Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (833)

Search Parameters:
Keywords = natural soil fertility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3001 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
18 pages, 3363 KiB  
Article
Spatial Heterogeneity of Heavy Metals in Arid Oasis Soils and Its Irrigation Input–Soil Nutrient Coupling Mechanism
by Jiang Liu, Chongbo Li, Jing Wang, Liangliang Li, Junling He and Funian Zhao
Sustainability 2025, 17(15), 7156; https://doi.org/10.3390/su17157156 (registering DOI) - 7 Aug 2025
Abstract
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi [...] Read more.
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi gar oasis, Xinjiang, (2) quantify the driving effect of irrigation water, and (3) elucidate interactions between HMs, soil properties, and land use types. Using 591 soil and 12 irrigation water samples, spatial patterns were mapped via inverse distance weighting interpolation, with drivers and interactions analyzed through correlation and land use comparisons. Results revealed significant spatial heterogeneity in HMs with no consistent regional trend: As peaked in arable land (5.27–40.20 μg/g) influenced by parent material and agriculture, Cd posed high ecological risk in gardens (max 0.29 μg/g), and Zn reached exceptional levels (412.00 μg/g) in gardens linked to industry/fertilizers. Irrigation water impacts were HM-specific: water contributed to soil As enrichment, whereas high water Cr did not elevate soil Cr (indicating industrial dominance), and Cd/Cu showed no significant link. Interactions with soil properties were regulated by land use: in arable land, As correlated positively with EC/TN and negatively with pH; in gardens, HMs generally decreased with pH, enhancing mobility risk; in forests, SOM adsorption immobilized HMs; in construction land, Hg correlated with SOM/TP, suggesting industrial-organic synergy. This study advances understanding by demonstrating that HM enrichment arises from natural and anthropogenic factors, with the spatial heterogeneity of irrigation water’s driving effect critically regulated by land use type, providing a spatially explicit basis for targeted pollution control and sustainable oasis management. Full article
Show Figures

Figure 1

17 pages, 6882 KiB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Viewed by 149
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

48 pages, 3314 KiB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 - 1 Aug 2025
Viewed by 114
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
Show Figures

Figure 1

18 pages, 2865 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 215
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 3648 KiB  
Article
Impacts of Silage Biostimulants on Nematofauna in Banana Crop Soils: A Sustainable Alternative to Nematicides
by Pedro E. Torres-Asuaje, Ingrid Varela-Benavides, Alba M. Cotes, Fabián Echeverría-Beirute, Fabio Blanco and Juan E. Palomares-Rius
Agronomy 2025, 15(8), 1860; https://doi.org/10.3390/agronomy15081860 - 31 Jul 2025
Viewed by 153
Abstract
Radopholus similus, commonly known as the burrowing nematode, is one of the major pathogens affecting banana production. Currently, the control of this pathogen relies on chemicals, as no resistant varieties are available. However, new control methods, such the application of ensilage biostimulants [...] Read more.
Radopholus similus, commonly known as the burrowing nematode, is one of the major pathogens affecting banana production. Currently, the control of this pathogen relies on chemicals, as no resistant varieties are available. However, new control methods, such the application of ensilage biostimulants (EBs) near the banana rhizosphere, have shown effectiveness. Nevertheless, the impact of this organic control method on soil nematodes and other microbial components remains unknown. This study evaluates the effects of EB application on the native nematofauna of banana. EBs altered the flow of carbon, nutrients, and energy in ways that influenced the abundance of fungivorous and bacterivorous taxa, while consistently reducing the number of plant-parasitic nematodes throughout the experimental period. Specifically, EB application in the soil increased the abundance of certain free-living nematodes, including Aphelenchus, Aphelenchoides, Cephalobidae, and Rhabditidae, while decreasing both the abundance and diversity of phytoparasitic nematodes. In contrast, Criconematidae, Hoplolaimidae, Meloidogyne, Tylenchidae, and R. similis were more abundant in the control and oxamyl-treated soils. EBs can play a crucial role in strategies aimed to improve soil resilience, fertility, and natural suppression, provided that more sustainable production practices are adopted. Full article
Show Figures

Figure 1

25 pages, 4401 KiB  
Article
Impact of High Energy Milling and Mineral Additives on a Carbonate–Quartz–Apatite System for Ecological Applications
by Vilma Petkova, Katerina Mihaylova, Ekaterina Serafimova, Rositsa Titorenkova, Liliya Tsvetanova and Andres Trikkel
Materials 2025, 18(15), 3508; https://doi.org/10.3390/ma18153508 - 26 Jul 2025
Viewed by 343
Abstract
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of [...] Read more.
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of conventional acid methods, namely the release of gaseous and solid technogenic products. The aim of the study is to determine the changes in the structure to follow the solid-state transitions and the isomorphic substitutions in the anionic sub-lattice in the structure of the main mineral apatite in the samples from Estonia, under the influence of HEM activation. It is also interesting to investigate the influence of HEM on structural-phase transformations on the structure of impurity minerals-free calcite/dolomite, pyrite, quartz, as well as to assess their influence on the thermal behavior of the main mineral apatite. The effect of HEM is monitored by using a complex of analytical methods, such as chemical analysis, powder X-ray diffraction (PXRD), wavelength-dispersive X-ray fluorescence (WD-XRF) analysis, and Fourier-transformed infrared (FTIR) analysis. The obtained results prove the correlation in the behavior of the studied samples with regard to their quartz content and bonded or non-bonded carbonate ions. After HEM activation of the raw samples, the following is established: (i) anionic isomorphism with formation of A and A-B type carbonate-apatites and hydroxyl-fluorapatite; (ii) solid-phase synthesis of calcium orthophosphate-CaHPO4 (monetite) and dicalcium diphosphate-β-Ca2P2O7; (iii) enhanced chemical reactivity by approximately three times by increasing the solubility via HEM activation. The dry milling method used is a suitable approach for solving technological projects to improve the composition and structure of soils, increasing soil fertility by introducing soluble forms of calcium phosphates. It provides a variety of application purposes depending on the composition, impurities, and processing as a soil improver, natural mineral fertilizer, or activator. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Figure 1

16 pages, 1319 KiB  
Review
Assessing the Divergent Soil Phosphorus Recovery Strategies in Domesticated and Wild Crops
by Mary M. Dixon and Jorge M. Vivanco
Plants 2025, 14(15), 2296; https://doi.org/10.3390/plants14152296 - 25 Jul 2025
Viewed by 377
Abstract
Plant-essential phosphorus (P) is a sparingly available mineral in soils. Phosphorus fertilizers—produced by the transformation of insoluble to soluble phosphates—are thus applied to agroecosystems. With advancements in commercial agriculture, crops have been increasingly adapted to grow in fertile environments. Wild crop relatives, however, [...] Read more.
Plant-essential phosphorus (P) is a sparingly available mineral in soils. Phosphorus fertilizers—produced by the transformation of insoluble to soluble phosphates—are thus applied to agroecosystems. With advancements in commercial agriculture, crops have been increasingly adapted to grow in fertile environments. Wild crop relatives, however, are adapted to grow in unfertilized soils. In response to these two conditions of P bioavailability (fertilized agroecosystems and unfertilized natural soils), domesticated crops and wild species employ different strategies to grow and develop. It is essential to understand strategies related to P acquisition that may have been lost to domestication, and here we present, for the first time, that across species, modern cultivars engage in physical (i.e., root morphological) mechanisms while their wild relatives promote ecological (i.e., root-microbial) mechanisms. Domesticated crops showcase shallower root system architecture and engage in topsoil foraging to acquire P from the nutrient-stratified environments common to fertilized agroecosystems. Wild species associate with P-cycling bacteria and AM fungi. This divergence in P recovery strategies is a novel delineation of current research that has implications for enhancing agricultural sustainability. By identifying the traits related to P recovery that have been lost to domestication, we can strengthen the P recovery responses by modern crops and reduce P fertilization. Full article
Show Figures

Figure 1

19 pages, 2388 KiB  
Article
Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands
by Urška Lisec, Maja Prevolnik Povše, Miran Podvršnik and Branko Kramberger
Plants 2025, 14(15), 2274; https://doi.org/10.3390/plants14152274 - 24 Jul 2025
Viewed by 294
Abstract
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil [...] Read more.
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil chemical properties. Five grassland management systems were analyzed: Cut3—three cuts per year; LGI—low grazing intensity; CG—combined cutting and grazing; Cut4—four cuts per year; and HGI—high grazing intensity. The functional groups assessed were grasses, legumes and forbs, while soil samples from three depths (0–10, 10–20 and 20–30 cm) were analyzed for their chemical properties (soil organic carbon—SOC; soil total nitrogen—STN; inorganic soil carbon—SIC; soil organic matter—SOM; potassium oxide—K2O; phosphorus pentoxide—P2O5; C/N ratio; and pH) and physical properties (volumetric soil water content—VWC; bulk density—BD; and porosity—POR). The results showed that less intensive systems had a higher proportion of legumes, while species diversity, as measured via the Shannon index, was the highest in the Cut4 system. The CG system tended to have the highest SOC and STN at a 0–10 cm depth, with a similar trend observed for SOCstock at a 0–30 cm depth. The Cut4, HGI and CG systems also had an increased STNstock. Both grazing systems had the highest P2O5 content. A tendency towards a higher BD was observed in the top 10 cm of soil in the more intensive systems. Choosing a management strategy that is tailored to local climate and site conditions is crucial for maintaining grassland stability, enhancing carbon sequestration and promoting long-term sustainability in the context of climate change. Full article
Show Figures

Figure 1

18 pages, 844 KiB  
Article
The Use of Carbonate-Clay Flour, Sewage Sludge and Waste Sulfate Sulfur as Fertilizer Agents
by Ireneusz Skuta, Beata Kołodziej, Barbara Filipek-Mazur and Jacek Antonkiewicz
Resources 2025, 14(7), 113; https://doi.org/10.3390/resources14070113 - 16 Jul 2025
Viewed by 307
Abstract
Macro- and microelements in waste can be returned to the soil as fertilizers and their sustainable use can reduce the need to extract natural resources. For example, the use of carbonate-clay flour, sewage sludge and waste sulfate sulfur to improve soil properties enables [...] Read more.
Macro- and microelements in waste can be returned to the soil as fertilizers and their sustainable use can reduce the need to extract natural resources. For example, the use of carbonate-clay flour, sewage sludge and waste sulfate sulfur to improve soil properties enables the natural recycling of the nutrients contained in these materials. Soil physicochemical properties with the application of waste and the bioavailability of nutrients and trace elements were assessed before and after a 3-month incubation period. This study showed that when carbonate-clay flour was applied alone or together with sewage sludge and waste sulfur, it improved the properties of the soil, inducing a reduction in acidification and an increase in the content of available P, K and Mg. Sewage sludge also provided Zn, Cu, Ni and Cr in addition to organic carbon. Sulfate did not cause soil acidification. The results indicate that the use of carbonate-clay flour alone, as well as with the addition of sewage sludge and sulfate sulfur, can be recommended for the deacidification of soil and serve as a remediation tool for, for example, the precipitation of chemical pollutants. The valorization of the waste used fits into the circular economy approach. Full article
Show Figures

Figure 1

22 pages, 10354 KiB  
Article
Leaching Characteristics of Exogenous Cl in Rain-Fed Potato Fields and Residual Estimation Model Validation
by Jiaqi Li, Jingyi Li, Hao Sun, Xin Li, Lei Sun and Wei Li
Plants 2025, 14(14), 2171; https://doi.org/10.3390/plants14142171 - 14 Jul 2025
Viewed by 308
Abstract
Potato (Solanum tuberosum L.) is a chlorine-sensitive crop. When soil Cl concentrations exceed optimal thresholds, the yield and quality of potatoes are limited. Consequently, chloride-containing fertilizers are rarely used in actual agricultural production. Therefore, two years of field experiments under natural [...] Read more.
Potato (Solanum tuberosum L.) is a chlorine-sensitive crop. When soil Cl concentrations exceed optimal thresholds, the yield and quality of potatoes are limited. Consequently, chloride-containing fertilizers are rarely used in actual agricultural production. Therefore, two years of field experiments under natural rainfall regimes with three chlorine application levels (37.5 kg ha−1/20 mg kg−1, 75 kg ha−1/40 mg kg−1, and 112.5 kg ha−1/60 mg kg−1) were conducted to investigate the leaching characteristics of Cl in field soils with two typical textures for Northeast China (loam and sandy loam soils). In this study, the reliability of Cl residual estimation models across different soil types was evaluated, providing critical references for safe chlorine-containing fertilizer application in rain-fed potato production systems in Northeast China. The results indicated that the leaching efficiency of Cl was significantly positively correlated with both the rainfall amount and the chlorine application rate (p < 0.01). The Cl migration rate in sandy loam soil was significantly greater than that in loam soil. However, the influence of soil texture on the Cl leaching efficiency was only observed at lower rainfall levels. When the rainfall level exceeded 270 mm, the Cl content in all the soil layers became independent of the rainfall amount, soil texture, and chlorine application rate. Under rain-fed conditions, KCl application at 80–250 kg ha−1 did not induce Cl accumulation in the primary potato root zone (15–30 cm), suggesting a low risk of toxicity. In loam soil, the safe application range for KCl was determined to be 115–164 kg ha−1, while in sandy loam soil, the safe KCl application range was 214–237 kg ha−1. Furthermore, a predictive model for estimating Cl residuals in loam and sandy loam soils was validated on the basis of rainfall amount, soil clay content, and chlorine application rate. The model validation results demonstrated an exceptional goodness-of-fit between the predicted and measured values, with R2 > 0.9 and NRMSE < 0.1, providing science-based recommendations for Cl-containing fertilizer application to chlorine-sensitive crops, supporting both agronomic performance and environmental sustainability in rain-fed systems. Full article
(This article belongs to the Special Issue Fertilizer and Abiotic Stress)
Show Figures

Figure 1

31 pages, 4680 KiB  
Article
Path Mechanism and Field Practice Effect of Green Agricultural Production on the Soil Organic Carbon Dynamics and Greenhouse Gas Emission Intensity in Farmland Ecosystems
by Xiaoqian Li, Yi Wang, Wen Chen and Bin He
Agriculture 2025, 15(14), 1499; https://doi.org/10.3390/agriculture15141499 - 12 Jul 2025
Viewed by 370
Abstract
Exploring the mechanisms by which green agricultural production reduces emissions and enhances carbon sequestration in soil can provide a scientific basis for greenhouse gas reduction and sustainable development in farmland. This study uses a combination of meta-analysis and field experiments to evaluate the [...] Read more.
Exploring the mechanisms by which green agricultural production reduces emissions and enhances carbon sequestration in soil can provide a scientific basis for greenhouse gas reduction and sustainable development in farmland. This study uses a combination of meta-analysis and field experiments to evaluate the impact of different agricultural management practices and climatic conditions on soil organic carbon (SOC) and the emissions of CO2 and CH4, as well as the role of microorganisms. The results indicate the following: (1) Meta-analysis reveals that the long-term application of organic fertilizers in green agriculture increases SOC at a rate four times higher than that of chemical fertilizers. No-till and straw return practices significantly reduce CO2 emissions from alkaline soils by 30.7% (p < 0.05). Warm and humid climates in low-altitude regions are more conducive to soil carbon sequestration. (2) Structural equation modeling of plant–microbe–soil carbon interactions shows that plant species diversity (PSD) indirectly affects microbial biomass by influencing organic matter indicators, mineral properties, and physicochemical characteristics, thereby regulating soil carbon sequestration and greenhouse gas emissions. (3) Field experiments conducted in the typical green farming research area of Chenzhuang reveal that soils managed under natural farming absorb CH4 at a rate three times higher than those under conventional farming, and the stoichiometric ratios of soil enzymes in the former are close to 1. The peak SOC (19.90 g/kg) in the surface soil of Chenzhuang is found near fields cultivated with natural farming measures. This study provides theoretical support and practical guidance for the sustainable development of green agriculture. Full article
Show Figures

Figure 1

15 pages, 1673 KiB  
Article
Bacillus-Based Biofertilizer Influences Soil Microbiome to Enhance Soil Health for Sustainable Agriculture
by Fung Ling Ng, Tsung-Chun Lin, Erick Wang, Tzong Yi Lee, Guan Ting Chen, Jiunn-Feng Su and Wen Liang Chen
Sustainability 2025, 17(14), 6293; https://doi.org/10.3390/su17146293 - 9 Jul 2025
Viewed by 475
Abstract
Identifying natural alternatives to conventional chemical fertilizers is critical to preventing the widespread soil degradation and environmental damage caused by modern agriculture. Microbe-based biofertilizers have emerged as promising candidates due to their natural ability to improve nutrient bioavailability and promote plant growth. However, [...] Read more.
Identifying natural alternatives to conventional chemical fertilizers is critical to preventing the widespread soil degradation and environmental damage caused by modern agriculture. Microbe-based biofertilizers have emerged as promising candidates due to their natural ability to improve nutrient bioavailability and promote plant growth. However, how biofertilizers affect the soil microbiome remains unclear. To investigate the impact of biofertilizer application on soil microbiome, LNP-1, a strain of Bacillus subtilis, was used as a biofertilizer in conjunction with no fertilizer, organic fertilizer, and chemical fertilizer for the cultivation of cabbage. Soil samples were collected and analyzed using next-generation sequencing to determine microbial abundance and diversity. Our results showed that LNP-1 supplementation not only improved cabbage yield significantly but also improved soil microbe diversity, a key indicator of soil health. Overall, soils treated with LNP-1 showed the enrichment of microbes involved in nutrient cycling and plant growth when compared to untreated groups. Notably, the yield of organically fertilized cabbage plants increased by 39.7% when treated with LNP-1. These results therefore demonstrate the potential for using biofertilizers to establish a more well-rounded, multifunctional soil microbiome to reduce reliance on chemical inputs and achieve high crop yield sustainably. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 3859 KiB  
Article
Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests
by Jie Yang, Kecheng Wang, Jiamei Chen, Lili Fan, Peikun Jiang and Rong Zheng
Agronomy 2025, 15(7), 1647; https://doi.org/10.3390/agronomy15071647 - 7 Jul 2025
Viewed by 380
Abstract
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2 [...] Read more.
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2O emission potential and silicon (Si) availability. We collected soil samples (0–20 cm) from bamboo stands subjected to 0–39 years of intensive management and from adjacent natural broad-leaved forests as a reference. The Soil pH, nitrogen forms, nitrification and denitrification potential, and Si concentrations were measured. The results showed significant nitrogen accumulation and progressive soil acidification with increasing management duration. The nitrification and denitrification potentials were 5.7 and 6.0 times higher in the 39-year-old stand compared to unmanaged bamboo. Meanwhile, the available Si decreased by 20.1%, despite stable total Si levels. The available Si showed strong positive correlations with nitrogen forms and transformation rates. These findings highlight the long-term impact of fertilizer-driven bamboo management on soil biogeochemistry and emphasize the need to consider Si dynamics in sustainable nutrient strategies. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

25 pages, 5480 KiB  
Article
Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status
by Jingyu Yao, Zhenya Liu, Junbao Yu, Yun Zhang, Rui Xu, Jiahua Li, Yang Xu and Mei Sun
Plants 2025, 14(13), 2072; https://doi.org/10.3390/plants14132072 - 7 Jul 2025
Viewed by 378
Abstract
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to [...] Read more.
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to the deterioration of water and soil environmental conditions, as its growth relies on high-quality water and soil. [Objective] Exploring the responses of B. schreberi to water and soil conditions from the perspective of functional traits is of great significance for understanding its endangered mechanisms and implementing effective conservation strategies. [Methods] This study was conducted in the Tengchong Beihai Wetland, which has the largest natural habitat of B. schreberi in China. By measuring the key functional traits of B. schreberi and detecting the water and soil parameters at the collecting sites, the responses of these functional traits to the water and soil conditions have been investigated. [Results] (1) The growth status of B. schreberi affects the expression of its functional traits. Compared with sporadic distribution, B. schreberi in continuous patches have significantly higher stomatal conductance, intercellular CO2 concentration, transpiration rate, and vein density, while these plants have significantly smaller leaf area and perimeter. (2) Good water quality directly promotes photosynthetic, morphological, and structural traits. However, high soil carbon, nitrogen, and phosphorus contents can inhibit the photosynthetic rate. The net photosynthetic rate is significantly positively correlated with dissolved oxygen content, pH value, ammonia nitrogen, and nitrate nitrogen contents in the water, as well as the magnesium, zinc, and silicon contents in the soil. In contrast, the net photosynthetic rate is significantly negatively correlated with the total phosphorus content in water and the total carbon, total nitrogen, and total phosphorus content in the soil. (3) Leaf area and perimeter show positive correlations with various water parameters, including the depth, temperature, pH value, dissolved oxygen content, ammonium nitrogen, and nitrate nitrogen content, yet they are negatively correlated with total phosphorus content, chemical oxygen demand, biological oxygen demand, and permanganate index of water. [Conclusions] This study supports the idea that B. schreberi thrives in oligotrophic water environments, while the notion that fertile soil is required for its growth still needs to be investigated more thoroughly. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

Back to TopTop