Assessing the Divergent Soil Phosphorus Recovery Strategies in Domesticated and Wild Crops
Abstract
1. Introduction
2. Phosphorus in Soil and Uptake by Plant Roots
3. Physical Mechanisms of Soil P Recovery
3.1. Topsoil Foraging
3.2. Shifts in the Production of Root Types and Density
3.3. Selective Partitioning of Biomass and Phosphorus
4. Ecological Mechanisms of Soil P Recovery
4.1. Alterations in the Rhizosphere Bacteriome
4.2. Associations with Arbuscular Mycorrhizal Fungi
4.3. Associations with Non-AM Fungi
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hancock, J.F. Origins of World Crops and Livestock. In World Agriculture Before and After 1492: Legacy of the Columbian Exchange; Springer: Berlin/Heidelberg, Germany, 2022; pp. 5–18. [Google Scholar]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol. 2012, 196, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Charmet, G. Wheat domestication: Lessons for the future. Comptes Rendus Biol. 2011, 334, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Badr, A.; Rabey, H.E.; Effgen, S.; Ibrahim, H.; Pozzi, C.; Rohde, W.; Salamini, F. On the origin and domestication history of barley (Hordeum vulgare). Mol. Biol. Evol. 2000, 17, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Liber, M.; Duarte, I.; Maia, A.T.; Oliveira, H.R. The history of lentil (Lens culinaris subsp. culinaris) domestication and spread as revealed by genotyping-by-sequencing of wild and landrace accessions. Front. Plant Sci. 2021, 12, 628439. [Google Scholar] [CrossRef] [PubMed]
- Krug, A.S.; BM Drummond, E.; Van Tassel, D.L.; Warschefsky, E.J. The next era of crop domestication starts now. Proc. Natl. Acad. Sci. USA 2023, 120, e2205769120. [Google Scholar] [CrossRef] [PubMed]
- Smýkal, P.; Nelson, M.N.; Berger, J.D.; Von Wettberg, E.J. The impact of genetic changes during crop domestication. Agronomy 2018, 8, 119. [Google Scholar] [CrossRef]
- Tamburino, R.; Sannino, L.; Cafasso, D.; Cantarella, C.; Orrù, L.; Cardi, T.; Cozzolino, S.; D’Agostino, N.; Scotti, N. Cultivated tomato (Solanum lycopersicum L.) suffered a severe cytoplasmic bottleneck during domestication: Implications from chloroplast genomes. Plants 2020, 9, 1443. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, Y.; Song, C.; Zhou, J.; Qiu, L.; Huang, H.; Wang, Y. A single origin and moderate bottleneck during domestication of soybean (Glycine max): Implications from microsatellites and nucleotide sequences. Ann. Bot. 2010, 106, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhu, G.; Zhang, J.; Xu, X.; Yu, Q.; Zheng, Z.; Zhang, Z.; Lun, Y.; Li, S.; Wang, X. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 2014, 46, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Consortium, T.G.S.; Aflitos, S.; Schijlen, E.; de Jong, H.; de Ridder, D.; Smit, S.; Finkers, R.; Wang, J.; Zhang, G.; Li, N. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 2014, 80, 136–148. [Google Scholar]
- Janzen, G.M.; Wang, L.; Hufford, M.B. The extent of adaptive wild introgression in crops. New Phytol. 2019, 221, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Raven, J.A.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Kapulnik, Y.; Kushnir, U. Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscular mycorrhiza fungi. Euphytica 1991, 56, 27–36. [Google Scholar] [CrossRef]
- Fuller, D.Q. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Ann. Bot. 2007, 100, 903–924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Beusen, A.H.; Van Apeldoorn, D.F.; Mogollón, J.M.; Yu, C.; Bouwman, A.F. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century. Biogeosciences 2017, 14, 2055–2068. [Google Scholar] [CrossRef]
- Dixon, M.; Rohrbaugh, C.; Afkairin, A.; Vivanco, J. Impacts of the Green Revolution on Rhizosphere Microbiology Related to Nutrient Acquisition. Appl. Microbiol. 2022, 2, 992–1003. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- FAO. Available online: https://www.fao.org/faostat/en/#data/RFN (accessed on 4 December 2024).
- Cordell, D.; White, S. Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef]
- Condron, L.M.; Turner, B.L.; Cade-Menun, B.J. Chemistry and dynamics of soil organic phosphorus. Phosphorus Agric. Environ. 2005, 46, 87–121. [Google Scholar]
- Islas-Valdez, S.; Afkairin, A.; Rovner, B.; Vivanco, J.M. Isolation of Diverse Phosphate-and Zinc-Solubilizing Microorganisms from Different Environments. Appl. Microbiol. 2024, 4, 1042–1056. [Google Scholar] [CrossRef]
- Renneson, M.; Dufey, J.; Legrain, X.; Genot, V.; Bock, L.; Colinet, G. Relationships between the P status of surface and deep horizons of agricultural soils under various cropping systems and for different soil types: A case study in Belgium. Soil Use Manag. 2013, 29, 103–113. [Google Scholar] [CrossRef]
- Isaac, M.E.; Nimmo, V.; Gaudin, A.C.; Leptin, A.; Schmidt, J.E.; Kallenbach, C.M.; Martin, A.; Entz, M.; Carkner, M.; Rajcan, I. Crop domestication, root trait syndromes, and soil nutrient acquisition in organic agroecosystems: A systematic review. Front. Sustain. Food Syst. 2021, 5, 716480. [Google Scholar] [CrossRef]
- Perkins, A.C.; Lynch, J.P. Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings. Ann. Bot. 2021, 128, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, H.; Gu, L.; Wu, J.; Zheng, X.; Fan, Z.; Pan, D.; Li, J.T.; Shu, W.; Rosendahl, S. Domestication of rice may have changed its arbuscular mycorrhizal properties by modifying phosphorus nutrition-related traits and decreasing symbiotic compatibility. New Phytol. 2024, 243, 1554–1570. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Ku, Y.-S.; Contador, C.A.; Lam, H.-M. The impacts of domestication and agricultural practices on legume nutrient acquisition through symbiosis with rhizobia and arbuscular mycorrhizal fungi. Front. Genet. 2020, 11, 583954. [Google Scholar] [CrossRef] [PubMed]
- Muindi, E.D.M. Understanding soil phosphorus. Int. J. Plant Soil Sci. 2019, 31, 1–18. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Phosphorus. In Soil Fertility and Fertilizers, 8th ed.; Anthony, V.R., Ed.; Pearson: Upper Saddle River, NJ, USA, 2014; pp. 185–211. [Google Scholar]
- Nussaume, L.; Kanno, S.; Javot, H.; Marin, E.; Pochon, N.; Ayadi, A.; Nakanishi, T.M.; Thibaud, M.-C. Phosphate import in plants: Focus on the PHT1 transporters. Front. Plant Sci. 2011, 2, 83. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Krouk, G.; Kiba, T. Nitrogen and phosphorus interactions in plants: From agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 2020, 57, 104–109. [Google Scholar] [CrossRef] [PubMed]
- de Groot, C.C.; Marcelis, L.F.; van den Boogaard, R.; Kaiser, W.M.; Lambers, H. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 2003, 248, 257–268. [Google Scholar] [CrossRef]
- Mahtab, S.K.; Godfrey, C.L.; Swoboda, A.R.; Thomas, G.W. Phosphorus diffusion in soils: I. The effect of applied P, clay content, and water content. Soil Sci. Soc. Am. J. 1971, 35, 393–397. [Google Scholar] [CrossRef]
- Rubio, G.; Faggioli, V.; Scheiner, J.D.; Gutiérrez-Boem, F.H. Rhizosphere phosphorus depletion by three crops differing in their phosphorus critical levels. J. Plant Nutr. Soil Sci. 2012, 175, 810–871. [Google Scholar] [CrossRef]
- Dixon, M.; Simonne, E.; Obreza, T.; Liu, G. Crop response to low phosphorus bioavailability with a focus on tomato. Agronomy 2020, 10, 617. [Google Scholar] [CrossRef]
- Magalhaes, J.V.; de Sousa, S.M.; Guimaraes, C.T.; Kochian, L.V. The role of root morphology and architecture in phosphorus acquisition: Physiological, genetic, and molecular basis. In Plant Macronutrient Use Efficiency; Elsevier: Amsterdam, The Netherlands, 2017; pp. 123–147. [Google Scholar]
- Tinker, P.B.; Nye, P.H. Solute Movement in the Rhizosphere; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Kamper, M.; Claassens, A. Exploitation of soil by roots as influenced by phosphorus applications. Commun. Soil Sci. Plant Anal. 2005, 36, 393–402. [Google Scholar] [CrossRef]
- Lynch, J.P.; Brown, K.M. Topsoil foraging–an architectural adaptation of plants to low phosphorus availability. Plant Soil 2001, 237, 225–237. [Google Scholar] [CrossRef]
- Péret, B.; Desnos, T.; Jost, R.; Kanno, S.; Berkowitz, O.; Nussaume, L. Root architecture responses: In search of phosphate. Plant Physiol. 2014, 166, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Soldat, D.J.; Martin Petrovic, A. Soil phosphorus levels and stratification as affected by fertilizer and compost applications. Appl. Turfgrass Sci. 2007, 4, 1–6. [Google Scholar] [CrossRef]
- Lopez, G.; Ahmadi, S.H.; Amelung, W.; Athmann, M.; Ewert, F.; Gaiser, T.; Gocke, M.I.; Kautz, T.; Postma, J.; Rachmilevitch, S. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci. 2023, 13, 1067498. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Kaeppler, S.M.; Lynch, J.P. Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct. Plant Biol. 2005, 32, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Silber, A.; Xu, G.; Levkovitch, I.; Soriano, S.; Bilu, A.; Wallach, R. High fertigation frequency: The effects on uptake of nutrients, water and plant growth. Plant Soil 2003, 253, 467–477. [Google Scholar] [CrossRef]
- Dixon, M.; Liu, G. Tomato Production in Florida Using Fertigation Technology: HS1392, 10/2020. EDIS 2020, 2020. [Google Scholar] [CrossRef]
- Sharpley, A.N. Soil mixing to decrease surface stratification of phosphorus in manured soils. J. Environ. Qual. 2003, 32, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Mamo, M.; Ginting, D.; Zanner, C.W.; McCallister, D.L.; Renken, R.R.; Shapiro, C.A. Phosphorus stratification and potential for runoff loss following long term manure application. J. Soil Water Conserv. 2005, 60, 243–250. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, J.; Liao, H.; He, Y.; Nian, H.; Hu, Y.; Qiu, L.; Dong, Y.; Yan, X. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin. Sci. Bull. 2004, 49, 1611–1620. [Google Scholar] [CrossRef]
- Akman, H. Root biomass distribution with root and shoot development at different growth stages of wild, ancient and modern wheat species. Turk. J. Agric. Food Sci. Technol. 2017, 5, 1422–1428. [Google Scholar] [CrossRef]
- Demirer, G.S.; Gibson, D.J.; Yue, X.; Pan, K.; Elishav, E.; Khandal, H.; Horev, G.; Tarkowská, D.; Cantó-Pastor, A.; Kong, S. Phosphate deprivation-induced changes in tomato are mediated by an interaction between brassinosteroid signaling and zinc. New Phytol. 2023, 239, 1368–1383. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rahman, M.F. Understanding Crop Domestication: Responses of Lettuce Roots Under Differential Phosphorus Conditions. Ph.D. Thesis, University of Nottingham Malaysia Campus, Semenyih, Malaysia, 2018. [Google Scholar]
- Rubio, G.; Liao, H.; Yan, X.; Lynch, J.P. Topsoil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Sci. 2003, 43, 598–607. [Google Scholar] [CrossRef]
- Ren, W.; Zhao, L.; Liang, J.; Wang, L.; Chen, L.; Li, P.; Liu, Z.; Li, X.; Zhang, Z.; Li, J. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nat. Plants 2022, 8, 1408–1422. [Google Scholar] [CrossRef] [PubMed]
- Blaschkauer, M.; Rachmilevitch, S. Domestication in wheat affects its rhizobiome recruitment capacity: A review. Grass Res. 2023, 3, 5. [Google Scholar] [CrossRef]
- Wu, X.; Rensing, C.; Han, D.; Xiao, K.-Q.; Dai, Y.; Tang, Z.; Liesack, W.; Peng, J.; Cui, Z.; Zhang, F. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems 2022, 7, e01107-21. [Google Scholar] [CrossRef] [PubMed]
- Elbon, A.; Whalen, J.K. Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: A review. Biol. Agric. Hortic. 2015, 31, 73–90. [Google Scholar] [CrossRef]
- Luo, W.; Wang, J.; Li, Y.; Wang, C.; Yang, S.; Jiao, S.; Wei, G.; Chen, W. Local domestication of soybean leads to strong root selection and diverse filtration of root-associated bacterial communities. Plant Soil 2022, 480, 439–455. [Google Scholar] [CrossRef]
- Dixon, M.M.; Afkairin, A.; Manter, D.K.; Vivanco, J. Rhizosphere Microbiome Co-Occurrence Network Analysis across a Tomato Domestication Gradient. Microorganisms 2024, 12, 1756. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Yue, W.; Jiao, S.; Kim, H.; Lee, Y.-H.; Wei, G.; Song, W.; Shu, D. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome 2023, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Li, Z.; Shen, X.; Choi, J.; Cao, Y. The perspective of arbuscular mycorrhizal symbiosis in rice domestication and breeding. Int. J. Mol. Sci. 2022, 23, 12383. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Zhang, J.; Liu, T.; Song, K.; Xie, J.; Luo, S.; Qu, T.; Zhang, J.; Tian, C.; Zhang, J. Rhizosphere fungal communities of wild and cultivated soybeans grown in three different soil suspensions. Appl. Soil Ecol. 2020, 153, 103586. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jaramillo, J.E.; Carrión, V.J.; de Hollander, M.; Raaijmakers, J.M. The wild side of plant microbiomes. Microbiome 2018, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.M.; Afkairin, A.; Davis, J.G.; Chitwood-Brown, J.; Buchanan, C.M.; Ippolito, J.A.; Manter, D.K.; Vivanco, J.M. Tomato domestication rather than subsequent breeding events reduces microbial associations related to phosphorus recovery. Sci. Rep. 2024, 14, 9934. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, L.; Jia, X.; Wang, Z.; Yu, X.; Ren, S.; Yang, Y.; Ye, X.; Wu, X.; Yi, K. Different microbial assembly between cultivated and wild tomatoes under P stress. Soil Sci. Environ. 2023, 2, 10. [Google Scholar] [CrossRef]
- Lemanceau, P.; Blouin, M.; Muller, D.; Moënne-Loccoz, Y. Let the core microbiota be functional. Trends Plant Sci. 2017, 22, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Afkairin, A.; Stromberger, M.; Storteboom, H.; Wickham, A.; Sterle, D.G.; Davis, J.G. Soil Microbial Community Responses to Cyanobacteria versus Traditional Organic Fertilizers. Agriculture 2023, 13, 1902. [Google Scholar] [CrossRef]
- Afkairin, A.; Ippolito, J.A.; Stromberger, M.; Davis, J.G. Solubilization of organic phosphorus sources by cyanobacteria and a commercially available bacterial consortium. Appl. Soil Ecol. 2021, 162, 103900. [Google Scholar] [CrossRef]
- Wang, X.; Shen, J.; Liao, H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci. 2010, 179, 302–306. [Google Scholar] [CrossRef]
- Martín-Robles, N.; Lehmann, A.; Seco, E.; Aroca, R.; Rillig, M.C.; Milla, R. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 2018, 218, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-F.; Zhang, J.-X.; Zhang, P.-J.; He, P.-P.; Song, H.-X.; Zhang, J.-J.; Tian, C.-J. Rhizosphere fungal diversity of wild and cultivated soybeans in field and greenhouse experiments. Int. J. Agric. Biol. 2019, 21, 479–485. [Google Scholar]
- Turrini, A.; Giordani, T.; Avio, L.; Natali, L.; Giovannetti, M.; Cavallini, A. Large variation in mycorrhizal colonization among wild accessions, cultivars, and inbreds of sunflower (Helianthus annuus L.). Euphytica 2016, 207, 331–342. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Smith, S.E.; Barritt, A.; Smith, F.A. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 2001, 237, 249–255. [Google Scholar] [CrossRef]
- Kumar, A.; Kuznetsova, O.; Gschwendtner, S.; Chen, H.; Alonso-Crespo, I.M.; Yusuf, M.; Schulz, S.; Bonkowski, M.; Schloter, M.; Temperton, V.M. Shifts in plant functional trait dynamics in relation to soil microbiome in modern and wild barley. Plants People Planet 2024, 6, 1398–1412. [Google Scholar] [CrossRef]
- Nimmo, V.; Brar, G.S.; Martin, A.R.; Isaac, M.E. Interacting effects of crop domestication and soil resources on leaf and root functional traits. Planta 2025, 261, 75. [Google Scholar] [CrossRef] [PubMed]
- Ceci, A.; Pinzari, F.; Russo, F.; Maggi, O.; Persiani, A.M. Saprotrophic soil fungi to improve phosphorus solubilisation and release: In vitro abilities of several species. Ambio 2018, 47, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Ning, P.; Li, S.; Li, X.; Li, C. New maize hybrids had larger and deeper post-silking root than old ones. Field Crops Res. 2014, 166, 66–71. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Jia, X.; Liu, P.; Lynch, J.P. Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil. J. Exp. Bot. 2018, 69, 4961–4970. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lynch, J.P. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Funct. Plant Biol. 2004, 31, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Szoboszlay, M.; Lambers, J.; Chappell, J.; Kupper, J.V.; Moe, L.A.; McNear, D.H., Jr. Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biol. Biochem. 2015, 80, 34–44. [Google Scholar] [CrossRef]
- Ruiz, S.; Koebernick, N.; Duncan, S.; Fletcher, D.M.; Scotson, C.; Boghi, A.; Marin, M.; Bengough, A.G.; George, T.; Brown, L. Significance of root hairs at the field scale–modelling root water and phosphorus uptake under different field conditions. Plant Soil 2020, 447, 281–304. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L. Root architecture in cultivated and wild lettuce (Lactuca spp.). Plant Cell Environ. 1995, 18, 885–894. [Google Scholar] [CrossRef]
- Kim, H.-J.; Li, X. Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. HortScience 2016, 51, 1001–1009. [Google Scholar] [CrossRef]
- Xiao, Z.-D.; Chen, Z.-Y.; Lin, Y.-H.; Liang, X.-G.; Wang, X.; Huang, S.-B.; Munz, S.; Graeff-Hönninger, S.; Shen, S.; Zhou, S.-L. Phosphorus deficiency promotes root: Shoot ratio and carbon accumulation via modulating sucrose utilization in maize. J. Plant Physiol. 2024, 303, 154349. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, Y.; Dai, A.; Liu, L.; Li, Z. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J. Genet. Genom. 2009, 36, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Caradus, J.; Mackay, A.; Dunlop, J.; Van Den Bosch, J. Relationships between shoot and root characteristics of white clover cultivars differing in response to phosphorus. J. Plant Nutr. 1995, 18, 2707–2722. [Google Scholar] [CrossRef]
- Liu, D. Root developmental responses to phosphorus nutrition. J. Integr. Plant Biol. 2021, 63, 1065–1090. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.; Teixeira, M.; De Almeida, D. Variability of traits associated with phosphorus efficiency in wild and cultivated genotypes of common bean. Plant Soil 1998, 203, 173–182. [Google Scholar] [CrossRef]
- Hinsinger, P.; Marschner, P. Rhizosphere—Perspectives and challenges—A tribute to Lorenz Hiltner 12–17 September 2004—Munich, Germany. Plant Soil 2006, 283, vii–viii. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; Newberger, D.; Vivanco, J.M. The rhizosphere microbiome: Plant–microbial interactions for resource acquisition. J. Appl. Microbiol. 2022, 133, 2864–2876. [Google Scholar] [CrossRef] [PubMed]
- Vorholt, J.A.; Vogel, C.; Carlström, C.I.; Müller, D.B. Establishing causality: Opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 2017, 22, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Garcha, S. Microbes from Wild Plants. In Metabolomics, Proteomes and Gene Editing Approaches in Biofertilizer Industry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 173–187. [Google Scholar]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Widiastuti, D.P.; Afkairin, A.; Stromberger, M.; Gafur, S.; Davis, J.G. Fertilizer selection influences soil microbial communities in alluvial and peat soils of the tropics. Agrosystems Geosci. Environ. 2025, 8, e70040. [Google Scholar] [CrossRef]
- Afkairin, A.; Dixon, M.M.; Buchanan, C.; Ippolito, J.A.; Manter, D.K.; Davis, J.G.; Vivanco, J.M. Harnessing Phosphorous (P) Fertilizer-Insensitive Bacteria to Enhance Rhizosphere P Bioavailability in Legumes. Microorganisms 2024, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Jilani, G.; Akhtar, M.S.; Naqvi, S.M.S.; Rasheed, M. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009, 1, 48–58. [Google Scholar]
- Santos-Beneit, F. The Pho regulon: A huge regulatory network in bacteria. Front. Microbiol. 2015, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Ragot, S.A.; Kertesz, M.A.; Bünemann, E.K. phoD alkaline phosphatase gene diversity in soil. Appl. Environ. Microbiol. 2015, 81, 7281–7289. [Google Scholar] [CrossRef] [PubMed]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–243. [Google Scholar]
- Meyer, J.B.; Frapolli, M.; Keel, C.; Maurhofer, M. Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Appl. Environ. Microbiol. 2011, 77, 7345–7354. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zhang, A.; Wang, A.; Zhang, H.; Wang, T.; Song, W.; Yue, H. Wheat domestication alters root metabolic functions to drive the assembly of endophytic bacteria. Plant J. 2024, 120, 1263–1277. [Google Scholar] [CrossRef] [PubMed]
- Crews, T.E.; Rumsey, B.E. What agriculture can learn from native ecosystems in building soil organic matter: A review. Sustainability 2017, 9, 578. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; He, Y.; Manter, D.K.; Fonte, S.J.; Vivanco, J.M. Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bull. Natl. Res. Cent. 2022, 46, 224. [Google Scholar] [CrossRef]
- Zeng, Q.G.; Luo, F.; Zhang, Z.B.; Yan, R.M.; Zhu, D. Phosphate solubilizing rhizospherebacterial T21 isolated from Dongxiang wild rice species promotes cultivated rice growth. Appl. Mech. Mater. 2012, 108, 167–175. [Google Scholar] [CrossRef]
- Giovannetti, M.; Sbrana, C. Meeting a non-host: The behaviour of AM fungi. Mycorrhiza 1998, 8, 123–130. [Google Scholar] [CrossRef]
- Lee, E.-H.; Eo, J.-K.; Ka, K.-H.; Eom, A.-H. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 2013, 41, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P.; Genre, A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 2010, 1, 48. [Google Scholar] [CrossRef] [PubMed]
- Ferrol, N.; Azcón-Aguilar, C.; Pérez-Tienda, J. Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Sci. 2019, 280, 441–447. [Google Scholar] [CrossRef] [PubMed]
- George, E.; Marschner, H.; Jakobsen, I. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit. Rev. Biotechnol. 1995, 15, 257–270. [Google Scholar] [CrossRef]
- Hetrick, B.; Wilson, G.; Cox, T. Mycorrhizal dependence of modern wheat cultivars and ancestors: A synthesis. Can. J. Bot. 1993, 71, 512–518. [Google Scholar] [CrossRef]
- Lu, J.; Yin, X.; Qiu, K.; Rees, R.M.; Harrison, M.T.; Chen, F.; Wen, X. Wheat cultivar replacement drives soil microbiome and microbial cooccurrence patterns. Agric. Ecosyst. Environ. 2024, 360, 108774. [Google Scholar] [CrossRef]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Louche, J.; Legname, E.; Duchemin, M.; Plassard, C. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Tree Physiol. 2009, 29, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zhang, W.; Liu, Y.; Yun, W.; Luo, B.; Chai, R.; Zhang, C.; Xiang, X.; Su, X. Changes in phosphorus mobilization and community assembly of bacterial and fungal communities in rice rhizosphere under phosphate deficiency. Front. Microbiol. 2022, 13, 953340. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Chi, R.; He, H.; Qiu, G.; Wang, D.; Zhang, W. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl. Biochem. Biotechnol. 2009, 159, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Bera, T.; Song, F.; Liu, G. Rapid identification of phosphorus-efficient genotypes from commercially grown tomato (Solanum lycopersicum L.) varieties in a simulated soil solution. J. Hortic. Sci. Biotechnol. 2020, 95, 395–404. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dixon, M.M.; Vivanco, J.M. Assessing the Divergent Soil Phosphorus Recovery Strategies in Domesticated and Wild Crops. Plants 2025, 14, 2296. https://doi.org/10.3390/plants14152296
Dixon MM, Vivanco JM. Assessing the Divergent Soil Phosphorus Recovery Strategies in Domesticated and Wild Crops. Plants. 2025; 14(15):2296. https://doi.org/10.3390/plants14152296
Chicago/Turabian StyleDixon, Mary M., and Jorge M. Vivanco. 2025. "Assessing the Divergent Soil Phosphorus Recovery Strategies in Domesticated and Wild Crops" Plants 14, no. 15: 2296. https://doi.org/10.3390/plants14152296
APA StyleDixon, M. M., & Vivanco, J. M. (2025). Assessing the Divergent Soil Phosphorus Recovery Strategies in Domesticated and Wild Crops. Plants, 14(15), 2296. https://doi.org/10.3390/plants14152296