Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = nature-inspired metaheuristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7238 KB  
Article
Bees Algorithm and PSO-Optimized Hybrid Models for Accurate Power Transformer Fault Diagnosis: A Real-World Case Study
by Mohammed Alenezi, Jabir Massoud, Tarek Ghomeed and Mokhtar Shouran
Energies 2025, 18(22), 5964; https://doi.org/10.3390/en18225964 (registering DOI) - 13 Nov 2025
Abstract
This paper introduces an intelligent fault-diagnosis framework for power transformers that integrates hybrid machine-learning models with nature-inspired optimization. Current signals were acquired from a laboratory-scale three-phase transformer under both healthy and various fault conditions. A suite of 41 discriminative features was engineered from [...] Read more.
This paper introduces an intelligent fault-diagnosis framework for power transformers that integrates hybrid machine-learning models with nature-inspired optimization. Current signals were acquired from a laboratory-scale three-phase transformer under both healthy and various fault conditions. A suite of 41 discriminative features was engineered from time–frequency and sparse representations generated via Discrete Wavelet Transform (DWT) and Matching Pursuit (MP). The resulting dataset of 2400 labeled segments was used to develop four hybrid models, PSO-SVM, PSO-RF, BA-SVM, and BA-RF, wherein Particle Swarm Optimization (PSO) and the Bees Algorithm (BA) served as wrapper optimizers for simultaneous feature selection and hyperparameter tuning. Rigorous evaluation with 5-fold and 10-fold cross-validation demonstrated the superior performance of Random Forest-based models, with the BA-RF hybrid achieving peak performance (98.33% accuracy, 99.09% precision). The results validate the proposed methodology, establishing that the fusion of wavelet- and MP-based feature extraction with metaheuristic optimization constitutes a robust and accurate paradigm for transformer fault diagnosis. Full article
Show Figures

Figure 1

51 pages, 4543 KB  
Article
Ripple Evolution Optimizer: A Novel Nature-Inspired Metaheuristic
by Hussam N. Fakhouri, Hasan Rashaideh, Riyad Alrousan, Faten Hamad and Zaid Khrisat
Computers 2025, 14(11), 486; https://doi.org/10.3390/computers14110486 - 7 Nov 2025
Viewed by 166
Abstract
This paper presents a novel Ripple Evolution Optimizer (REO) that incorporates adaptive and diversified movement—a population-based metaheuristic that turns a coastal-dynamics metaphor into principled search operators. REO augments a JADE-style current-to-p-best/1 core with jDE self-adaptation and three complementary motions: (i) a [...] Read more.
This paper presents a novel Ripple Evolution Optimizer (REO) that incorporates adaptive and diversified movement—a population-based metaheuristic that turns a coastal-dynamics metaphor into principled search operators. REO augments a JADE-style current-to-p-best/1 core with jDE self-adaptation and three complementary motions: (i) a rank-aware that pulls candidates toward the best, (ii) a time-increasing that aligns agents with an elite mean, and (iii) a scale-aware sinusoidal that lead solutions with a decaying envelope; rare Lévy-flight kicks enable long escapes. A reflection/clamp rule preserves step direction while enforcing bound feasibility. On the CEC2022 single-objective suite (12 functions spanning unimodal, rotated multimodal, hybrid, and composition categories), REO attains 10 wins and 2 ties, never ranking below first among 34 state-of-the-art compared optimizers, with rapid early descent and stable late refinement. Population-size studies reveal predictable robustness gains for larger N. On constrained engineering designs, REO achieves outperforming results on Welded Beam, Spring Design, Three-Bar Truss, Cantilever Stepped Beam, and 10-Bar Planar Truss. Altogether, REO couples adaptive guidance with diversified perturbations in a compact, transparent optimizer that is competitive on rugged benchmarks and transfers effectively to real engineering problems. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

35 pages, 2828 KB  
Systematic Review
A Systematic Review of Bio-Inspired Metaheuristic Optimization Algorithms: The Untapped Potential of Plant-Based Approaches
by Hossein Jamali, Sergiu M. Dascalu and Frederick C. Harris
Algorithms 2025, 18(11), 686; https://doi.org/10.3390/a18110686 - 29 Oct 2025
Viewed by 516
Abstract
Nature has evolved sophisticated optimization strategies over billions of years, yet computational algorithms inspired by plants remain remarkably underexplored. We present a comprehensive systematic review following PRISMA 2020 guidelines, analyzing 175 studies (2000–2025) of plant-inspired metaheuristic optimization algorithms and their predominantly animal-inspired counterparts. [...] Read more.
Nature has evolved sophisticated optimization strategies over billions of years, yet computational algorithms inspired by plants remain remarkably underexplored. We present a comprehensive systematic review following PRISMA 2020 guidelines, analyzing 175 studies (2000–2025) of plant-inspired metaheuristic optimization algorithms and their predominantly animal-inspired counterparts. Despite constituting only 9.7% of bio-inspired optimization literature, plant-inspired algorithms demonstrate competitive and often superior performance compared to animal-inspired approaches. Through a meta-analysis of empirical studies, we document that algorithms like Phototropic Growth and Binary Plant Rhizome Growth achieve 97% superiority on CEC2017 benchmarks and 81% accuracy on high-dimensional feature-selection tasks—significantly exceeding established animal-inspired methods like Particle Swarm Optimization and Genetic Algorithms (p < 0.05). However, our review reveals a critical gap: the majority of these algorithms lack the formal theoretical foundations of their counterparts. This paper systematically documents these theoretical deficiencies and positions them as a key area for future research. Our framework maps botanical processes to computational operators, providing structured guidance for future algorithm development. Plant-inspired approaches excel particularly in distributed optimization, resource allocation, and multi-objective problems by leveraging unique mechanisms evolved for survival in sessile, resource-limited environments. These findings establish plant-inspired approaches as a promising yet severely underexplored frontier in optimization theory, with immediate applications in sustainable computing, resilient network design, and resource-constrained artificial intelligence. Full article
(This article belongs to the Special Issue Bio-Inspired Algorithms: 2nd Edition)
Show Figures

Figure 1

28 pages, 3758 KB  
Article
A Lightweight, Explainable Spam Detection System with Rüppell’s Fox Optimizer for the Social Media Network X
by Haidar AlZeyadi, Rıdvan Sert and Fecir Duran
Electronics 2025, 14(21), 4153; https://doi.org/10.3390/electronics14214153 - 23 Oct 2025
Viewed by 335
Abstract
Effective spam detection systems are essential in online social media networks (OSNs) and cybersecurity, and they directly influence the quality of decision-making pertaining to security. With today’s digital communications, unsolicited spam degrades user experiences and threatens platform security. Machine learning-based spam detection systems [...] Read more.
Effective spam detection systems are essential in online social media networks (OSNs) and cybersecurity, and they directly influence the quality of decision-making pertaining to security. With today’s digital communications, unsolicited spam degrades user experiences and threatens platform security. Machine learning-based spam detection systems offer an automated defense. Despite their effectiveness, such methods are frequently hindered by the “black box” problem, an interpretability deficiency that constrains their deployment in security applications, which, in order to comprehend the rationale of classification processes, is crucial for efficient threat evaluation and response strategies. However, their effectiveness hinges on selecting an optimal feature subset. To address these issues, we propose a lightweight, explainable spam detection model that integrates a nature-inspired optimizer. The approach employs clean data with data preprocessing and feature selection using a swarm-based, nature-inspired meta-heuristic Rüppell’s Fox Optimization (RFO) algorithm. To the best of our knowledge, this is the first time the algorithm has been adapted to the field of cybersecurity. The resulting minimal feature set is used to train a supervised classifier that achieves high detection rates and accuracy with respect to spam accounts. For the interpretation of model predictions, Shapley values are computed and illustrated through swarm and summary charts. The proposed system was empirically assessed using two datasets, achieving accuracies of 99.10%, 98.77%, 96.57%, and 92.24% on Dataset 1 using RFO with DT, KNN, AdaBoost, and LR and 98.94%, 98.67%, 95.04%, and 94.52% on Dataset 2, respectively. The results validate the efficacy of the suggested approach, providing an accurate and understandable model for spam account identification. This study represents notable progress in the field, offering a thorough and dependable resolution for spam account detection issues. Full article
Show Figures

Figure 1

35 pages, 2975 KB  
Article
Rain-Cloud Condensation Optimizer: Novel Nature-Inspired Metaheuristic for Solving Engineering Design Problems
by Sandi Fakhouri, Amjad Hudaib, Azzam Sleit and Hussam N. Fakhouri
Eng 2025, 6(10), 281; https://doi.org/10.3390/eng6100281 - 21 Oct 2025
Viewed by 299
Abstract
This paper presents Rain-Cloud Condensation Optimizer (RCCO), a nature-inspired metaheuristic that maps cloud microphysics to population-based search. Candidate solutions (“droplets”) evolve under a dual-attractor dynamic toward both a global leader and a rank-weighted cloud core, with time-decaying coefficients that progressively shift emphasis from [...] Read more.
This paper presents Rain-Cloud Condensation Optimizer (RCCO), a nature-inspired metaheuristic that maps cloud microphysics to population-based search. Candidate solutions (“droplets”) evolve under a dual-attractor dynamic toward both a global leader and a rank-weighted cloud core, with time-decaying coefficients that progressively shift emphasis from exploration to exploitation. Diversity is preserved via domain-aware coalescence and opposition-based mirroring sampled within the coordinate-wise band defined by two parents. Rare heavy-tailed “turbulence gusts” (Cauchy perturbations) enable long jumps, while a wrap-and-reflect scheme enforces feasibility near the bounds. A sine-map initializer improves early coverage with negligible overhead. RCCO exposes a small hyperparameter set, and its per-iteration time and memory scale linearly with population size and problem dimension. RCOO has been compared with 21 state-of-the-art optimizers, over the CEC 2022 benchmark suite, where it achieves competitive to superior accuracy and stability, and achieves the top results over eight functions, including in high-dimensional regimes. We further demonstrate constrained, real-world effectiveness on five structural engineering problems—cantilever stepped beam, pressure vessel, planetary gear train, ten-bar planar truss, and three-bar truss. These results suggest that a hydrology-inspired search framework, coupled with simple state-dependent schedules, yields a robust, low-tuning optimizer for black-box, nonconvex problems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

45 pages, 2840 KB  
Article
Accurate and Scalable DV-Hop-Based WSN Localization with Parameter-Free Fire Hawk Optimizer
by Doğan Yıldız
Mathematics 2025, 13(20), 3246; https://doi.org/10.3390/math13203246 - 10 Oct 2025
Viewed by 329
Abstract
Wireless Sensor Networks (WSNs) have emerged as a foundational technology for monitoring and data collection in diverse domains such as environmental sensing, smart agriculture, and industrial automation. Precise node localization plays a vital role in WSNs, enabling effective data interpretation, reliable routing, and [...] Read more.
Wireless Sensor Networks (WSNs) have emerged as a foundational technology for monitoring and data collection in diverse domains such as environmental sensing, smart agriculture, and industrial automation. Precise node localization plays a vital role in WSNs, enabling effective data interpretation, reliable routing, and spatial context awareness. The challenge intensifies in range-free settings, where a lack of direct distance data demands efficient indirect estimation methods, particularly in large-scale, energy-constrained deployments. This work proposes a hybrid localization framework that integrates the distance vector-hop (DV-Hop) range-free localization algorithm with the Fire Hawk Optimizer (FHO), a nature-inspired metaheuristic method inspired by the predatory behavior of fire hawks. The proposed FHODV-Hop method enhances location estimation accuracy while maintaining low computational overhead by inserting the FHO into the third stage of the DV-Hop algorithm. Extensive simulations are conducted on multiple topologies, including random, circular, square-grid, and S-shaped, under various network parameters such as node densities, anchor rates, population sizes, and communication ranges. The results show that the proposed FHODV-Hop model achieves competitive performance in Average Localization Error (ALE), localization ratio, convergence behavior, computational, and runtime efficiency. Specifically, FHODV-Hop reduces the ALE by up to 35% in random deployments, 25% in circular networks, and nearly 45% in structured square-grid layouts compared to the classical DV-Hop. Even under highly irregular S-shaped conditions, the algorithm achieves around 20% improvement. Furthermore, convergence speed is accelerated by approximately 25%, and computational time is reduced by nearly 18%, demonstrating its scalability and practical applicability. Therefore, these results demonstrate that the proposed model offers a promising balance between accuracy and practicality for real-world WSN deployments. Full article
Show Figures

Figure 1

25 pages, 2608 KB  
Article
Intelligent System for Student Performance Prediction: An Educational Data Mining Approach Using Metaheuristic-Optimized LightGBM with SHAP-Based Learning Analytics
by Abdalhmid Abukader, Ahmad Alzubi and Oluwatayomi Rereloluwa Adegboye
Appl. Sci. 2025, 15(20), 10875; https://doi.org/10.3390/app152010875 - 10 Oct 2025
Viewed by 539
Abstract
Educational data mining (EDM) plays a crucial role in developing intelligent early warning systems that enable timely interventions to improve student outcomes. This study presents a novel approach to student performance prediction by integrating metaheuristic hyperparameter optimization with explainable artificial intelligence for enhanced [...] Read more.
Educational data mining (EDM) plays a crucial role in developing intelligent early warning systems that enable timely interventions to improve student outcomes. This study presents a novel approach to student performance prediction by integrating metaheuristic hyperparameter optimization with explainable artificial intelligence for enhanced learning analytics. While Light Gradient Boosting Machine (LightGBM) demonstrates efficiency in educational prediction tasks, achieving optimal performance requires sophisticated hyperparameter tuning, particularly for complex educational datasets where accuracy, interpretability, and actionable insights are paramount. This research addressed these challenges by implementing and evaluating five nature-inspired metaheuristic algorithms: Fox Algorithm (FOX), Giant Trevally Optimizer (GTO), Particle Swarm Optimization (PSO), Sand Cat Swarm Optimization (SCSO), and Salp Swarm Algorithm (SSA) for automated hyperparameter optimization. Using rigorous experimental methodology with 5-fold cross-validation and 20 independent runs, we assessed predictive performance through comprehensive metrics including Coefficient of Determination (R2), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), Relative Absolute Error (RAE), and Mean Error (ME). Results demonstrate that metaheuristic optimization significantly enhances educational prediction accuracy, with SCSO-LightGBM achieving superior performance with R2 of 0.941. SHapley Additive exPlanations (SHAP) analysis provides crucial interpretability, identifying Attendance, Hours Studied, Previous Scores, and Parental Involvement as dominant predictive factors, offering evidence-based insights for educational stakeholders. The proposed SCSO-LightGBM framework establishes an intelligent, interpretable system that supports data-driven decision-making in educational environments, enabling proactive interventions to enhance student success. Full article
Show Figures

Figure 1

21 pages, 2281 KB  
Article
Path Optimization for Cluster Order Picking in Warehouse Robotics Using Hybrid Symbolic Control and Bio-Inspired Metaheuristic Approaches
by Mete Özbaltan, Serkan Çaşka, Merve Yıldırım, Cihat Şeker, Faruk Emre Aysal, Hazal Su Bıçakcı Yeşilkaya, Murat Demir and Emrah Kuzu
Biomimetics 2025, 10(10), 657; https://doi.org/10.3390/biomimetics10100657 - 1 Oct 2025
Viewed by 575
Abstract
In this study, we propose an architectural model for path optimization in cluster order picking within warehouse robotics, utilizing a hybrid approach that combines symbolic control and metaheuristic techniques. Among the optimization strategies, we incorporate bio-inspired metaheuristic algorithms such as the Walrus Optimization [...] Read more.
In this study, we propose an architectural model for path optimization in cluster order picking within warehouse robotics, utilizing a hybrid approach that combines symbolic control and metaheuristic techniques. Among the optimization strategies, we incorporate bio-inspired metaheuristic algorithms such as the Walrus Optimization Algorithm (WOA), Puma Optimization Algorithm (POA), and Flying Foxes Algorithm (FFA), which are grounded in behavioral models observed in nature. We consider large-scale warehouse robotic systems, partitioned into clusters. To manage shared resources between clusters, the set of clusters is first formulated as a symbolic control design task within a discrete synthesis framework. Subsequently, the desired control goals are integrated into the model, encoded using parallel synchronous dataflow languages; the resulting controller, derived using our safety-focused and optimization-based synthesis approach, serves as the manager for the cluster. Safety objectives address the rigid system behaviors, while optimization objectives focus on minimizing the traveled path of the warehouse robots through the constructed cost function. The metaheuristic algorithms contribute at this stage, drawing inspiration from real-world animal behaviors, such as walruses’ cooperative movement and foraging, pumas’ territorial hunting strategies, and flying foxes’ echolocation-based navigation. These nature-inspired processes allow for effective solution space exploration and contribute to improving the quality of cluster-level path optimization. Our hybrid approach, integrating symbolic control and metaheuristic techniques, demonstrates significantly higher performance advantage over existing solutions, with experimental data verifying the practical effectiveness of our approach. Our proposed algorithm achieves up to 3.01% shorter intra-cluster paths compared to the metaheuristic algorithms, with an average improvement of 1.2%. For the entire warehouse, it provides up to 2.05% shorter paths on average, and even in the worst case, outperforms competing metaheuristic methods by 0.28%, demonstrating its consistent effectiveness in path optimization. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications 2025)
Show Figures

Figure 1

23 pages, 1998 KB  
Article
Hybrid Cuckoo Search–Bees Algorithm with Memristive Chaotic Initialization for Cryptographically Strong S-Box Generation
by Sinem Akyol
Biomimetics 2025, 10(9), 610; https://doi.org/10.3390/biomimetics10090610 - 10 Sep 2025
Viewed by 519
Abstract
One of the essential parts of contemporary cryptographic systems is s-boxes (Substitution Boxes), which give encryption algorithms more complexity and resilience due to their nonlinear structure. In this study, we propose CSBA (Cuckoo Search–Bees Algorithm), a hybrid evolutionary method that combines the strengths [...] Read more.
One of the essential parts of contemporary cryptographic systems is s-boxes (Substitution Boxes), which give encryption algorithms more complexity and resilience due to their nonlinear structure. In this study, we propose CSBA (Cuckoo Search–Bees Algorithm), a hybrid evolutionary method that combines the strengths of Cuckoo Search and Bees algorithms, to generate s-box structures with strong cryptographic properties. The initial population is generated with a high-diversity four-dimensional Memristive Lu chaotic map, taking advantage of the random yet deterministic nature of chaotic systems. This proposed method was designed with inspiration from biological systems. It was developed based on the foraging strategies of bees and the reproductive strategies of cuckoos. This nature-inspired structure enables an efficient scanning of the solution space. The resultant s-boxes’ fitness was assessed using the nonlinearity value. These s-boxes were then optimized using the hybrid CSBA algorithm suggested in this paper as well as the Bees algorithm. The performance of the proposed approaches was measured using SAC, nonlinearity, BIC-SAC, BIC-NL, maximum difference distribution, and linear uniformity (LU) metrics. Compared to other studies in the literature that used metaheuristic algorithms to generate s-boxes, the proposed approach demonstrates good performance. In particular, the average value of 109.75 obtained for the nonlinearity metric demonstrates high success. Therefore, this study demonstrates that robust and reliable s-boxes can be generated for symmetric encryption algorithms using the developed metaheuristic algorithms. Full article
(This article belongs to the Special Issue Biomimicry for Optimization, Control, and Automation: 3rd Edition)
Show Figures

Figure 1

50 pages, 5419 KB  
Article
MSAPO: A Multi-Strategy Fusion Artificial Protozoa Optimizer for Solving Real-World Problems
by Hanyu Bo, Jiajia Wu and Gang Hu
Mathematics 2025, 13(17), 2888; https://doi.org/10.3390/math13172888 - 6 Sep 2025
Viewed by 658
Abstract
Artificial protozoa optimizer (APO), as a newly proposed meta-heuristic algorithm, is inspired by the foraging, dormancy, and reproduction behaviors of protozoa in nature. Compared with traditional optimization algorithms, APO demonstrates strong competitive advantages; nevertheless, it is not without inherent limitations, such as slow [...] Read more.
Artificial protozoa optimizer (APO), as a newly proposed meta-heuristic algorithm, is inspired by the foraging, dormancy, and reproduction behaviors of protozoa in nature. Compared with traditional optimization algorithms, APO demonstrates strong competitive advantages; nevertheless, it is not without inherent limitations, such as slow convergence and a proclivity towards local optimization. In order to enhance the efficacy of the algorithm, this paper puts forth a multi-strategy fusion artificial protozoa optimizer, referred to as MSAPO. In the initialization stage, MSAPO employs the piecewise chaotic opposition-based learning strategy, which results in a uniform population distribution, circumvents initialization bias, and enhances the global exploration capability of the algorithm. Subsequently, cyclone foraging strategy is implemented during the heterotrophic foraging phase. enabling the algorithm to identify the optimal search direction with greater precision, guided by the globally optimal individuals. This reduces random wandering, significantly accelerating the optimization search and enhancing the ability to jump out of the local optimal solutions. Furthermore, the incorporation of hybrid mutation strategy in the reproduction stage enables the algorithm to adaptively transform the mutation patterns during the iteration process, facilitating a strategic balance between rapid escape from local optima in the initial stages and precise convergence in the subsequent stages. Ultimately, crisscross strategy is incorporated at the conclusion of the algorithm’s iteration. This not only enhances the algorithm’s global search capacity but also augments its capability to circumvent local optima through the integrated application of horizontal and vertical crossover techniques. This paper presents a comparative analysis of MSAPO with other prominent optimization algorithms on the three-dimensional CEC2017 and the highest-dimensional CEC2022 test sets, and the results of numerical experiments show that MSAPO outperforms the compared algorithms, and ranks first in the performance evaluation in a comprehensive way. In addition, in eight real-world engineering design problem experiments, MSAPO almost always achieves the theoretical optimal value, which fully confirms its high efficiency and applicability, thus verifying the great potential of MSAPO in solving complex optimization problems. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
Show Figures

Figure 1

40 pages, 17003 KB  
Article
Marine Predators Algorithm-Based Robust Composite Controller for Enhanced Power Sharing and Real-Time Voltage Stability in DC–AC Microgrids
by Md Saiful Islam, Tushar Kanti Roy and Israt Jahan Bushra
Algorithms 2025, 18(8), 531; https://doi.org/10.3390/a18080531 - 20 Aug 2025
Viewed by 686
Abstract
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on [...] Read more.
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on backstepping fast terminal sliding mode control (BFTSMC). This controller is further enhanced with a virtual capacitor to emulate synthetic inertia and with a fractional power-based reaching law, which ensures smooth and finite-time convergence. Moreover, the proposed control strategy ensures the effective coordination of power sharing between AC and DC sub-grids through bidirectional converters, thereby maintaining system stability during rapid fluctuations in load or generation. To achieve optimal control performance under diverse and dynamic operating conditions, the controller gains are adaptively tuned using the marine predators algorithm (MPA), a nature-inspired metaheuristic optimization technique. Furthermore, the stability of the closed-loop system is rigorously established through control Lyapunov function analysis. Extensive simulation results conducted in the MATLAB/Simulink environment demonstrate that the proposed controller significantly outperforms conventional methods by eliminating steady-state error, reducing the settling time by up to 93.9%, and minimizing overshoot and undershoot. In addition, real-time performance is validated via processor-in-the-loop (PIL) testing, thereby confirming the controller’s practical feasibility and effectiveness in enhancing the resilience and efficiency of HADCMG operations. Full article
Show Figures

Figure 1

47 pages, 4608 KB  
Article
Adaptive Differentiated Parrot Optimization: A Multi-Strategy Enhanced Algorithm for Global Optimization with Wind Power Forecasting Applications
by Guanjun Lin, Mahmoud Abdel-salam, Gang Hu and Heming Jia
Biomimetics 2025, 10(8), 542; https://doi.org/10.3390/biomimetics10080542 - 18 Aug 2025
Viewed by 719
Abstract
The Parrot Optimization Algorithm (PO) represents a contemporary nature-inspired metaheuristic technique formulated through observations of Pyrrhura Molinae parrot behavioral patterns. PO exhibits effective optimization capabilities by achieving equilibrium between exploration and exploitation phases through mimicking foraging behaviors and social interactions. Nevertheless, during iterative [...] Read more.
The Parrot Optimization Algorithm (PO) represents a contemporary nature-inspired metaheuristic technique formulated through observations of Pyrrhura Molinae parrot behavioral patterns. PO exhibits effective optimization capabilities by achieving equilibrium between exploration and exploitation phases through mimicking foraging behaviors and social interactions. Nevertheless, during iterative progression, the algorithm encounters significant obstacles in preserving population diversity and experiences declining search effectiveness, resulting in early convergence and diminished capacity to identify optimal solutions within intricate optimization landscapes. To overcome these constraints, this work presents the Adaptive Differentiated Parrot Optimization Algorithm (ADPO), which constitutes a substantial enhancement over baseline PO through the implementation of three innovative mechanisms: Mean Differential Variation (MDV), Dimension Learning-Based Hunting (DLH), and Enhanced Adaptive Mutualism (EAM). The MDV mechanism strengthens the exploration capabilities by implementing dual-phase mutation strategies that facilitate extensive search during initial iterations while promoting intensive exploitation near promising solutions during later phases. Additionally, the DLH mechanism prevents premature convergence by enabling dimension-wise adaptive learning from spatial neighbors, expanding search diversity while maintaining coordinated optimization behavior. Finally, the EAM mechanism replaces rigid cooperation with fitness-guided interactions using flexible reference solutions, ensuring optimal balance between intensification and diversification throughout the optimization process. Collectively, these mechanisms significantly improve the algorithm’s exploration, exploitation, and convergence capabilities. Furthermore, ADPO’s effectiveness was comprehensively assessed using benchmark functions from the CEC2017 and CEC2022 suites, comparing performance against 12 advanced algorithms. The results demonstrate ADPO’s exceptional convergence speed, search efficiency, and solution precision. Additionally, ADPO was applied to wind power forecasting through integration with Long Short-Term Memory (LSTM) networks, achieving remarkable improvements over conventional approaches in real-world renewable energy prediction scenarios. Specifically, ADPO outperformed competing algorithms across multiple evaluation metrics, achieving average R2 values of 0.9726 in testing phases with exceptional prediction stability. Moreover, ADPO obtained superior Friedman rankings across all comparative evaluations, with values ranging from 1.42 to 2.78, demonstrating clear superiority over classical, contemporary, and recent algorithms. These outcomes validate the proposed enhancements and establish ADPO’s robustness and effectiveness in addressing complex optimization challenges. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

20 pages, 2448 KB  
Article
CCESC: A Crisscross-Enhanced Escape Algorithm for Global and Reservoir Production Optimization
by Youdao Zhao and Xiangdong Li
Biomimetics 2025, 10(8), 529; https://doi.org/10.3390/biomimetics10080529 - 12 Aug 2025
Viewed by 604
Abstract
Global optimization problems, ubiquitous scientific research, and engineering applications necessitate sophisticated algorithms adept at navigating intricate, high-dimensional search landscapes. The Escape (ESC) algorithm, inspired by the complex dynamics of crowd evacuation behavior—where individuals exhibit calm, herding, or panic responses—offers a compelling nature-inspired paradigm [...] Read more.
Global optimization problems, ubiquitous scientific research, and engineering applications necessitate sophisticated algorithms adept at navigating intricate, high-dimensional search landscapes. The Escape (ESC) algorithm, inspired by the complex dynamics of crowd evacuation behavior—where individuals exhibit calm, herding, or panic responses—offers a compelling nature-inspired paradigm for addressing these challenges. While ESC demonstrates a strong intrinsic balance between exploration and exploitation, opportunities exist to enhance its inter-agent communication and search trajectory diversification. This paper introduces an advanced bio-inspired algorithm, termed Crisscross Escape Algorithm (CCESC), which strategically incorporates a Crisscross (CC) information exchange mechanism. This CC strategy, by promoting multi-directional interaction and information sharing among individuals irrespective of their behavioral group (calm, herding, panic), fosters a richer exploration of the solution space, helps to circumvent local optima, and accelerates convergence towards superior solutions. The CCESC’s performance is extensively validated on the demanding CEC2017 benchmark suites, alongside several standard engineering design problems, and compared against a comprehensive set of prominent metaheuristic algorithms. Experimental results consistently reveal CCESC’s superior or highly competitive performance across a wide array of benchmark functions. Furthermore, CCESC is effectively applied to a complex reservoir production optimization problem, demonstrating its capacity to achieve significantly improved Net Present Value (NPV) over other established methods. This successful application underscores CCESC’s robustness and efficacy as a powerful optimization tool for tackling multifaceted real-world problems, particularly in reservoir production optimization within complex sedimentary environments. Full article
Show Figures

Figure 1

47 pages, 10020 KB  
Article
A Bio-Inspired Adaptive Probability IVYPSO Algorithm with Adaptive Strategy for Backpropagation Neural Network Optimization in Predicting High-Performance Concrete Strength
by Kaifan Zhang, Xiangyu Li, Songsong Zhang and Shuo Zhang
Biomimetics 2025, 10(8), 515; https://doi.org/10.3390/biomimetics10080515 - 6 Aug 2025
Cited by 1 | Viewed by 697
Abstract
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant [...] Read more.
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant challenges to conventional predictive models. Traditional approaches often fail to adequately capture these intricate relationships, resulting in limited prediction accuracy and poor generalization. Moreover, the high dimensionality and noisy nature of HPC mix data increase the risk of model overfitting and convergence to local optima during optimization. To address these challenges, this study proposes a novel bio-inspired hybrid optimization model, AP-IVYPSO-BP, which is specifically designed to handle the nonlinear and complex nature of HPC strength prediction. The model integrates the ivy algorithm (IVYA) with particle swarm optimization (PSO) and incorporates an adaptive probability strategy based on fitness improvement to dynamically balance global exploration and local exploitation. This design effectively mitigates common issues such as premature convergence, slow convergence speed, and weak robustness in traditional metaheuristic algorithms when applied to complex engineering data. The AP-IVYPSO is employed to optimize the weights and biases of a backpropagation neural network (BPNN), thereby enhancing its predictive accuracy and robustness. The model was trained and validated on a dataset comprising 1030 HPC mix samples. Experimental results show that AP-IVYPSO-BP significantly outperforms traditional BPNN, PSO-BP, GA-BP, and IVY-BP models across multiple evaluation metrics. Specifically, it achieved an R2 of 0.9542, MAE of 3.0404, and RMSE of 3.7991 on the test set, demonstrating its high accuracy and reliability. These results confirm the potential of the proposed bio-inspired model in the prediction and optimization of concrete strength, offering practical value in civil engineering and materials design. Full article
Show Figures

Figure 1

28 pages, 15616 KB  
Article
Binary Secretary Bird Optimization Algorithm for the Set Covering Problem
by Broderick Crawford, Felipe Cisternas-Caneo, Ricardo Soto, Claudio Patricio Toledo Mac-lean, José Lara Arce, Fabián Solís-Piñones, Gino Astorga and Giovanni Giachetti
Mathematics 2025, 13(15), 2482; https://doi.org/10.3390/math13152482 - 1 Aug 2025
Cited by 1 | Viewed by 813
Abstract
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the [...] Read more.
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the binary domain of the SCP. In this work, we present a new approach to solve the SCP based on the Secretary Bird Optimization Algorithm (SBOA). This algorithm is inspired by the natural behavior of the secretary bird, known for its ability to hunt prey and evade predators in its environment. Since the SBOA was originally designed for optimization problems in continuous space and the SCP is a binary problem, this paper proposes the implementation of several binarization techniques to adapt the algorithm to the discrete domain. These techniques include eight transfer functions and five different discretization methods. Taken together, these combinations create multiple SBOA adaptations that effectively balance exploration and exploitation, promoting an adequate distribution in the search space. Experimental results applied to the SCP together with its variant Unicost SCP and compared to Grey Wolf Optimizer and Particle Swarm Optimization suggest that the binary version of SBOA is a robust algorithm capable of producing high quality solutions with low computational cost. Given the promising results obtained, it is proposed as future work to focus on complex and large-scale problems as well as to optimize their performance in terms of time and accuracy. Full article
Show Figures

Figure 1

Back to TopTop