Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (688)

Search Parameters:
Keywords = natural product hybrids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3139 KiB  
Review
From Agro-Industrial Waste to Natural Hydrogels: A Sustainable Alternative to Reduce Water Use in Agriculture
by César F. Alonso-Cuevas, Nathiely Ramírez-Guzmán, Liliana Serna-Cock, Marcelo Guancha-Chalapud, Jorge A. Aguirre-Joya, David R. Aguillón-Gutiérrez, Alejandro Claudio-Rizo and Cristian Torres-León
Gels 2025, 11(8), 616; https://doi.org/10.3390/gels11080616 - 7 Aug 2025
Abstract
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most [...] Read more.
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most of these materials are based on synthetic polymers that are not biodegradable. This raises serious environmental and health concerns, highlighting the urgent need for sustainable, biodegradable alternatives. Biomass-derived from agro-industrial waste presents a substantial potential for producing hydrogels, which can effectively function as water collectors and suppliers for crops. This review article provides a comprehensive overview of recent advancements in the application of agro-industrial waste for the formulation of hydrogels. Additionally, it offers a critical analysis of the development of hydrogels utilizing natural and compostable materials. Agro-industrial and food waste, which are rich in hemicellulose and cellulose, have been utilized to enhance the mechanical properties and water absorption capacity of hydrogels. These biomaterials hold significant potential for the development of effective hydrogels in agricultural applications; they can be either hybrid or natural materials that exhibit efficacy in enhancing seed germination, improving water retention capabilities, and facilitating the controlled release of fertilizers. Natural hydrogels derived from agro-industrial waste present a sustainable technological alternative that is environmentally benign. Full article
Show Figures

Graphical abstract

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 106
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 198
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

25 pages, 26404 KiB  
Review
Review of Deep Learning Applications for Detecting Special Components in Agricultural Products
by Yifeng Zhao and Qingqing Xie
Computers 2025, 14(8), 309; https://doi.org/10.3390/computers14080309 - 30 Jul 2025
Viewed by 355
Abstract
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications [...] Read more.
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications across three core domains: contaminant surveillance (heavy metals, pesticides, and mycotoxins), nutritional component quantification (soluble solids, polyphenols, and pigments), and structural/biomarker assessment (disease symptoms, gel properties, and physiological traits). Emerging hybrid architectures—including attention-enhanced convolutional neural networks (CNNs) for lesion localization, wavelet-coupled autoencoders for spectral denoising, and multi-task learning frameworks for joint parameter prediction—demonstrate unprecedented accuracy in decoding complex agricultural matrices. Particularly noteworthy are sensor fusion strategies integrating hyperspectral imaging (HSI), Raman spectroscopy, and microwave detection with deep feature extraction, achieving industrial-grade performance (RPD > 3.0) while reducing detection time by 30–100× versus conventional methods. Nevertheless, persistent barriers in the “black-box” nature of complex models, severe lack of standardized data and protocols, computational inefficiency, and poor field robustness hinder the reliable deployment and adoption of DL for detecting special components in agricultural products. This review provides an essential foundation and roadmap for future research to bridge the gap between laboratory DL models and their effective, trusted application in real-world agricultural settings. Full article
(This article belongs to the Special Issue Deep Learning and Explainable Artificial Intelligence)
Show Figures

Figure 1

36 pages, 539 KiB  
Review
Genomic Adaptation, Environmental Challenges, and Sustainable Yak Husbandry in High-Altitude Pastoral Systems
by Saima Naz, Ahmad Manan Mustafa Chatha, Qudrat Ullah, Muhammad Farooq, Tariq Jamil, Raja Danish Muner and Azka Kiran
Vet. Sci. 2025, 12(8), 714; https://doi.org/10.3390/vetsci12080714 - 29 Jul 2025
Viewed by 215
Abstract
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. [...] Read more.
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. This review presents the genomic, physiological, and environmental dimensions of yak biology and husbandry. Genes such as EPAS1, which encodes hypoxia-inducible transcription factors, underpin physiological adaptations, including enlarged cardiopulmonary structures, elevated erythrocyte concentrations, and specialized thermoregulatory mechanisms that enable their survival at elevations of 3000 m and above. Copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) present promising markers for improving milk and meat production, disease resistance, and metabolic efficiency. F1 and F2 generations of yak–cattle hybrids show superior growth and milk yields, but reproductive barriers, such as natural mating or artificial insemination, and environmental factors limit the success of these hybrids beyond second generation. Infectious diseases, such as bovine viral diarrhea and antimicrobial-resistant and biofilm-forming Enterococcus and E. coli, pose risks to herd health and food safety. Rising ambient temperatures, declining forage biomass, and increased disease prevalence due to climate changes risk yak economic performance and welfare. Addressing these challenges by nutritional, environmental, and genetic interventions will safeguard yak pastoralism. This review describes the genes associated with different yak traits and provides an overview of the genetic adaptations of yaks (Bos grunniens) to environmental stresses at high altitudes and emphasizes the need for conservation and improvement strategies for sustainable husbandry of these yaks. Full article
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 364
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

22 pages, 3950 KiB  
Article
A Deep Reinforcement Learning-Based Concurrency Control of Federated Digital Twin for Software-Defined Manufacturing Systems
by Rubab Anwar, Jin-Woo Kwon and Won-Tae Kim
Appl. Sci. 2025, 15(15), 8245; https://doi.org/10.3390/app15158245 - 24 Jul 2025
Viewed by 246
Abstract
Modern manufacturing demands real-time, scalable coordination that legacy manufacturing management systems cannot provide. Digital transformation encompasses the entire manufacturing infrastructure, which can be represented by digital twins for facilitating efficient monitoring, prediction, and optimization of factory operations. A Federated Digital Twin (FDT) emerges [...] Read more.
Modern manufacturing demands real-time, scalable coordination that legacy manufacturing management systems cannot provide. Digital transformation encompasses the entire manufacturing infrastructure, which can be represented by digital twins for facilitating efficient monitoring, prediction, and optimization of factory operations. A Federated Digital Twin (FDT) emerges by combining heterogeneous digital twins, enabling real-time collaboration, data sharing, and collective decision-making. However, deploying FDTs introduces new concurrency control challenges, such as priority inversion and synchronization failures, which can potentially cause process delays, missed deadlines, and reduced customer satisfaction. Traditional concurrency control approaches in the computing domain, due to their reliance on static priority assignments and centralized control, are inadequate for managing dynamic, real-time conflicts effectively in real production lines. To address these challenges, this study proposes a novel concurrency control framework combining Deep Reinforcement Learning with the Priority Ceiling Protocol. Using SimPy-based discrete-event simulations, which accurately model the asynchronous nature of FDT interactions, the proposed approach adaptively optimizes resource allocation and effectively mitigates priority inversion. The results demonstrate that against the rule-based PCP controller, our hybrid DRLCC enhances completion time maximum of 24.27% to a minimum of 1.51%, urgent-job delay maximum of 6.65% and a minimum of 2.18%, while preserving lower-priority inversions. Full article
Show Figures

Figure 1

41 pages, 4318 KiB  
Review
A Review of Pretreatment Strategies for Anaerobic Digestion: Unlocking the Biogas Generation Potential of Wastes in Ghana
by James Darmey, Satyanarayana Narra, Osei-Wusu Achaw, Walter Stinner, Julius Cudjoe Ahiekpor, Herbert Fiifi Ansah, Berah Aurelie N’guessan, Theophilus Ofori Agyekum and Emmanuel Mawuli Koku Nutakor
Waste 2025, 3(3), 24; https://doi.org/10.3390/waste3030024 - 23 Jul 2025
Viewed by 377
Abstract
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in [...] Read more.
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in developing countries like Ghana, where organic waste remains underutilized. A narrative synthesis of the literature between 2010 and 2024 was conducted through ScienceDirect and Scopus, categorizing pretreatment types as mechanical, thermal, chemical, biological, enzymatic, and hybrid. A bibliometric examination using VOSviewer also demonstrated global trends in research and co-authorship networks. Mechanical and thermal pretreatments increased biogas production by rendering the substrate more available, while chemical treatment degraded lignin and hemicellulose, sometimes more than 100% in methane yield. Biological and enzymatic pretreatments were energy-consuming and effective, with certain enzymatic blends achieving 485% methane yield increases. The study highlights the synergistic benefits of hybrid approaches and growing global interest, as revealed by bibliometric analysis; hence, the need to explore their potential in Ghana. In Ghana, this study concludes that low-cost, biologically driven pretreatments are practical pathways for advancing anaerobic digestion systems toward sustainable waste management and energy goals, despite infrastructure and policy challenges. Full article
(This article belongs to the Special Issue New Trends in Liquid and Solid Effluent Treatment)
Show Figures

Figure 1

24 pages, 2698 KiB  
Article
Modelling Nature Connectedness Within Environmental Systems: Human-Nature Relationships from 1800 to 2020 and Beyond
by Miles Richardson
Earth 2025, 6(3), 82; https://doi.org/10.3390/earth6030082 - 23 Jul 2025
Viewed by 261
Abstract
Amid global environmental changes, urbanisation erodes nature connectedness, an important driver of pro-environmental behaviours and human well-being, exacerbating human-made risks like biodiversity loss and climate change. This study introduces a novel hybrid agent-based model (ABM), calibrated with historical urbanisation data, to explore how [...] Read more.
Amid global environmental changes, urbanisation erodes nature connectedness, an important driver of pro-environmental behaviours and human well-being, exacerbating human-made risks like biodiversity loss and climate change. This study introduces a novel hybrid agent-based model (ABM), calibrated with historical urbanisation data, to explore how urbanisation, opportunity and orientation to engage with nature, and intergenerational transmission have shaped nature connectedness over time. The model simulates historical trends (1800–2020) against target data, with projections extending to 2125. The ABM revealed a significant nature connectedness decline with excellent fit to the target data, derived from nature word use in cultural products. Although a lifetime ‘extinction of experience’ mechanism refined the fit, intergenerational transmission emerged as the dominant driver—supporting a socio-ecological tipping point in human–nature disconnection. Even with transformative interventions like dramatic urban greening and enhanced nature engagement, projections suggest a persistent disconnection from nature through to 2050, highlighting locked-in risks to environmental stewardship. After 2050, the most transformative interventions trigger a self-sustaining recovery, highlighting the need for sustained, systemic policies that embed nature connectedness into urban planning and education. Full article
Show Figures

Figure 1

67 pages, 4242 KiB  
Review
Bioengineering Outer-Membrane Vesicles for Vaccine Development: Strategies, Advances, and Perspectives
by Ayesha Zahid, Hazrat Ismail, Jennifer C. Wilson and I. Darren Grice
Vaccines 2025, 13(7), 767; https://doi.org/10.3390/vaccines13070767 - 20 Jul 2025
Viewed by 959
Abstract
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic [...] Read more.
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic immunogenicity, adjuvant properties, and scalability establish OMVs as potent tools for combating infectious diseases and cancer. Recent advancements in genetic engineering and biotechnology have further expanded the utility of OMVs, enabling the incorporation of multiple epitopes and antigens from diverse pathogens. These developments address critical challenges such as antigenic variability and co-infections, offering broader immune coverage and cost-effective solutions. This review explores the unique structural and immunological properties of OMVs, emphasizing their capacity to elicit robust immune responses. It critically examines established and emerging engineering strategies, including the genetic engineering of surface-displayed antigens, surface conjugation, glycoengineering, nanoparticle-based OMV engineering, hybrid OMVs, and in situ OMV production, among others. Furthermore, recent advancements in preclinical research on OMV-based vaccines, including synthetic OMVs, OMV-based nanorobots, and nanodiscs, as well as emerging isolation and purification methods, are discussed. Lastly, future directions are proposed, highlighting the potential integration of synthetic biology techniques to accelerate research on OMV engineering. Full article
(This article belongs to the Special Issue Bioengineering Strategies for Developing Vaccines)
Show Figures

Graphical abstract

14 pages, 1078 KiB  
Article
Studies on a New 1,3,4-Oxadiazole Bixin Dimer for Potential Application in Dye-Sensitized Solar Cells
by Afonso Santine M. M. Velez, Daniela Pinheiro, Carlos Serpa, Rosane Nora Castro, Marco Edilson Freire de Lima and Otávio Augusto Chaves
Reactions 2025, 6(3), 39; https://doi.org/10.3390/reactions6030039 - 13 Jul 2025
Viewed by 364
Abstract
Dye-sensitized solar cells (DSSCs) have emerged as a promising technology for converting sunlight into electricity at a low cost; however, it is still necessary to find a photostable, low-cost, and efficient photosensitizer. In this sense, the natural product bixin (Dye 1) [...] Read more.
Dye-sensitized solar cells (DSSCs) have emerged as a promising technology for converting sunlight into electricity at a low cost; however, it is still necessary to find a photostable, low-cost, and efficient photosensitizer. In this sense, the natural product bixin (Dye 1) has previously been reported as a potential photosensitizer. Thus, the present work reports the full synthesis of diester and diacid hybrids (Dyes 2 and 3, respectively, with corresponding yields of 93% and 52%) using the natural product bixin as a starting material and 1,3,4-oxadiazole ring as a connected point. The hydrolysis step of Dye 2 aims to obtain Dye 3 with a structural capacity to anchor the titanium dioxide (TiO2) nanofilms via the carboxylic acid group. Both compounds (Dyes 1 and 3) can be adsorbed via pseudo-first order on the surface of TiO2 nanofilms, reaching saturation after 10 and 6 min of exposure in an organic solution (1 × 10−5 M), respectively, with adsorption kinetics of the semisynthetic compound almost twofold higher than the natural product. Contrary to expectations, Dye 3 had spectral behavior similar to Dye 1, but with better frontier molecular orbital (FMO) parameters, indicating that Dye 3 will probably behave very similarly or have slightly better photovoltaic performance than Dye 1 in future DSSC measurements. Full article
Show Figures

Figure 1

29 pages, 996 KiB  
Article
Enhancing Environmental Cognition Through Kayaking in Aquavoltaic Systems in a Lagoon Aquaculture Area: The Mediating Role of Perceived Value and Facility Management
by Yu-Chi Sung and Chun-Han Shih
Water 2025, 17(13), 2033; https://doi.org/10.3390/w17132033 - 7 Jul 2025
Viewed by 422
Abstract
Tainan’s Cigu, located on Taiwan’s southwestern coast, is a prominent aquaculture hub known for its extensive ponds, tidal flats, and lagoons. This study explored the novel integration of kayaking within aquavoltaic (APV) aquaculture ponds, creating a unique hybrid tourism landscape that merges industrial [...] Read more.
Tainan’s Cigu, located on Taiwan’s southwestern coast, is a prominent aquaculture hub known for its extensive ponds, tidal flats, and lagoons. This study explored the novel integration of kayaking within aquavoltaic (APV) aquaculture ponds, creating a unique hybrid tourism landscape that merges industrial land use (aquaculture and energy production) with nature-based recreation. We investigated the relationships among facility maintenance and safety professionalism (FM), the perceived value of kayaking training (PV), and green energy and sustainable development recognition (GS) within these APV systems in Cigu, Taiwan. While integrating recreation with renewable energy and aquaculture is an emerging approach to multifunctional land use, the mechanisms influencing visitors’ sustainability perceptions remain underexplored. Using data from 613 kayaking participants and structural equation modeling, we tested a theoretical framework encompassing direct, mediated, and moderated relationships. Our findings reveal that FM significantly influences both PV (β = 0.68, p < 0.001) and GS (β = 0.29, p < 0.001). Furthermore, PV strongly affects GS (β = 0.56, p < 0.001). Importantly, PV partially mediates the relationship between FM and GS, with the indirect effect (0.38) accounting for 57% of the total effect. We also identified significant moderating effects of APV coverage, guide expertise, and operational visibility. Complementary observational data obtained with underwater cameras confirm that non-motorized kayaking causes minimal ecological disturbance to cultured species, exhibiting significantly lower behavioral impacts than motorized alternatives. These findings advance the theoretical understanding of experiential learning in novel technological landscapes and provide evidence-based guidelines for optimizing recreational integration within production environments. Full article
(This article belongs to the Special Issue Aquaculture, Fisheries, Ecology and Environment)
Show Figures

Figure 1

16 pages, 9013 KiB  
Article
Hybrid Membranes Based on Track-Etched Membranes and Nanofiber Layer for Water–Oil Separation and Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions
by Arman B. Yeszhanov, Aigerim Kh. Shakayeva, Maxim V. Zdorovets, Daryn B. Borgekov, Artem L. Kozlovskiy, Pavel V. Kharkin, Dmitriy A. Zheltov, Marina V. Krasnopyorova, Olgun Güven and Ilya V. Korolkov
Membranes 2025, 15(7), 202; https://doi.org/10.3390/membranes15070202 - 4 Jul 2025
Viewed by 584
Abstract
In this work, hybrid membranes were fabricated by depositing polyvinyl chloride (PVC) fibers onto PET track-etched membranes (TeMs) using the electrospinning technique. The resulting structures exhibited enhanced hydrophobicity, with contact angles reaching 155°, making them suitable for applications in both water–oil mixture separation [...] Read more.
In this work, hybrid membranes were fabricated by depositing polyvinyl chloride (PVC) fibers onto PET track-etched membranes (TeMs) using the electrospinning technique. The resulting structures exhibited enhanced hydrophobicity, with contact angles reaching 155°, making them suitable for applications in both water–oil mixture separation and membrane distillation processes involving low-level liquid radioactive waste (LLLRW), saline solutions, and natural water sources. The use of hybrids of TeMs and nanofiber membranes has significantly increased productivity compared to TeMs only, while maintaining a high degree of purification. Permeate obtained after MD of LLLRW and river water was analyzed by conductometry and the atomic emission spectroscopy (for Sr, Cs, Al, Mo, Co, Sb, Ca, Fe, Mg, K, and Na). The activity of radioisotopes (for 124Sb, 65Zn, 60Co, 57Co, 137Cs, and 134Cs) was evaluated by gamma-ray spectroscopy. In most cases, the degree of rejection was between 95 and 100% with a water flux of up to 17.3 kg/m2·h. These membranes were also tested in the separation of cetane–water emulsion with productivity up to 47.3 L/m2·min at vacuum pressure of 700 mbar and 15.2 L/m2·min at vacuum pressure of 900 mbar. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 2550 KiB  
Article
Anti-Inflammatory Secondary Metabolites from Penicillium sp. NX-S-6
by Hanyang Peng, Jiawen Sun, Rui Zhang, Yuxuan Qiu, Yu Hong, Fengjuan Zhou, Chang Wang, Yang Hu and Xiachang Wang
Mar. Drugs 2025, 23(7), 280; https://doi.org/10.3390/md23070280 - 4 Jul 2025
Viewed by 540
Abstract
Five new natural products, including two sorbicillinoids (12), one indolinone alkaloid (10), one tetracyclic steroid (11), and one α-pyrone derivative (14), were identified from the endophytic Penicillium sp. NX-S-6, together with thirteen known [...] Read more.
Five new natural products, including two sorbicillinoids (12), one indolinone alkaloid (10), one tetracyclic steroid (11), and one α-pyrone derivative (14), were identified from the endophytic Penicillium sp. NX-S-6, together with thirteen known natural products. The structures of new compounds were unambiguously elucidated by comprehensive spectroscopic analyses (NMR, MS), as well as electronic circular dichroism (ECD) calculation. Notably, quinosorbicillinol (1) was identified as a rare hybrid sorbicillinoid incorporating a quinolone moiety, representing a unique structural scaffold in this natural product class. Biological evaluation revealed that Compounds 1, 4 and 8 potently inhibited the production of nitric oxide and interleukin 6 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Mechanistic studies furthermore demonstrated that Compounds 4 and 8 effectively suppressed interleukin-1β secretion in LPS-induced immortalized mouse bone marrow-derived macrophages (iBMDMs) by blocking NLRP3 inflammasome activation. This inhibition was attributed to their ability to disrupt the assembly of the NLRP3-caspase-1 complex, a key event in the pathogenesis of inflammatory disorders. These findings not only expand the structural diversity of endophyte-derived natural products but also highlight their potential as lead compounds for developing anti-inflammatory therapeutics targeting the NLRP3 pathway. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Figure 1

Back to TopTop