Hybrid Membranes Based on Track-Etched Membranes and Nanofiber Layer for Water–Oil Separation and Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TeMs
2.3. Preparation of Hybrid Membranes by Electrospinning
2.4. Methods of Characterization of the Membrane
2.5. Testing of Hybrid Membranes in the Separation of Water–Oil Emulsions
2.6. Membrane Distillation
3. Results and Discussion
3.1. Preparation and Characterization of Membranes
3.2. Testing of Hybrid Membranes in the Separation of Water–Oil Mixtures
3.3. Testing of Hybrid Membranes in Membrane Distillation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bin Abid, M.; Wahab, R.A.; Salam, M.A.; Gzara, L.; Moujdin, I.A. Desalination Technologies, Membrane Distillation, and Electrospinning, an Overview. Heliyon 2023, 9, e12810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Koirala, R.; Pramanik, B.; Fan, L.; Date, A.; Jegatheesan, V. Challenges and Advancements in Membrane Distillation Crystallization for Industrial Applications. Environ. Res. 2023, 234, 116577. [Google Scholar] [CrossRef]
- Ngo, M.T.T.; Nguyen, H.N.M.; Nguyen, N.C.; Nguyen, P.T.; Bui, X.T. Chapter 14—Applications and Challenges of Membrane Distillation in Water Reuse. In Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management; Elsevier: Amsterdam, The Netherlands, 2023; pp. 315–329. [Google Scholar] [CrossRef]
- Julian, H.; Gusnawan, P.J.; Wonoputri, V.; Setiadi, T. Chapter 16—Membrane Distillation for Wastewater Treatment: Recent Advances in Process Optimization and Membrane Modification. In Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management; Elsevier: Amsterdam, The Netherlands, 2023; pp. 355–385. [Google Scholar] [CrossRef]
- Kalla, S.; Piash, K.P.S.; Sanyal, O. Anti-Fouling and Anti-Wetting Membranes for Membrane Distillation. J. Water Process Eng. 2022, 46, 102634. [Google Scholar] [CrossRef]
- Chen, X.; Chen, T.; Li, J.; Qiu, M.; Fu, K.; Cui, Z.; Fan, Y.; Drioli, E. Ceramic Nanofiltration and Membrane Distillation Hybrid Membrane Processes for the Purification and Recycling of Boric Acid from Simulative Radioactive Waste Water. J. Membr. Sci. 2019, 579, 294–301. [Google Scholar] [CrossRef]
- Hu, X.; Guo, J.; An, A.K.J.; Chopra, S.S. Electrospun Nanofibrous Membranes for Membrane Distillation Application—A Dynamic Life Cycle Assessment (DLCA) Approach. Water Res. 2023, 243, 120376. [Google Scholar] [CrossRef]
- Julian, H.; Nurgirisia, N.; Qiu, G.; Ting, Y.P.; Wenten, I.G. Membrane Distillation for Wastewater Treatment: Current Trends, Challenges and Prospects of Dense Membrane Distillation. J. Water Process Eng. 2022, 46, 102615. [Google Scholar] [CrossRef]
- Qoriati, D.; Susane, H.; Lin, J.L.; Wang, Y.F.; You, S.J. Chapter 15—Membrane Distillation Technology Applied in Water Resources. In Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management; Elsevier: Amsterdam, The Netherlands, 2023; pp. 331–354. [Google Scholar] [CrossRef]
- Wen, X.; Li, F.; Zhao, X. Removal of Nuclides and Boron from Highly Saline Radioactive Wastewater by Direct Contact Membrane Distillation. Desalination 2016, 394, 101–107. [Google Scholar] [CrossRef]
- Prado, E.S.P.; Miranda, F.S.; Araujo, L.G.; Petraconi, G.; Baldan, M.R.; Essiptchouk, A.; Potiens, A.J. Experimental Study on Treatment of Simulated Radioactive Waste by Thermal Plasma: Temporal Evaluation of Stable Co and Cs. Ann. Nucl. Energy 2021, 160, 108433. [Google Scholar] [CrossRef]
- Du, X.; Tong, W.; Zhou, X.; Luo, J.; Liu, Y.; Wang, Y.; Li, P.; Zhang, Y. An Efficient Approach for the Treatment of Radioactive Waste Perfluoropolyether Lubricants via a Synergistic Effect of Thermal Catalysis and Immobilization. J. Environ. Sci. 2024, 136, 512–522. [Google Scholar] [CrossRef]
- Barlow, S.T.; Fisher, A.J.; Bailey, D.J.; Blackburn, L.R.; Stennett, M.C.; Hand, R.J.; Morgan, S.P.; Hyatt, N.C.; Corkhill, C.L. Thermal Treatment of Nuclear Fuel-Containing Magnox Sludge Radioactive Waste. J. Nucl. Mater. 2021, 552, 152965. [Google Scholar] [CrossRef]
- Singh, B.K.; Um, W. Application of Clay Materials for Sorption of Radionuclides from Waste Solutions. Minerals 2023, 13, 239. [Google Scholar] [CrossRef]
- Metwally, S.S.; Borai, E.H.; Hamed, M.M.; Mohamed, T.M.; Hamed, M.G.; Mohamed, W.R. Low-Cost and Eco-Friendly Biosorbent for Effective Removal of Hazardous Ions from Simulated Radioactive Liquid Waste. Arab. J. Chem. 2023, 16, 105254. [Google Scholar] [CrossRef]
- Osmanlioglu, A.E. Treatment of Radioactive Liquid Waste by Sorption on Natural Zeolite in Turkey. J. Hazard. Mater. 2006, 137, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wei, J.; Zhang, X.; Zhao, X. Removal of Silver Colloids from Radioactive Wastewater by Means of Ultrafiltration. Radiat. Phys. Chem. 2024, 221, 111643. [Google Scholar] [CrossRef]
- Wei, Y.; Cao, L.; Zhu, J.; Wang, L.; Yao, H.; Sun, H.; Xia, X.; Zhao, H.; Ji, T.; Ni, S.; et al. Radioactive Strontium Ions Sieving through Reduced Graphene Oxide Membrane. J. Membr. Sci. 2024, 689, 122181. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Yeszhanov, A.B.; Zdorovets, M.V.; Gorin, Y.G.; Güven, O.; Dosmagambetova, S.S.; Khlebnikov, N.A.; Serkov, K.V.; Krasnopyorova, M.V.; Milts, O.S.; et al. Modification of PET Ion Track Membranes for Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions. Sep. Purif. Technol. 2019, 227, 115694. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Yeszhanov, A.B.; Korolkov, I.V.; Güven, O.; Dosmagambetova, S.S.; Shlimas, D.I.; Zhatkanbayeva, Z.K.; Zhidkov, I.S.; Kharkin, P.V.; Gluchshenko, V.N.; et al. Liquid Low-Level Radioactive Wastes Treatment by Using Hydrophobized Track-Etched Membranes. Prog. Nucl. Energy 2020, 118, 103128. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, X.; Li, F.; Zhao, X. Poly(Vinyl Pyrrolidone) Modified Poly(Vinylidene Fluoride) Ultrafiltration Membrane via a Two-Step Surface Grafting for Radioactive Wastewater Treatment. Sep. Purif. Technol. 2018, 194, 404–409. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, L.; Li, F.; Zhao, X.; Hu, H. Enhanced Rejection of Cations by Low-Level Cationic Surfactant during Ultrafiltration of Low-Level Radioactive Wastewater. Sep. Purif. Technol. 2017, 175, 314–320. [Google Scholar] [CrossRef]
- Weerasekara, N.A.; Choo, K.H.; Choi, S.J. Metal Oxide Enhanced Microfiltration for the Selective Removal of Co and Sr Ions from Nuclear Laundry Wastewater. J. Membr. Sci. 2013, 447, 87–95. [Google Scholar] [CrossRef]
- Chung, Y.; Park, D.; Kim, H.; Kim, Y.; Kang, S. The Impact of Gamma-Irradiation from Radioactive Liquid Wastewater on Polymeric Structures of Nanofiltration (NF) Membranes. J. Hazard. Mater. 2021, 403, 123578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Y.; Takizawa, S.; Kuroda, K.; Jia, Z.; Liu, P.; Wei, H.; Graham, N.J.D. Development of a Composite MoS2/PEI Nanofiltration Membrane for Radionuclides Efficient Removal from Aquatic Environments. Sep. Purif. Technol. 2024, 352, 128246. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Qin, H.; Lin, H.; Chhuon, K. Application of Microfiltration Membrane Technology in Water Treatment. IOP Conf. Ser. Earth Environ. Sci. 2020, 571, 012158. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.; Park, J.; Shon, H.K.; Hong, S. Treatment of Medical Radioactive Liquid Waste Using Forward Osmosis (FO) Membrane Process. J. Membr. Sci. 2018, 556, 238–247. [Google Scholar] [CrossRef]
- Lee, B.S. Nuclide Separation Modeling through Reverse Osmosis Membranes in Radioactive Liquid Waste. Nucl. Eng. Technol. 2015, 47, 859–866. [Google Scholar] [CrossRef]
- Chen, B.; Yu, S.; Zhao, X. The Separation of Radionuclides and Silicon from Boron-Containing Radioactive Wastewater with Modified Reverse Osmosis Membranes. Process Saf. Environ. Prot. 2021, 146, 639–646. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, X.; Li, F.; Zhang, X. Rejection of Nuclides and Silicon from Boron-Containing Radioactive Waste Water Using Reverse Osmosis. Sep. Purif. Technol. 2016, 163, 92–99. [Google Scholar] [CrossRef]
- Jia, X.; Lan, L.; Wang, T.; Wang, Y.; Ye, C. The Impact of Gamma-Irradiation on Physical Properties and Membrane Distillation Performance of PTFE and PVDF Hollow Fiber Membrane. Ann. Nucl. Energy 2024, 201, 110419. [Google Scholar] [CrossRef]
- Jiang, M.; Fang, Z.; Liu, Z.; Huang, X.; Wei, H.; Yu, C.Y. Application of Membrane Distillation for Purification of Radioactive Liquid. Clean. Eng. Technol. 2023, 12, 100589. [Google Scholar] [CrossRef]
- Li, S.; He, Z.; Xiao, D.; Guo, L. Study on the Treatment of Radioactive Wastewater by Non-Contact Membrane Distillation. Sep. Purif. Technol. 2022, 290, 120766. [Google Scholar] [CrossRef]
- Nie, X.; Hu, X.; Liu, C.; Xia, X.; Dong, F. Decontamination of Uranium Contained Low-Level Radioactive Wastewater from UO2 Fuel Element Industry with Vacuum Membrane Distillation. Desalination 2021, 516, 115226. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Kh Shakayeva, A.; Lissovskaya, L.I.; Zdorovets, M.V. Preparation of Poly(Ethylene Terephthalate) Track-Etched Membranes for the Separation of Water-Oil Emulsions. Eurasian J. Chem. 2023, 110, 131–138. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Shan, H.; Guo, H.; Li, B. Surface Hydrophobicity Based Heat and Mass Transfer Mechanism in Membrane Distillation. J. Membr. Sci. 2019, 580, 275–288. [Google Scholar] [CrossRef]
- Yadav, A.; Labhasetwar, P.K.; Shahi, V.K. Membrane Distillation Crystallization Technology for Zero Liquid Discharge and Resource Recovery: Opportunities, Challenges and Futuristic Perspectives. Sci. Total Environ. 2022, 806, 150692. [Google Scholar] [CrossRef] [PubMed]
- Jawed, A.S.; Nassar, L.; Hegab, H.M.; van der Merwe, R.; Al Marzooqi, F.; Banat, F.; Hasan, S.W. Recent Developments in Solar-Powered Membrane Distillation for Sustainable Desalination. Heliyon 2024, 10, e31656. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Y.; Wang, H.; Duan, X.; Ren, Y. A Janus Membrane with Silica Nanoparticles Interlayer for Treating Coal Mine Water via Membrane Distillation. Sep. Purif. Technol. 2024, 350, 127995. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Zhao, S.; Chen, L.; Meng, F.; Tian, X. A Non-Fluorinated Liquid-like Membrane with Excellent Anti-Scaling Performance for Membrane Distillation. Chin. Chem. Lett. 2024, 36, 109883. [Google Scholar] [CrossRef]
- Hou, X.; Wang, J.; Zhang, R.; Gao, Y.; Zhou, Z.; Li, H.; Lu, Y.; Tang, L. Preparation of PVDF-NSiO2/PVSQ High-Flux Composite Membrane by Chemical Grafting and Separation of Composite Brine by Membrane Distillation. J. Environ. Chem. Eng. 2024, 12, 113257. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, F. Mitigating Near-Surface Polarizations in Membrane Distillation via Membrane Surface Decoration. Desalination 2024, 579, 117507. [Google Scholar] [CrossRef]
- Jia, F.; Li, J.; Wang, J.; Sun, Y. Removal of Strontium Ions from Simulated Radioactive Wastewater by Vacuum Membrane Distillation. Ann. Nucl. Energy 2017, 103, 363–368. [Google Scholar] [CrossRef]
- Jia, F.; Li, J.; Wang, J. Recovery of Boric Acid from the Simulated Radioactive Wastewater by Vacuum Membrane Distillation Crystallization. Ann. Nucl. Energy 2017, 110, 1148–1155. [Google Scholar] [CrossRef]
- Barsbay, M.; Güven, O. Grafting in Confined Spaces: Functionalization of Nanochannels of Track-Etched Membranes. Radiat. Phys. Chem. 2014, 105, 26–30. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Mashentseva, A.A.; Güven, O.; Gorin, Y.G.; Zdorovets, M.V. Protein Fouling of Modified Microporous PET Track-Etched Membranes. Radiat. Phys. Chem. 2018, 151, 141–148. [Google Scholar] [CrossRef]
- Zhumanazar, N.; Korolkov, I.V.; Yeszhanov, A.B.; Shlimas, D.I.; Zdorovets, M.V. Electrochemical Detection of Lead and Cadmium Ions in Water by Sensors Based on Modified Track-Etched Membranes. Sens. Actuators A Phys. 2023, 354, 114094. [Google Scholar] [CrossRef]
- Shakayeva, A.K.; Munasbaeva, K.K.; Zhumazhanova, A.T.; Zdorovets, M.V.; Korolkov, I.V. Electrochemical Sensors Based on Modified Track–Etched Membrane for Non-Enzymatic Glucose Determination. Microchem. J. 2023, 193, 109003. [Google Scholar] [CrossRef]
- Parmanbek, N.; Sütekin, D.S.; Barsbay, M.; Mashentseva, A.A.; Zheltov, D.A.; Aimanova, N.A.; Jakupova, Z.Y.; Zdorovets, M.V. Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly(2-(dimethylamino)ethyl methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As(III). Polymers 2022, 14, 4026. [Google Scholar] [CrossRef] [PubMed]
- Mashentseva, A.A. Effect of the Oxidative Modification and Activation of Templates Based on Poly(Ethylene Terephthalate) Track-Etched Membranes on the Electroless Deposition of Copper and the Catalytic Properties of Composite Membranes. Pet. Chem. 2019, 59, 1337–1344. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Barsbay, M.; Aimanova, N.A.; Zdorovets, M.V. Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light. Membranes 2021, 11, 60. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Kuandykova, A.; Yeszhanov, A.B.; Güven, O.; Gorin, Y.G.; Zdorovets, M.V. Modification of Pet Ion-Track Membranes by Silica Nanoparticles for Direct Contact Membrane Distillation of Salt Solutions. Membranes 2020, 10, 322. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Yeszhanov, A.B.; Gorin, Y.G.; Zdorovets, M.V.; Khlebnikov, N.A.; Serkov, K.V. Hydrophobization of PET Track-Etched Membranes for Direct Contact Membrane Distillation. Mater. Res. Exp. 2018, 5, 065317. [Google Scholar] [CrossRef]
- Shakayeva, A.K.; Yeszhanov, A.B.; Zhumazhanova, A.T.; Korolkov, I.V.; Zdorovets, M.V. Fabrication of Hydrophobic PET Track-Etched Membranes Using 2,2,3,3,4,4,4-Heptafluorobutyl Methacrylate for Water Desalination by Membrane Distillation. Eurasian J. Chem. 2024, 29, 81–88. [Google Scholar] [CrossRef]
- Sangeetha, V.; Kaleekkal, N.J. Investigation of the Performance of Dual-Layered Omniphobic Electrospun Nanofibrous Membranes for Direct Contact Membrane Distillation. J. Environ. Chem. Eng. 2022, 10, 108661. [Google Scholar] [CrossRef]
- Kong, Z.; Hu, Y.; Yan, M.; Jiang, N.; Meng, L.; Huang, M. Novel Dual-Layer ZIF-71/PH-PSF Electrospun Nanofiber for Robust Membrane Distillation. Sep. Purif. Technol. 2024, 344, 127215. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, Y.; Song, C.; Zhu, Y.; Song, C.; Fan, X.; You, Z. One-Step Preparation of Efficient SiO2/PVDF Membrane by Sol-Gel Strategy for Oil/Water Separation under Harsh Environments. Polymer 2022, 260, 125402. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, J.; Lee, E.; Lee, J.; Jeong, S. Effect of Fabrication Technique on Membrane Distillation Performance of Photothermal Membrane: Electrospinning vs Electrospraying. Desalination 2023, 564, 116799. [Google Scholar] [CrossRef]
- Jiang, S.; Liang, S.; Hu, C.; Fan, Y.; Su, Z.; Geng, Z.; Wang, C. High Performance Bimetallic ZIF-CoZn@PVDF-HFP Composite Nanofiber Membrane for Membrane Distillation Based on Coaxial Electrospinning Technology. Sep. Purif. Technol. 2024, 344, 127280. [Google Scholar] [CrossRef]
- Muslimova, I.B.; Zhatkanbayeva, Z.K.; Omertasov, D.D.; Melnikova, G.B.; Yeszhanov, A.B.; Güven, O.; Chizhik, S.A.; Zdorovets, M.V.; Korolkov, I.V. Stimuli-Responsive Track-Etched Membranes for Separation of Water—Oil Emulsions. Membranes 2023, 13, 523. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Güven, O.; Melnikova, G.B.; Dosmagambetova, S.S.; Borissenko, A.N.; Nurkassimov, A.K.; Kassymzhanov, M.T.; Zdorovets, M.V. Effect of Hydrophobized PET TeMs Membrane Pore-Size on Saline Water Treatment by Direct Contact Membrane Distillation. RSC Adv. 2024, 14, 4034–4042. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Dosmagambetova, S.S.; Zdorovets, M.V.; Güven, O. Recent Progress in the Membrane Distillation and Impact of Track-Etched Membranes. Polymers 2021, 13, 2520. [Google Scholar] [CrossRef]
- Pham, L.Q.; Uspenskaya, M.V.; Olekhnovich, R.O.; Bernal, R.A.O. A Review on Electrospun Pvc Nanofibers: Fabrication, Properties, and Application. Fibers 2021, 9, 12. [Google Scholar] [CrossRef]
- Asmatulu, R.; Muppalla, H.; Veisi, Z.; Khan, W.S.; Asaduzzaman, A.; Nuraje, N. Study of Hydrophilic Electrospun Nanofiber Membranes for Filtration of Micro and Nanosize Suspended Particles. Membranes 2013, 3, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- El Messiry, M.; Fadel, N. Study of Poly(Vinyl Chloride) Nanofiber Structured Assemblies as Oil Sorbents. J. Text. Inst. 2019, 110, 1114–1125. [Google Scholar] [CrossRef]
- Jia, P.; Wang, R.; Hu, L.; Zhang, M.; Zhou, Y. Self-Plasticization of PVC via Click Reaction of a Monooctyl Phthalate Derivative. Pol. J. Chem. Technol. 2017, 19, 16–19. [Google Scholar] [CrossRef]
- Crewe, R.J.; Staggs, J.E.J.; Williams, P.T. Drag-Induced Apparent Mass Gain in Thermogravimetry. Polym. Degrad. Stab. 2007, 92, 2070–2075. [Google Scholar] [CrossRef]
- Tsioptsias, C. On the Latent Limit of Detection of Thermogravimetric Analysis. Measurement 2022, 204, 112136. [Google Scholar] [CrossRef]
- Muslimova, I.B.; Zhumanazar, N.; Melnikova, G.B.; Yeszhanov, A.B.; Zhatkanbayeva, Z.K.; Chizhik, S.A.; Zdorovets, M.V.; Güven, O.; Korolkov, I.V. Preparation and Application of Stimuli-Responsive PET TeMs: RAFT Graft Block Copolymerisation of Styrene and Acrylic Acid for the Separation of Water–Oil Emulsions. RSC Adv. 2024, 14, 14425–14437. [Google Scholar] [CrossRef]
- Zhang, G.; Li, L.; Huang, Y.; Hozumi, A.; Sonoda, T.; Su, Z. Fouling-Resistant Membranes for Separation of Oil-in-Water Emulsions. RSC Adv. 2018, 8, 5306–5311. [Google Scholar] [CrossRef]
- Hai, A.; Selvaraj, M.; Govindan, B.; Krishnamoorthy, R.; Hasan, S.W.; Banat, F. Demulsification Performance of Superhydrophobic PVDF Membrane: A Parametric Study. J. Membr. Sci. Res. 2020, 6, 390–394. [Google Scholar] [CrossRef]
- Yang, C.; Han, N.; Wang, W.; Zhang, W.; Han, C.; Cui, Z.; Zhang, X. Fabrication of a PPS Microporous Membrane for Efficient Water-in-Oil Emulsion Separation. Langmuir 2018, 34, 10580–10590. [Google Scholar] [CrossRef]
- Wu, J.; Cui, Z.; Yu, Y.; Han, H.; Tian, D.; Hu, J.; Qu, J.; Cai, Y.; Luo, J.; Li, J. A 3D Smart Wood Membrane with High Flux and Efficiency for Separation of Stabilized Oil/Water Emulsions. J. Hazard. Mater. 2023, 441, 129900. [Google Scholar] [CrossRef] [PubMed]
- Korolkov, I.V.; Gorin, Y.G.; Yeszhanov, A.B.; Kozlovskiy, A.L.; Zdorovets, M.V. Preparation of PET Track-Etched Membranes for Membrane Distillation by Photo-Induced Graft Polymerization. Mater. Chem. Phys. 2018, 205, 55–63. [Google Scholar] [CrossRef]
- Zhang, J.; Duke, M.; Ostarcevic, E.; Dow, N.; Gray, S.; Li, J. Performance of New Generation Membrane Distillation Membranes. Water Supply 2009, 9, 501–508. [Google Scholar] [CrossRef]
- Hegde, C.; Ribeiro, R. Preparation and Characterization of Hydrophobic Membranes and Their Seawater Desalination Performance Study by Direct Contact Membrane Distillation. Nat. Environ. Pollut. Technol. 2022, 21, 1599–1608. [Google Scholar] [CrossRef]
- Liu, C.; Liu, G.; Sun, W.; Ren, X.; Qiu, L.; Zhang, S.; Xie, K. Performance Enhancement of Membrane Distillation in the Desalina-Tion of Sea Water and Brackish Water. In Proceedings of the 2022 International Conference on Optoelectronic Information and Functional Materials (OIFM 2022), Chongqing, China, 18–20 March 2022; Zuo, C., Ed.; SPIE: Bellingham, WA, USA, 2022; Volume 12255, p. 13. [Google Scholar]
- González, D.; Amigo, J.; Suárez, F. Membrane Distillation: Perspectives for Sustainable and Improved Desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [Google Scholar] [CrossRef]
- Arslan, M.; Haizhen, X.; Khalid Khan, M.N.; Ali, K.; Tariq Baig, Z. Bin Innovative Materials for Enhanced Heat and Mass Transfer in Membrane Distillation. In Proceedings of the 2024 Horizons of Information Technology and Engineering (HITE), Lahore, Pakistan, 15–16 October 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Pan, C.Y.; Xu, G.R.; Xu, K.; Zhao, H.L.; Wu, Y.Q.; Su, H.C.; Xu, J.M.; Das, R. Electrospun Nanofibrous Membranes in Membrane Distillation: Recent Developments and Future Perspectives. Sep. Purif. Technol. 2019, 221, 44–63. [Google Scholar] [CrossRef]
Membrane | Vacuum Pressure, mbar | Productivity, L/m2·min |
---|---|---|
PET TeMs-PVC with pore size of 1159 ± 27 nm | 900 | 4.4 |
800 | 5.8 | |
700 | 7.0 | |
PET TeMs-PVC with pore size of 1727 ± 73 nm | 900 | 4.6 |
800 | 14.6 | |
700 | 21.5 | |
PET TeMs-PVC with pore size of 2494 ± 81 nm | 900 | 15.2 |
800 | 35.4 | |
700 | 47.3 |
PET TeMs-PVC with Pore Diameter of 1159 ± 27 nm | PET TeMs-PVC with Pore Diameter of 1727 ± 73 nm | PET TeMs-PVC with Pore Diameter of 2494 ± 81 nm | ||||
---|---|---|---|---|---|---|
Degree of Salt Rejection, % | Water Flow, kg/m2·h | Degree of Salt Rejection, % | Water Flow, kg/m2·h | Degree of Salt Rejection, % | Water Flow, kg/m2·h | |
NaCl 7.5 g/L | 97.2 | 10.14 | 96.4 | 14.96 | 95.5 | 16.60 |
NaCl 15 g/L | 98.7 | 9.74 | 99.1 | 13.36 | 97.15 | 13.61 |
NaCl 30 g/L | 98.67 | 6.69 | 97.12 | 11.85 | 95.64 | 12.51 |
Concentration in the Feed, µg/L | PET TeMs-PVC (1159 ± 27 nm), 2.5 h of Operation, µg/L | PET TeMs-PVC (1159 ± 27 nm), 5 h of Operation, µg/L | PET TeMs-PVC (1727 ± 73 nm), 2.5 h of Operation, µg/L | PET TeMs-PVC (1727 ± 73 nm), 5 h of Operation, µg/L | PET TeMs-PVC (2494 ± 81 nm), 2.5 h of Operation, µg/L | PET TeMs-PVC (2494 ± 81 nm), 5 h of Operation, µg/L | |
---|---|---|---|---|---|---|---|
Water Flux, kg/m2·h | - | 6.42 kg/m2·h | 11.5 kg/m2·h | 12.2 kg/m2·h | |||
Al (σ = ±32%) | <30 | <3 | <3 | <3 | <3 | <3 | <3 |
Fe (σ = ±10%) | 3.23 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
Mn (σ = ±32%) | <4 | <0.4 | <0.4 | <0.4 | <0.4 | 3.3 | 3.1 |
Sr (σ = ±15%) | 1240 | <0.5 | <0.5 | 3.0 | 4.9 | 23.1 | 28.2 |
Ca (σ = ±16%) | 152,000 | 130 | 80 | 32 | 54 | 267 | 333 |
Mg (σ = ±15%) | 43,000 | 23 | 27 | 110 | 170 | 780 | 950 |
Na (σ = ±15%) | 235,000 | 1870 | 1888 | 1070 | 1710 | 5110 | 7220 |
Concentration in the Feed, µg/L | PET TeMs-PVC (1159 ± 27 nm), 2.5 h of Operation, µg/L | PET TeMs-PVC (1159 ± 27 nm), 5 h of Operation, µg/L | PET TeMs-PVC (1727 ± 73 nm), 2.5 h of Operation, µg/L | PET TeMs-PVC (1727 ± 73 nm), 5 h of Operation, µg/L | PET TeMs-PVC (2494 ± 81 nm), 2.5 h of Operation, µg/L | PET TeMs-PVC (2494 ± 81 nm), 5 h of Operation, µg/L | |
---|---|---|---|---|---|---|---|
Water Flux, kg/m2·h | - | 14.9 kg/m2·h | 15.2 kg/m2·h | 17.3 kg/m2·h | |||
Al (σ = ±32%) | 104 | <3 | <3 | <3 | <3 | <3 | <3 |
Co (σ = ±20%) | 1.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Cs (σ = ±20%) | 0.20 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Fe (σ = ±10%) | 6800 | <0.5 | 5.3 | <0.5 | 10.8 | 68.5 | 130 |
Mn (σ = ±32%) | 4.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 |
Mo (σ = ±26%) | 970 | <0.4 | 0.87 | <0.4 | 5.4 | 15.9 | 46.4 |
Sb (σ = ±26%) | 30 | <0.3 | <0.3 | <0.3 | <0.3 | 0.58 | 1.4 |
Sr (σ = ±15%) | 270 | <0.5 | <0.5 | <0.5 | <0.5 | 2.2 | 2.7 |
Ca (σ = ±16%) | 21,300 | <20 | <20 | <20 | <20 | 74 | 150 |
Mg (σ = ±15%) | 990 | <10 | <10 | <10 | <10 | 54 | 110 |
Na (σ = ±15%) | 440,000 | 250 | 450 | 230 | 2630 | 9920 | 23,500 |
134Cs | 137Cs | 60Co | 57Co | 124Sb | 65Zn | |
---|---|---|---|---|---|---|
Activity of the feed, Bq/kg | 77.0 ± 7.5 | 451 ± 45 | 2052 ± 200 | 32,882 ± 3200 | 1385 ± 135 | 4421 ± 440 |
PET TeMs-PVC (1159 ± 27 nm,) 5 h of operation, Bq/kg | <1.3 | <1.1 | <1.2 | 16.0 ± 1.5 | <11 | <3.2 |
PET TeMs-PVC (1727 ± 73 nm), 5 h of operation, Bq/kg | 2.6 ± 1.0 | 2.33 ± 0.95 | <1.3 | 172 ± 15 | <12 | <3.7 |
PET TeMs-PVC (2494 ± 81 nm), 5 h of operation, Bq/kg | 3.9 ± 1.8 | 16.7 ± 2.2 | 92.9 ± 9.0 | 1448 ± 140 | 34 ± 15 | <6.7 |
Intervention levels (Bq/kg) for the content of individual radionuclides in drinking water, Bq/kg * | 7.2 | 11 | 40 | 650 | 55 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeszhanov, A.B.; Shakayeva, A.K.; Zdorovets, M.V.; Borgekov, D.B.; Kozlovskiy, A.L.; Kharkin, P.V.; Zheltov, D.A.; Krasnopyorova, M.V.; Güven, O.; Korolkov, I.V. Hybrid Membranes Based on Track-Etched Membranes and Nanofiber Layer for Water–Oil Separation and Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions. Membranes 2025, 15, 202. https://doi.org/10.3390/membranes15070202
Yeszhanov AB, Shakayeva AK, Zdorovets MV, Borgekov DB, Kozlovskiy AL, Kharkin PV, Zheltov DA, Krasnopyorova MV, Güven O, Korolkov IV. Hybrid Membranes Based on Track-Etched Membranes and Nanofiber Layer for Water–Oil Separation and Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions. Membranes. 2025; 15(7):202. https://doi.org/10.3390/membranes15070202
Chicago/Turabian StyleYeszhanov, Arman B., Aigerim Kh. Shakayeva, Maxim V. Zdorovets, Daryn B. Borgekov, Artem L. Kozlovskiy, Pavel V. Kharkin, Dmitriy A. Zheltov, Marina V. Krasnopyorova, Olgun Güven, and Ilya V. Korolkov. 2025. "Hybrid Membranes Based on Track-Etched Membranes and Nanofiber Layer for Water–Oil Separation and Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions" Membranes 15, no. 7: 202. https://doi.org/10.3390/membranes15070202
APA StyleYeszhanov, A. B., Shakayeva, A. K., Zdorovets, M. V., Borgekov, D. B., Kozlovskiy, A. L., Kharkin, P. V., Zheltov, D. A., Krasnopyorova, M. V., Güven, O., & Korolkov, I. V. (2025). Hybrid Membranes Based on Track-Etched Membranes and Nanofiber Layer for Water–Oil Separation and Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions. Membranes, 15(7), 202. https://doi.org/10.3390/membranes15070202