Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = naturally fermented sausage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1720 KiB  
Article
In Vitro Preliminary Characterization of Lactiplantibacillus plantarum BG112 for Use as a Starter Culture for Industrial Dry-Fermented Meats
by María Inés Palacio, María Julia Ruiz, María Fernanda Vega and Analía Inés Etcheverría
Fermentation 2025, 11(7), 403; https://doi.org/10.3390/fermentation11070403 - 14 Jul 2025
Viewed by 436
Abstract
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, [...] Read more.
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, probiotic properties, and safety for use in food formulations. The strain was characterized through morphological and biochemical tests, carbohydrate fermentation profiling, and various in vitro assays based on FAO/WHO criteria for probiotic selection. These included proteolytic activity, auto-aggregation capacity, tolerance to simulated gastric juice and bile salts, antimicrobial activity, and resistance to sodium chloride, nitrite, and low pH. Safety evaluations were also performed by testing antibiotic susceptibility, hemolytic activity, and DNAse production. The results showed that L. plantarum BG112 exhibited strong tolerance to adverse environmental conditions typically found during sausage fermentation and ripening, along with significant inhibitory activity against pathogenic bacteria, such as Escherichia coli O157:H7, Salmonella Typhimurium, and Staphylococcus aureus. The strain also demonstrated no hemolytic or DNAse activity and presented a favorable antibiotic sensitivity profile, meeting key safety requirements for probiotic use. Further studies using meat matrices and in vivo models are needed to validate these findings. This study contributes to the early-stage selection of safe and technologically suitable strains for use in fermented meat products. These findings support the potential application of L. plantarum BG112 as a safe and effective starter culture in the development of high-value, premium fermented meat products, aligned with current consumer demand for health-enhancing and natural foods. Full article
Show Figures

Figure 1

11 pages, 344 KiB  
Communication
Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage
by Nevijo Zdolec, Marta Kiš, Mladenka Vukšić, Hrvoje Mazija, Ivana Bazina and Snježana Kazazić
Processes 2025, 13(7), 2216; https://doi.org/10.3390/pr13072216 - 11 Jul 2025
Viewed by 362
Abstract
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n [...] Read more.
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n = 88) of lactic acid bacteria (LAB) were collected during maturation and subjected to MALDI-TOF mass spectrometry identification. The capacity to combat Listeria was screened against five strains using the agar well diffusion method in 63 selected LAB isolates. MALDI-TOF mass spectrometry identified four different LAB genera, namely Enterococcus, Lactococcus, Leuconostoc and Lactobacillus, the proportions of which differed significantly during the production phases (p < 0.001). Enterococcus faecalis was the most prevalent LAB species in the initial sausage dough. The presence of lactococci (Lactococcus lactis) and enterococci was detected during the 14- and 30-day ripening period and was gradually displaced by leuconostocs and lactobacilli. Lactobacilli appeared to be abundant during the central and late maturation phases, and consisted of only two species—Latilactobacillus sakei and Latilactobacillus curvatus. In total, 38 LAB isolates (60%) showed antilisterial activity toward at least one Listeria indicator strain. The proportions of antilisterial LAB differed significantly during sausage maturation. Inhibitory activity against all indicator Listeria was detected in the neutralized cell-free supernatants of five strains of Enterococcus faecalis, two L. sakei strains and one Leuconostoc mesenteroides strain. The antilisterial activity observed in the indigenous LAB revealed the possible role of L. sakei as a bioprotective culture, as well as the role of Ln. mesenteroides and E. faecalis as bacteriocin producers, for practical applications. Full article
Show Figures

Figure 1

26 pages, 2947 KiB  
Article
The Behavior of Listeria monocytogenes During the Shelf Life of Wiener Sausages, as an Effect of Fermented Parsley Root Juice and Hawthorn Berry Phenolics
by Georgeta Ștefan, Gheorghe Valentin Goran, Corina Nicoleta Predescu, Maria Rodica Gurău and Stelian Bărăităreanu
Foods 2025, 14(9), 1513; https://doi.org/10.3390/foods14091513 - 26 Apr 2025
Viewed by 542
Abstract
The behavior of Listeria monocytogenes (L. monocytogenes) throughout the shelf life of ready-to-eat foodstuffs represents a major concern in relation to human diet and human health. The aim of the study was to evaluate the behavior of L. monocytogenes in Wiener [...] Read more.
The behavior of Listeria monocytogenes (L. monocytogenes) throughout the shelf life of ready-to-eat foodstuffs represents a major concern in relation to human diet and human health. The aim of the study was to evaluate the behavior of L. monocytogenes in Wiener sausage, as an RTE meat product, throughout 15 days of storage (0–7 °C) under the action of fermented juice from parsley (Petroselinum crispum var. tuberosum) roots and common hawthorn (Crataegus monogyna) berry phenolics, compared with the effect of the food additives sodium nitrite and sodium ascorbate used in the standard formulation. For this purpose, one experimental formulation (F1) and one standard formulation (F2) of Wiener sausages were designed using the following preservatives and antioxidants: 50 ppm fermented parsley root juice (as a nitrite source) and 50 ppm hawthorn berry phenolics were used in F1, and 50 ppm sodium nitrite (as food additive E 250) and 50 ppm sodium ascorbate (as food additive E 301) were used in F2. The ability to support L. monocytogenes growth was assessed by a challenge test throughout the 15 days of storage. Based on the results of the assessment, the natural ingredients fermented parsley root juice and hawthorn berry phenolics could act as preservatives that ensure microbiological safety during the shelf life of the product. The nitrite and phenolic compounds of these natural ingredients showed antimicrobial activity against foodborne pathogens, including L. monocytogenes. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

19 pages, 1623 KiB  
Article
Biopolymeric Hydrolysates from Dosidicus gigas: Functional Applications and Shelf-Life Extension in Squid Sausages
by Francisco Antonio López-Medina, Octavio Dublán-García, Ana Gabriela Morachis-Valdez, Karinne Saucedo-Vence, Guadalupe López-García, Daniel Díaz-Bandera and Rosa María Gómez-Espinoza
Polymers 2025, 17(7), 839; https://doi.org/10.3390/polym17070839 - 21 Mar 2025
Cited by 1 | Viewed by 521
Abstract
Bioactive protein hydrolysates from Dosidicus gigas, obtained via Bacillus subtilis fermentation (20 °C, 4–8 h), were assessed for functional properties and their impact on jumbo squid sausage preservation. The hydrolysates exhibited strong antioxidant activity (742.17 μmol TE/g) and inhibited key metabolic enzymes: α-glucosidase [...] Read more.
Bioactive protein hydrolysates from Dosidicus gigas, obtained via Bacillus subtilis fermentation (20 °C, 4–8 h), were assessed for functional properties and their impact on jumbo squid sausage preservation. The hydrolysates exhibited strong antioxidant activity (742.17 μmol TE/g) and inhibited key metabolic enzymes: α-glucosidase (93.29%), α-amylase (20.87%), lipase (35.44%), and ACE-I (88.96%), indicating potential benefits for managing diabetes, obesity, and hypertension. Sausages enriched with 0.1% hydrolysates, stored at 4 °C, had a 95.5% longer shelf life (43 vs. 22 days), reduced microbial spoilage (TVC: 3.68 vs. 5.42 Log CFU/g), and 35.6% lower total volatile bases. Water-holding capacity improved (88.21% vs. 87.15%), and oxidative browning was delayed, preserving color stability. These results highlight D. gigas hydrolysates as multifunctional bioactive compounds with potential as natural stabilizers in clean-label formulations. Their capacity to enhance food stability and replace synthetic preservatives offers a sustainable, innovative strategy for the functional food industry. Full article
Show Figures

Graphical abstract

17 pages, 2201 KiB  
Article
Sucuk, Turkish-Style Fermented Sausage: Evaluation of the Effect of Bioprotective Starter Cultures on Its Microbiological, Physicochemical, and Chemical Properties
by Mahide Muge Yilmaz Topcam, Betul Arslan and Ayla Soyer
Appl. Microbiol. 2024, 4(3), 1215-1231; https://doi.org/10.3390/applmicrobiol4030083 - 13 Aug 2024
Cited by 4 | Viewed by 2579
Abstract
Bio-protection is one of the most popular natural protection methods to control food safety and shelf life. Lactic acid bacteria, especially Lactobacilli strains, are used in the food industry for this purpose due to their probiotic properties and, accordingly, bioprotective properties. We aimed [...] Read more.
Bio-protection is one of the most popular natural protection methods to control food safety and shelf life. Lactic acid bacteria, especially Lactobacilli strains, are used in the food industry for this purpose due to their probiotic properties and, accordingly, bioprotective properties. We aimed to investigate the role of the bacteriocin-producing lactic acid bacteria Lactobacillus sakei and Pediococcus acidilactici in inducing microbiological, physicochemical, and chemical changes in the Turkish-style fermented sausage sucuk. The effects of protective cultures were compared with those of commercial starter cultures consisting of Pediococcus pentosaceus + Staphylococcus carnosus; a non-cultured group was used as a control. L. sakei inoculation and, to a lower extent, P. acidilactici inoculation resulted in the rapid domination of lactic acid bacteria (LAB) in the environment, whereas commercially used starter cultures and the non-cultured group showed lower counts of LAB. Moreover, L. sakei and P. acidilactici succeeded in inhibiting pathogens including S. aureus, E. coli, and Enterobacteriaceae. The number of enterococci decreased notably in the L. sakei-inoculated sucuk samples; however, an increase was determined in the samples inoculated with P. acidilactici. On the other side, the effect of commercial starter cultures was not sufficient for the inhibition of food-borne pathogens in the sucuk samples. Consequently, the inoculation of protective cultures, particularly of L. sakei, can provide a considerable contribution to improving microbial quality and food safety, retarding lipid oxidation, and increasing proteolytic activities in sucuk without important changes in its sensory properties. Full article
Show Figures

Graphical abstract

15 pages, 6665 KiB  
Article
The Effect of Apple Vinegar Addition on the Quality and Shelf Life of Cooked Sausage during Chilling Storage
by Anna Okoń, Dorota Zielińska, Piotr Szymański, Anna Łepecka, Urszula Siekierko, Katarzyna Neffe-Skocińska, Monika Trząskowska, Katarzyna Kajak-Siemaszko, Barbara Sionek, Marcelina Karbowiak, Danuta Kołożyn-Krajewska and Zbigniew J. Dolatowski
Appl. Sci. 2024, 14(10), 4027; https://doi.org/10.3390/app14104027 - 9 May 2024
Cited by 1 | Viewed by 2649
Abstract
As more and more consumers are becoming conscious of the safety and taste of meat products, the use of natural additives and innovative processing techniques has gained significant attention. Naturally fermented fruit vinegar is rich in organic acids and antioxidant phenolic compounds. In [...] Read more.
As more and more consumers are becoming conscious of the safety and taste of meat products, the use of natural additives and innovative processing techniques has gained significant attention. Naturally fermented fruit vinegar is rich in organic acids and antioxidant phenolic compounds. In addition, it contains amino acids, minerals, vitamins, and provitamin beta-carotene, and the presence of acetic acid bacteria may have a positive effect on consumer health. The study aimed to assess the impact of different concentrations of apple vinegar addition on the quality of cooked sausage, focusing on physicochemical parameters, including fatty acid profile and oxidative stability, as well as microbiological quality and sensory changes after production and during chilling storage. Four variants of sausage were prepared: C—sausage without apple vinegar; V1—sausage with 1% of apple vinegar; V3—sausage with 3% of apple vinegar; and V5—sausage with 5% of apple vinegar. All of the tests were carried out after production, as well as after 7 and 14 days of refrigeration storage. The addition of apple vinegar decreased the pH value and increased the oxidation-reduction potential and lipid oxidation in the samples V1, V3, and V5. The sausage with the 5% addition of apple vinegar (V5) was characterized by significantly more intensive brightness (parameter L* = 54.67) in comparison to the C sample (parameter L* = 52.78). The sausages that were tested showed good microbiological quality concerning the total number of microorganisms, lactic acid bacteria, and the absence of pathogenic bacteria. The addition of apple vinegar contributed to the reduction in the intensity of the cured meat flavor and the fatty flavor. Therefore, according to the results presented in this work, it can be concluded that 3% of vinegar is the optimal addition, which may be used in the next step of investigation, taking into account color formation abilities as well as microbiological quality and lipid oxidation processes. Full article
Show Figures

Figure 1

17 pages, 1621 KiB  
Article
Genetic Identification and Technological Potential of Indigenous Lactic Acid Bacteria Isolated from Alheira, a Traditional Portuguese Sausage
by Nathália Fernandes, Ana Sofia Faria, Laís Carvalho, Altino Choupina, Carina Rodrigues, Ursula Gonzales-Barron and Vasco Cadavez
Foods 2024, 13(4), 598; https://doi.org/10.3390/foods13040598 - 16 Feb 2024
Cited by 3 | Viewed by 2238
Abstract
Alheira is a naturally fermented meat sausage traditionally made in the Portuguese region of Trás-os-Montes. Lactic acid bacteria (LAB) are the dominant microorganisms in alheira and can endow it with various technological properties. This study aimed (1) to characterize technological features and [...] Read more.
Alheira is a naturally fermented meat sausage traditionally made in the Portuguese region of Trás-os-Montes. Lactic acid bacteria (LAB) are the dominant microorganisms in alheira and can endow it with various technological properties. This study aimed (1) to characterize technological features and in vitro antimicrobial activity of LAB isolated from alheira, and (2) to reveal associations between such phenotypic characteristics and the isolates species identified through amplification and sequencing of the 16S ribosomal gene. Sixty-two LAB isolates were identified and Enterococcus (E.) faecium corresponded to 32.3% of isolates, followed by Leuconostoc (L.) mesenteroides (19.4%) and Latilactobacillus (Lb.) sakei (17.7%), aligning with previous research on traditional Portuguese fermented meat sausages. The phenotypic analysis of LAB isolates indicated diverse acidification capacities, proteolytic activities, and inhibitory effects against foodborne pathogens Listeria (L.) monocytogenes, Salmonella (S.) Typhimurium and Staphylococcus (S.) aureus. Overall, lactobacilli displayed high inhibition activity against the pathogens S. aureus, L. monocytogenes, and S. Typhimurium. Although the mechanisms for the inhibition of pathogen growth need to be further elucidated, these findings enhance our understanding of LAB diversity and functionality in alheira sausages, contributing to product safety and quality. Full article
Show Figures

Figure 1

17 pages, 2218 KiB  
Article
Effect of Lactiplantibacillus plantarum X22-2 on Biogenic Amine Formation and Quality of Fermented Lamb Sausage during Storage
by Ting Liu, Taiwu Zhang, Yujia Zhai, Lina Sun, Maoqin Zhai, Letian Kang, Xin Zhao, Bohui Wang, Yan Duan and Ye Jin
Fermentation 2023, 9(10), 883; https://doi.org/10.3390/fermentation9100883 - 29 Sep 2023
Cited by 5 | Viewed by 1668
Abstract
In this study, the safety of fermented lamb sausage was examined. The aim was to investigate the effect of Lactiplantibacillus plantarum X22-2 (LP X22-2) on the quality of, and biogenic amine (BA) formation in, fermented lamb sausages during fermentation, maturation, and storage. The [...] Read more.
In this study, the safety of fermented lamb sausage was examined. The aim was to investigate the effect of Lactiplantibacillus plantarum X22-2 (LP X22-2) on the quality of, and biogenic amine (BA) formation in, fermented lamb sausages during fermentation, maturation, and storage. The results showed that LP X-22 was effective in increasing the number of lactic acid bacteria (LAB) and in significantly inhibiting the formation of putrescine, histamine, cadaverine, and tyramine in fermented lamb sausage (p < 0.05). The total volatile basic nitrogen (TVB-N) content, peroxide value (POV) of fat, pH, water activity (AW), and viscosity were lower in the LF group compared to other groups (commercial starter group—CF, and natural fermentation group—NF) (p < 0.05). Furthermore, sensory evaluation and texture profile analysis (TPA) indicated that LP X-22 significantly increased the a* value, chewiness, and hardness of the sausages (p < 0.05). Therefore, LP X-22 is recommended as a natural and safe protective culture for preserving fermented lamb sausage and maintaining the color of the sausages while improving their sensory quality and inhibiting the accumulation of BAs. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

13 pages, 2298 KiB  
Article
The Impact of HPP-Assisted Biocontrol Approach on the Bacterial Communities’ Dynamics and Quality Parameters of a Fermented Meat Sausage Model
by Norton Komora, Cláudia Maciel, Joana Isidro, Carlos A. Pinto, Gianuario Fortunato, Jorge M. A. Saraiva and Paula Teixeira
Biology 2023, 12(9), 1212; https://doi.org/10.3390/biology12091212 - 6 Sep 2023
Cited by 8 | Viewed by 2067
Abstract
Traditional foods are increasingly valued by consumers, whose attention and purchase willingness are highly influenced by other claims such as ‘natural’, ‘sustainable’, and ‘clean label’. The purpose of the present study was to evaluate the impact of a novel non-thermal food processing method [...] Read more.
Traditional foods are increasingly valued by consumers, whose attention and purchase willingness are highly influenced by other claims such as ‘natural’, ‘sustainable’, and ‘clean label’. The purpose of the present study was to evaluate the impact of a novel non-thermal food processing method (i.e., HPP-assisted biocontrol combining mild high hydrostatic pressure, listeriophage Listex, and pediocin PA-1 producing Pediococcus acidilactici) on the succession of bacterial communities and quality of a fermented sausage model. A comparative analysis of instrumental color, texture, and lipid peroxidation revealed no significant differences (p > 0.05) in these quality parameters between non- and minimally processed fermented sausages throughout 60-day refrigerated storage (4 °C). The microbiota dynamics of biotreated and untreated fermented sausages were assessed by 16S rRNA next-generation sequencing, and the alpha and beta diversity analyses revealed no dissimilarity in the structure and composition of the bacterial communities over the analyzed period. The innovative multi-hurdle technology proposed herein holds valuable potential for the manufacture of traditional fermented sausages while preserving their unique intrinsic characteristics. Full article
(This article belongs to the Special Issue Microbial Contamination and Food Safety)
Show Figures

Figure 1

13 pages, 1757 KiB  
Article
Effects of Starter Cultures and Type of Casings on the Microbial Features and Volatile Profile of Fermented Sausages
by Chiara Montanari, Federica Barbieri, Gabriele Gardini, Rudy Magnani, Davide Gottardi, Fausto Gardini and Giulia Tabanelli
Fermentation 2022, 8(12), 683; https://doi.org/10.3390/fermentation8120683 - 28 Nov 2022
Cited by 9 | Viewed by 2953
Abstract
In the literature, the effect of the type of casing on fermented sausages is quite unexplored, while several studies are focused on the impact of starter cultures. Therefore, this paper studied the effect of three commercial starter cultures and two casings (natural or [...] Read more.
In the literature, the effect of the type of casing on fermented sausages is quite unexplored, while several studies are focused on the impact of starter cultures. Therefore, this paper studied the effect of three commercial starter cultures and two casings (natural or collagen) on Italian fermented sausages. Physico-chemical parameters (aw, pH, weight loss), microbiota, aroma profile and sensory analysis were evaluated. Results showed that collagen casings promoted a higher reduction of pH and weight loss. Concerning the microbiota, samples with natural casing had higher counts of lactic acid bacteria, while yeast proliferation was promoted in those with collagen. Regardless of the starters and casings applied, levels of enterococci and Enterobacteriaceae were low (≤2 log CFU/g). The aroma profile was significantly affected by casing: despite the starter applied, the presence of collagen casing favoured acid accumulation (mainly acetate and butanoate) and reduction of ketones. Sensory analysis highlighted significant differences only for odour, colour intensity and sourness. The differences observed suggest that collagen casings may provide a greater availability of oxygen. Overall, casings rather than starter cultures impact the microbial and sensorial features of fermented sausages. Full article
(This article belongs to the Special Issue Flavor and Aroma in the Fermented Food)
Show Figures

Figure 1

13 pages, 689 KiB  
Article
Taxonomical Identification and Safety Characterization of Lactobacillaceae from Mediterranean Natural Fermented Sausages
by Daniela Bassi, Giovanni Milani, Mireya Viviana Belloso Daza, Federica Barbieri, Chiara Montanari, Silvia Lorenzini, Vida Šimat, Fausto Gardini and Giulia Tabanelli
Foods 2022, 11(18), 2776; https://doi.org/10.3390/foods11182776 - 9 Sep 2022
Cited by 12 | Viewed by 2191
Abstract
Fermented meat products represent an important industrial sector in Europe, particularly in the Mediterranean Countries (MC), where the presence of numerous local productions, still obtained through spontaneous fermentation, is recognized as a formidable treasure chest of unexplored microbial biodiversity. Lactobacillaceae naturally occurring in [...] Read more.
Fermented meat products represent an important industrial sector in Europe, particularly in the Mediterranean Countries (MC), where the presence of numerous local productions, still obtained through spontaneous fermentation, is recognized as a formidable treasure chest of unexplored microbial biodiversity. Lactobacillaceae naturally occurring in fifteen spontaneously fermented sausages from MC (Italy, Spain, Croatia, and Slovenia) were isolated and taxonomically characterized using molecular techniques. Additionally, a safety assessment for the presence of antibiotic resistances and biogenic amine (BA) production was performed to determine their suitability as autochthonous starter cultures. Molecular typing, performed using REP-PCR, discriminated 151 strains belonging to Latilactobacillus sakei (59.6%), Latilactobacillus curvatus (26.5%) and Companilactobacillus alimentarius (13.9%). The minimum inhibitory concentrations (MICs) of eight different antibiotics revealed a high resistance to streptomycin (27%), tetracycline (16%), followed by gentamycin (14%) and kanamycin (13%). Interestingly, the results showed a geographical distribution of resistant biotypes. tetM/tetS or ermB genes were identified in only six strains. The amino-biogenic potential of the strains was assessed, confirming the absence of this trait among L. sakei, while a high number of producer strains was found among L. curvatus. On the 151 analyzed strains, 45 demonstrated safety traits for their future use as starter food cultures. These results open the way to further studies on the technological properties of these promising autochthonous strains, strongly linked to the Mediterranean environment. Full article
(This article belongs to the Special Issue Safety of Processed Meat Products)
Show Figures

Figure 1

14 pages, 2107 KiB  
Article
A Natural Technology for Vacuum-Packaged Cooked Sausage Preservation with Potentially Postbiotic-Containing Preservative
by Aloizio Lemos de Lima, Carlos Alberto Guerra, Lucas Marques Costa, Vanessa Sales de Oliveira, Wilson José Fernandes Lemos Junior, Rosa Helena Luchese and André Fioravante Guerra
Fermentation 2022, 8(3), 106; https://doi.org/10.3390/fermentation8030106 - 28 Feb 2022
Cited by 18 | Viewed by 4428
Abstract
In this study, a potentially postbiotic-containing preservative (PPCP) was produced in an axenic fermentation system with Lacticaseibacillus paracasei DTA 83 as a natural technology alternative for vacuum-packaged cooked sausage preservation. Cooked sausage-related microorganisms were obtained during the induced spoiling process in packages by [...] Read more.
In this study, a potentially postbiotic-containing preservative (PPCP) was produced in an axenic fermentation system with Lacticaseibacillus paracasei DTA 83 as a natural technology alternative for vacuum-packaged cooked sausage preservation. Cooked sausage-related microorganisms were obtained during the induced spoiling process in packages by pair incubation of sausages at different temperatures. The turbidity method was used to determine the microbiota susceptibility to PPCP. A controlled in situ design was performed by adding PPCP on the surface or to the mass of the sausages. Sodium lactate FCC85, which was used according to the manufacturer’s recommendation, was included in the design for comparison. The results revealed that PPCP was as efficient as FCC85, which indicates PPCP as a promising alternative to the use of natural technologies to preserve and develop functional cooked sausages. Moreover, a strategy to use preservatives in vacuum-packaged cooked sausages was presented: the concentration needed to achieve the total inhibition of the microbiota determined by an in vitro trial should be respected when adding PPCP on the sausages’ surface. When adding PPCP to the mass of the sausages, the concentration that showed a partial inhibition in vitro can also be applied in situ. Full article
Show Figures

Figure 1

17 pages, 2418 KiB  
Article
Potentially Postbiotic-Containing Preservative to Extend the Use-By Date of Raw Chicken Sausages and Semifinished Chicken Products
by Carolyne Luciane de Almeida Godoy, Lucas Marques Costa, Carlos Alberto Guerra, Vanessa Sales de Oliveira, Breno Pereira de Paula, Wilson José Fernandes Lemos Junior, Vinícius da Silva Duarte, Rosa Helena Luchese, Ivonete Rossi Bautitz and André Fioravante Guerra
Sustainability 2022, 14(5), 2646; https://doi.org/10.3390/su14052646 - 24 Feb 2022
Cited by 14 | Viewed by 2932
Abstract
This study aimed to evaluate the use of potentially postbiotic-containing preservative (PPCP), produced in a semiculture fermentation system with Lacticaseibacillus paracasei DTA 83 and Saccharomyces cerevisiae var. boulardii 17, to extend the use-by date of raw chicken sausages and semifinished chicken products. Microorganisms [...] Read more.
This study aimed to evaluate the use of potentially postbiotic-containing preservative (PPCP), produced in a semiculture fermentation system with Lacticaseibacillus paracasei DTA 83 and Saccharomyces cerevisiae var. boulardii 17, to extend the use-by date of raw chicken sausages and semifinished chicken products. Microorganisms associated with the spoilage of chicken products were stimulated to grow by pair incubation of the products at two different temperatures and with collection at different times. The turbidity method was performed to evaluate the microbial susceptibility to PPCP. PPCP was added in chicken products to obtain an in situ partial inhibitory effect on spoilage microorganisms to extend the use-by date. The in vitro trial showed total inhibition of the microbial growth by adding above 3.0% of PPCP. Although this concentration showed a remarkable inhibitory potential, its addition can severely impact the formulation cost. Thus, the application of doses with partial microbial inhibition may be a suitable strategy for the use of PPCP in chicken products. The results revealed that cold chain management and couse of PPCP in chicken products extended the proposed use-by date, suggesting an alternative food preservation technology for the use of naturally derived compounds. Full article
(This article belongs to the Special Issue Food Safety and Quality for Sustainable Development)
Show Figures

Figure 1

14 pages, 1678 KiB  
Article
Textural, Sensory and Volatile Compounds Analyses in Formulations of Sausages Analogue Elaborated with Edible Mushrooms and Soy Protein Isolate as Meat Substitute
by Xinyue Yuan, Wei Jiang, Dianwei Zhang, Huilin Liu and Baoguo Sun
Foods 2022, 11(1), 52; https://doi.org/10.3390/foods11010052 - 27 Dec 2021
Cited by 61 | Viewed by 9588
Abstract
In this study, edible mushroom and soybean protein isolate (SPI) were used to prepare a fibrous meat analogue using thermos-extrusion and the extruded mushroom-based meat analogue as meat replacer was further developed with different formulations in fabricating sausage analogues. The effect of water [...] Read more.
In this study, edible mushroom and soybean protein isolate (SPI) were used to prepare a fibrous meat analogue using thermos-extrusion and the extruded mushroom-based meat analogue as meat replacer was further developed with different formulations in fabricating sausage analogues. The effect of water content (35%, 70% and 100%), three types of edible mushroom (Lentinus edodes, Pleurotus ostreatus, Coprinus comatus and a mixture of equal proportions) and their amounts (from 15% to 100%) on the physicochemical and structural profiles were studied. The results showed that the extruded mushroom-based meat analogue prepared from Coprinus comatus (15% addition) and SPI with a water content of 35% exhibited close textural profiles to real beef. Furthermore, a texture profile analysis (TPA) combined with a principal component analysis (PCA) was conducted to compare and assess the textural traits of the sausage analogues with similar commercial products. The characterization and comparison of the flavor profile of post-processing mushroom-based meat sausage analogues (MMSA) were performed using headspace-phase microextraction (HS-SPME), coupled with gas chromatography-mass spectrometry (GC-MS). A total of 64 volatile compounds were identified, and the content in dried-processing treatment was significantly higher than for steamed-processing, which indicated that the natural fermentation process contributed to the increase in aroma substances in the non-animal sourced sausage. This study developed a feasible method to fabricate a meat replacement and to create high added-value products, which offer an opportunity for developing non-animal products with satisfactory sensory properties and flavor profiles. Full article
(This article belongs to the Topic Innovative Food Processing Technologies)
Show Figures

Figure 1

20 pages, 4839 KiB  
Article
Mediterranean Spontaneously Fermented Sausages: Spotlight on Microbiological and Quality Features to Exploit Their Bacterial Biodiversity
by Federica Barbieri, Giulia Tabanelli, Chiara Montanari, Nicolò Dall’Osso, Vida Šimat, Sonja Smole Možina, Alberto Baños, Fatih Özogul, Daniela Bassi, Cecilia Fontana and Fausto Gardini
Foods 2021, 10(11), 2691; https://doi.org/10.3390/foods10112691 - 3 Nov 2021
Cited by 33 | Viewed by 4341
Abstract
The wide array of spontaneously fermented sausages of the Mediterranean area can represent a reservoir of microbial biodiversity and can be an important source of new technological and functional strains able to preserve product properties, counteracting the impoverishment of their organoleptic typical features [...] Read more.
The wide array of spontaneously fermented sausages of the Mediterranean area can represent a reservoir of microbial biodiversity and can be an important source of new technological and functional strains able to preserve product properties, counteracting the impoverishment of their organoleptic typical features due to the introduction of commercial starter cultures. We analysed 15 artisanal salamis from Italy, Spain, Croatia and Slovenia to evaluate the microbiota composition, through culture-dependent and culture-independent techniques (i.e., metagenomic analysis), chemical–physical features, biogenic amines and aroma profile. The final pH varied according to origin and procedures (e.g., higher pH in Italian samples due to long ripening and mold growth). Lactic acid bacteria (LAB) and coagulase-negative cocci (CNC) were the dominant population, with highest LAB counts in Croatian and Italian samples. Metagenomic analysis showed high variability in qualitative and quantitative microbial composition: among LAB, Latilactobacillus sakei was the dominant species, but Companilactobacillus spp. was present in high amounts (45–55% of the total ASVs) in some Spanish sausages. Among staphylococci, S. epidermidis, S. equorum, S. saprophyticus, S. succinus and S. xylosus were detected. As far as biogenic amines, tyramine was always present, while histamine was found only in two Spanish samples. These results can valorize the bacterial genetic heritage present in Mediterranean products, to find new candidates of autochthonous starter cultures or bioprotective agents. Full article
(This article belongs to the Special Issue New Insights into Food Fermentation)
Show Figures

Figure 1

Back to TopTop