantages in the melt forming of functional gradient materials and composites. However, when high-temperature and high-speed laser [...] Read more.
Compared with powder metallurgy, centrifugal casting, jet molding, and other technologies, Laser Melting Deposition (LMD) stands out as an advanced additive manufacturing technology that provides substantial advantages in the melt forming of functional gradient materials and composites. However, when high-temperature and high-speed laser energy is applied, the resulting materials are susceptible to porosity, which restricts their extensive use in fatigue-sensitive applications such as turbine engine blades, engine connecting rods, gears, and suspension system components. Since fatigue cracks generally originate near pore defects or at stress concentration points, it is crucial to investigate evaluation methods for pore defects and stress concentration in LMD applications. This study examines the effect of pore defects on stress concentration in LMD-manufactured AlSi10Mg using the crystal plasticity finite element method and proposes a stress concentration coefficient characterization approach that considers pore size, morphology, and location. The simulation results indicate a competitive mechanism between pores and grains, where the larger entity dominates. Regarding the influence of aspect ratio on stress concentration, as the aspect ratio decreases along the stress direction, the stress concentration increases significantly. When pores are just emerging from the surface (s/r = 1), the stress concentration caused by the pore reaches its maximum, posing the highest risk of material failure. To assess the extent to which the aspect ratio, position, and size of pores affect stress concentration, a statistical correlation analysis of these variables was conducted. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

11 pages, 2594 KiB  
Article
Influence of Deposition Rate on Fatigue Behavior of 316L Stainless Steel Prepared via Hybrid Laser Wire Direct Energy Deposition
by Md Abu Jafor, Ryan Kinser, Ning Zhu, Khaled Matalgah, Paul G. Allison, J. Brian Jordon and Trevor J. Fleck
Metals 2025, 15(5), 543; https://doi.org/10.3390/met15050543 - 14 May 2025
Viewed by 434
Abstract
Hybrid additive manufacturing (AM) provides a unique way of fabricating complex geometries with onboard machining capabilities, combining both additive and traditional subtractive techniques and resulting in reduced material waste and efficient high-tolerance components. In this work, a hybrid AM technology was used to [...] Read more.
Hybrid additive manufacturing (AM) provides a unique way of fabricating complex geometries with onboard machining capabilities, combining both additive and traditional subtractive techniques and resulting in reduced material waste and efficient high-tolerance components. In this work, a hybrid AM technology was used to create 316L stainless steel (316L SS) components using laser-wire-directed energy deposition (LW-DED) coupled with a CNC machining center on a single platform. Fully reversed fatigue tests were completed to investigate the as-manufactured life span of the additively manufactured structures for three different deposition rates of 6.33 g/min, 7.12 g/min, and 7.91 g/min. High-cycle fatigue test results showed that the fatigue performance of the tested specimens is not dependent on the deposition rates for the investigated parameters, with specimens with a 7.12 g/min deposition rate showing comparatively superior behavior to that of the other deposition rates at higher stress amplitudes. Fractography analysis was used to investigate the fractured surfaces, showing that the crack initiation sites were predominantly near the edges and not affected by the volumetric defects generated during manufacturing. X-ray-computed tomography (X-ray CT) analysis quantified the effect of the as-manufactured porosity on fatigue behavior, showing that the amount of porosity for the build rates used was insufficient to have a substantial impact on the fatigue behavior, even as it increased with the deposition rate. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

16 pages, 15439 KiB  
Article
Unveiling Surface Roughness Trends and Mechanical Properties in Friction Stir Welded Similar Alloys Joints Using Adaptive Thresholding and Grayscale Histogram Analysis
by Haider Khazal, Azzeddine Belaziz, Raheem Al-Sabur, Hassanein I. Khalaf and Zerrouki Abdelwahab
J. Manuf. Mater. Process. 2025, 9(5), 159; https://doi.org/10.3390/jmmp9050159 - 14 May 2025
Cited by 1 | Viewed by 816
Abstract
Surface roughness plays a vital role in determining surface integrity and function. Surface irregularities or reduced quality near the surface can contribute to material failure. Surface roughness is considered a crucial factor in estimating the fatigue life of structures welded by FSW. This [...] Read more.
Surface roughness plays a vital role in determining surface integrity and function. Surface irregularities or reduced quality near the surface can contribute to material failure. Surface roughness is considered a crucial factor in estimating the fatigue life of structures welded by FSW. This study attempts to provide a deeper understanding of the nature of the surface formation and roughness of aluminum joints during FSW processes. In order to form more efficient joints, the frictional temperature generated was monitored until reaching 450 °C, where the transverse movement of the tool and the joint welding began. Hardness and tensile tests showed that the formed joints were good, which paved the way for more reliable surface roughness measurements. The surface roughness of the weld joint was measured along the weld line at three symmetrical levels using welding parameters that included a rotational speed of 1250 rpm, a welding speed of 71 mm/min, and a tilt angle of 1.5°. The average hardness in the stir zone was measured at 64 HV, compared to 50 HV in the base material, indicating a strengthening effect induced by the welding process. In terms of tensile strength, the FSW joint exhibited a maximum force of 2.759 kN. Average roughness (Rz), arithmetic center roughness (Ra), and maximum peak-to-valley height (Rt) were measured. The results showed that along the weld line and at all levels, the roughness coefficients (Rz, Ra, and Rt) gradually increased from the beginning of the weld line to its end. The roughness Rz varies from start to finish, ranging between 9.84 μm and 16.87 μm on the RS and 8.77 μm and 13.98 μm on the AS, leveling off slightly toward the end as the heat input stabilizes. The obtained surface roughness and mechanical properties can give an in-depth understanding of the joint surface forming and increase the ability to overcome cracks and defects. Consequently, this approach, using adaptive thresholding image processing coupled with grayscale histogram analysis, yielded significant understanding of the FSW joint’s surface texture. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding)
Show Figures

Figure 1

12 pages, 3536 KiB  
Article
Rapid Assembly of Block Copolymer Thin Films via Accelerating the Swelling Process During Solvent Annealing
by Tian-en Shui, Tongxin Chang, Zhe Wang and Haiying Huang
Polymers 2025, 17(9), 1242; https://doi.org/10.3390/polym17091242 - 2 May 2025
Viewed by 592
Abstract
Block copolymer (BCP) lithography is widely regarded as a promising next-generation nanolithography technique. However, achieving rapid assembly with defect-free morphology remains a significant challenge for its practical application. In this study, we presented a facile and efficient solvent annealing method for fabricating well-ordered [...] Read more.
Block copolymer (BCP) lithography is widely regarded as a promising next-generation nanolithography technique. However, achieving rapid assembly with defect-free morphology remains a significant challenge for its practical application. In this study, we presented a facile and efficient solvent annealing method for fabricating well-ordered BCP thin films within minutes on both flat and topographically patterned substrates. By accelerating the swelling process, rapid film swelling was observed within just 10 s of annealing, leading to well-ordered morphologies in 1~3 min. Furthermore, we systematically investigated the influence of swelling ratio (SR) on film morphology by precisely tuning solvent vapor pressure. For cylinder-forming poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) films, we identified three distinct SR-dependent ordering regimes: (I) Excessive SR led to a disordered morphology; (II) near-optimal SR balanced long-range and short-range orders, and a slight increase in SR enhanced the long-range order but introduced short-range defects. (III) Insufficient SR failed to provide adequate chain mobility, limiting long-range order development. These findings highlight the critical role of SR in controlling defect density in nanopatterned surfaces. Long-range-ordered BCP nanopatterns can only be achieved under optimal SR conditions that ensure sufficient chain mobility. We believe this rapid annealing strategy, which is also applicable to other solvent-based annealing systems for BCP films, may contribute to next-generation nanolithography for microfabrication. Full article
Show Figures

Figure 1

Back to TopTop