Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,932)

Search Parameters:
Keywords = natural polysaccharides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5589 KB  
Review
Construction and Advanced Utilization of Self-Assembled and Scale-Down Chitin Nanofibers for Polymer Composite Design
by Masayasu Totani and Jun-ichi Kadokawa
Molecules 2026, 31(2), 364; https://doi.org/10.3390/molecules31020364 - 20 Jan 2026
Abstract
This review provides a comprehensive overview of recent progress in chitin-based nanomaterials and their composite engineering. Particular focus is placed on techniques for constructing self-assembled chitin nanofibers (ChNFs) with tightly bundled fibrillar structures, as well as strategies for fabricating composites in which the [...] Read more.
This review provides a comprehensive overview of recent progress in chitin-based nanomaterials and their composite engineering. Particular focus is placed on techniques for constructing self-assembled chitin nanofibers (ChNFs) with tightly bundled fibrillar structures, as well as strategies for fabricating composites in which the ChNFs serve as reinforcing components, combined with natural polymeric matrices. In addition, high-crystalline scaled-down (SD-)ChNFs were fabricated through partial deacetylation of the ChNFs, followed by electrostatic repulsive disassembly of the abovementioned bundled fibrils in aqueous acetic acid, which were further used to reinforce composites comprising the other polysaccharides. Mixing the SD-ChNFs with low-crystalline chitin substrates further enabled the fabrication of all-chitin composites (AChCs) that exploit crystallinity contrast to achieve enhanced tensile strength. Moreover, the AChC films exhibited high cell-adhesive properties and promoted the formation of three-dimensional cell-networks, highlighting their potential for biomedical applications. Full article
Show Figures

Figure 1

15 pages, 4292 KB  
Article
Alfalfa Polysaccharide Improves Rabbit Growth by Modulating Gut Microbiota and Suppressing Inflammation Through PPARγ/NF-κB Pathway
by Junying Xu, Fang Li, Yuanxin Zhu, Dongmei Liu, Wenjing Duan, Ran Yu, Boshuai Liu, Hao Sun, Zhichang Wang, Defeng Li, Xiaoyan Zhu, Yinghua Shi and Yalei Cui
Int. J. Mol. Sci. 2026, 27(2), 994; https://doi.org/10.3390/ijms27020994 - 19 Jan 2026
Abstract
Meat rabbits are ideal meat-producing animals. However, weaning-induced intestinal inflammation often leads to growth delays, and severe cases impair breeding efficiency. Alfalfa polysaccharides (APSs) have antioxidant and anti-inflammatory properties, making them potential natural alternatives to antibiotics. To date, relatively limited research has been [...] Read more.
Meat rabbits are ideal meat-producing animals. However, weaning-induced intestinal inflammation often leads to growth delays, and severe cases impair breeding efficiency. Alfalfa polysaccharides (APSs) have antioxidant and anti-inflammatory properties, making them potential natural alternatives to antibiotics. To date, relatively limited research has been conducted on APS in meat rabbits. This research investigated the effects of APS on growth performance, intestinal inflammation, and meat quality in rabbits. Eighty healthy rabbits were randomized into four treatment groups, each group consisting of five replicates, with four rabbits per replicate. The four experimental groups were the control group (CON, basal diet), 400 mg/kg APS group (basal diet + 400 mg/kg APS), 800 mg/kg APS group (basal diet + 800 mg/kg APS), and 1200 mg/kg APS group (basal diet + 1200 mg/kg APS). The results indicated that adding 800 mg/kg APS to the diet significantly increased ADG (p < 0.001) and reduced F/G (p = 0.008). With increasing APS supplementation levels, slaughter weight (p = 0.035), eviscerated weight (p = 0.020), semi-eviscerated weight (p = 0.015), and semi-eviscerated yield percentage (p = 0.035) were all significantly increased. Additionally, dripping loss in muscle was significantly reduced in the 800 mg/kg APS group (p = 0.006). In addition, the villus height of the small intestine and the expression of tight junctions were significantly increased by 800 mg/kg APS supplementation, which reduced intestinal permeability and lowered levels of intestinal inflammatory mediators by inhibiting the PPARγ/NF-κB pathway. Additionally, a diet with APS significantly increased the abundance of Flavonifractor, a butyrate-producing bacterium in the cecum. Cell assays further demonstrated that butyrate could inhibit the release of inflammatory cytokines from RAW264.7 via the PPARγ/NF-κB pathway. In conclusion, APS improved growth performance by reshaping the gut microbiota and increasing the level of butyrate in the cecum, further inhibiting intestinal inflammation through the PPARγ/NF-κB signaling pathway. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 1603 KB  
Article
Semi-Synthesis of Chondroitin 6-Phosphate Assisted by Microwave Irradiation
by Fabiana Esposito, Sabrina Cuomo, Serena Traboni, Alfonso Iadonisi, Donatella Cimini, Annalisa La Gatta, Chiara Schiraldi and Emiliano Bedini
Polysaccharides 2026, 7(1), 11; https://doi.org/10.3390/polysaccharides7010011 - 19 Jan 2026
Abstract
Chondroitin sulfate is a glycosaminoglycan polysaccharide, playing key roles in a plethora of physiopathological processes typical of higher animals. The position of sulfate groups within CS disaccharide subunits composing the polysaccharide chain is able to encode specific functional information. In order to expand [...] Read more.
Chondroitin sulfate is a glycosaminoglycan polysaccharide, playing key roles in a plethora of physiopathological processes typical of higher animals. The position of sulfate groups within CS disaccharide subunits composing the polysaccharide chain is able to encode specific functional information. In order to expand such a “sulfation code”, access to non-natural CS variants and mimics thereof can be pursued. In this context, an interesting topic concerns phosphorylated analogs of CS polysaccharides, as the replacement of sulfate groups with phosphates can lead to unreported activities of phosphorylated CS. In light of this, the phosphorylation reaction of a microbial-sourced, unsulfated chondroitin polysaccharide with phosphoric acid is reported in the present study, testing different microwave irradiation conditions and comparing them with conventional heating procedures. The obtained products were subjected to a detailed characterization, in terms of chemical structure and hydrodynamic properties, by 1D- and 2D-NMR spectroscopy and HP-SEC-TDA analysis, respectively. The characterization study showed how different reaction conditions can not only influence the regioselectivity and degree of phosphorylation but also trigger the formation of phosphate diester functionalities acting as cross-linkers between polysaccharide chains. The results from the screening presented in this work could be interesting for any research devoted to the regioselective phosphorylation of a polysaccharide. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Graphical abstract

34 pages, 5373 KB  
Review
Harnessing Phytochemicals and Nanotechnology Synergy for Molecular, Epigenetic, and Microbiota-Driven Regulation in Type 2 Diabetes Mellitus
by Gagan Prakash, Anis Ahmad Chaudhary, Ruchita Tanu, Mohamed A. M. Ali, Fehmi Boufahja, Pushpender K. Sharma, Sudarshan Singh Lakhawat, Tejpal Yadav, Navneet Kumar Upadhyay and Vikram Kumar
Pharmaceutics 2026, 18(1), 113; https://doi.org/10.3390/pharmaceutics18010113 - 15 Jan 2026
Viewed by 309
Abstract
Type 2 diabetes mellitus (T2DM) is a multifaceted metabolic disorder marked by impaired insulin action, pancreatic β-cell dysfunction, and the involvement of several interconnected mechanisms, including inflammation, oxidative stress, and epigenetic alterations. Despite progress in conventional therapies, achieving durable glycemic control and minimizing [...] Read more.
Type 2 diabetes mellitus (T2DM) is a multifaceted metabolic disorder marked by impaired insulin action, pancreatic β-cell dysfunction, and the involvement of several interconnected mechanisms, including inflammation, oxidative stress, and epigenetic alterations. Despite progress in conventional therapies, achieving durable glycemic control and minimizing complications remain major challenges. This review discusses the emerging role of bioactive phytochemicals—such as curcumin, berberine, resveratrol, flavonoids, and polysaccharides—in modulating essential molecular pathways including AMPK, PI3K/AKT, and cAMP/PKA, which contribute to enhanced insulin sensitivity, glucose regulation, and β-cell protection. These natural compounds also influence gut microbiota modulation and epigenetic mechanisms, offering additional metabolic and anti-inflammatory benefits. This review synthesizes evidence from peer-reviewed studies published between 2000 and 2024, incorporating bibliometric trends showing an increasing research focus on phytochemicals for T2DM management. However, limitations such as low solubility, instability, and poor absorption restrict their clinical application. Advances in nanotechnology-based delivery systems, including nanoparticles, liposomes, and nanoemulsions, have shown potential to overcome these barriers by improving stability, bioavailability, and targeted delivery of phytochemicals. The integration of gut microbiota modulation with nanocarrier-enabled phytochemical therapy supports a precision medicine approach for managing T2DM. Preliminary clinical evidence highlights significant improvements in glycemic control and inflammatory status, yet further large-scale, well-controlled trials are essential to ensure safety, optimize dosages, and standardize combination regimens. Overall, phytochemical therapies, reinforced by nanotechnology and microbiota modulation, present a promising, safe, and holistic strategy for T2DM management. Continued interdisciplinary research and clinical validation are crucial for translating these advances into effective therapeutic applications and reducing the global diabetes burden. Full article
Show Figures

Graphical abstract

22 pages, 5344 KB  
Article
Polysaccharides from the Cherry Peel of Coffea arabica L. Attenuate Obesity by Altering Lipid Metabolism and Inflammation and Regulating Gut Microbiota in Mice Fed a High-Fat Diet
by Guiqin Hu, Yinghong Gu, Wenyang Zhang, Xiaobin He, Xingzhong Wu, Yufei Jiang, Hong Li and Yu Cao
Foods 2026, 15(2), 312; https://doi.org/10.3390/foods15020312 - 15 Jan 2026
Viewed by 97
Abstract
Long-term excessive fat intake can easily induce metabolic diseases such as fatty liver and hyperlipidemia. As a natural active ingredient, polysaccharides exhibit notable lipid-lowering effects and can serve as effective lipid regulators. Nevertheless, the lipid-lowering effect of Arabica coffee cherry peel polysaccharides (CCPPs) [...] Read more.
Long-term excessive fat intake can easily induce metabolic diseases such as fatty liver and hyperlipidemia. As a natural active ingredient, polysaccharides exhibit notable lipid-lowering effects and can serve as effective lipid regulators. Nevertheless, the lipid-lowering effect of Arabica coffee cherry peel polysaccharides (CCPPs) and the underlying regulatory mechanism remain poorly understood. This study isolated polysaccharides from coffee cherry peel, and their functional properties and the lipid-lowering effects and mechanisms on hyperlipidemic mice. In high-fat diet-fed (HFD-fed) mice, CCPP administration had significant regulatory effects on various metabolic parameters. In laboratory mice where hyperlipidemia is induced by a high-fat diet, CCPP administration improved serum lipid levels and demonstrated anti-inflammatory and antioxidant effects. These benefits were achieved by reducing pro-inflammatory cytokine expression, enhancing antioxidant enzyme activity, and lowering overall oxidative stress. Additionally, it effectively decreased fat area in liver tissues and adipocytes. Specifically, compared with the control group, after high-dose CCPP intervention, the adipocyte area of mice on a high-fat diet was significantly reduced by 41.3%. Notably, CCPP intervention resulted in a shift in the gut microbiota composition. At the phylum level, the model group showed a significant increase in Bacillota and a concomitant reduction in Bacteroidetes in comparison with the control group. Compared with the model group, CCPP intervention, especially in the CCPP-H group, resulted in an increase in the proportion of Bacteroidetes and a decrease in Bacillota. At the genus level, CCPP modulated the abundances of key bacterial genera; for instance, the relative abundance of Lachnospiraceae_NK4A136_group increased from 2.64% in the model group to 11.9% in CCPP-H group, while Faecalibaculum decreased from 62.69% to 41.27% in CCPP-L group and 25.29% in CCPP-H group. These shifts suggest that CCPP has a reparative effect on the gut microbial composition, potentially contributing to the promotion of gut health. Taken together, these factors highlight the promise of CCPP as a functional food ingredient for dietary interventions to ameliorate obesity and hyperlipidemia. Full article
Show Figures

Graphical abstract

31 pages, 3129 KB  
Review
From Traditional Medicinal Plant to Modern Pharmacotherapy: A Comprehensive Review of the Bioactive Compounds and Health Applications of Eucommia ulmoides
by Wanting Xie, Yubo Xiao, Pan Xu, Hui Zheng, Xianping Zeng, Yuhang Wu, Jiani Jiang, Fan Jia, Jianye Yan, Tao Zheng and Yong Yang
Nutrients 2026, 18(2), 234; https://doi.org/10.3390/nu18020234 - 12 Jan 2026
Viewed by 218
Abstract
Eucommia ulmoides Oliv. (E. ulmoides), an endemic tree species in China, holds significant value in traditional Chinese medicine industry and health food. The plant is rich in diverse bioactive compounds, including lignans, iridoids, flavonoids, polysaccharides, E. ulmoides gum, amino acids, and [...] Read more.
Eucommia ulmoides Oliv. (E. ulmoides), an endemic tree species in China, holds significant value in traditional Chinese medicine industry and health food. The plant is rich in diverse bioactive compounds, including lignans, iridoids, flavonoids, polysaccharides, E. ulmoides gum, amino acids, and minerals. These components contribute to a range of pharmacological activities such as anti-inflammatory, antioxidant, antihypertensive, immunomodulatory, and bone-protective effects, which support its long-standing traditional use and emerging clinical and adjunctive applications. While current research has predominantly focused on the bark and leaves, other parts, such as flowers, seeds, stems and roots, remain underexplored despite their substantial potential for medicinal and edible applications. Based on the recent literature, this paper systematically summarized the chemical composition, health benefits, and comprehensive utilization of different parts of E. ulmoides (bark, leaves, flowers, and seeds), aiming to provide a theoretical foundation for the high-value utilization of the entire plant resources of E. ulmoides. As a health-promoting plant resource, E. ulmoides has extensive development potential in applications such as health foods, natural medicines, and agricultural inputs. Future research should prioritize elucidating the synergistic mechanisms among different active compounds, advancing technologies for multi-part utilization, and establishing standardized quality evaluation systems to facilitate broader applications in functional foods, pharmaceuticals, and related interdisciplinary fields. Full article
(This article belongs to the Special Issue Bioactive Ingredients in Plants Related to Human Health—2nd Edition)
Show Figures

Graphical abstract

39 pages, 4702 KB  
Review
Biopolymer-Based Active and Intelligent Food Packaging: Recent Advances in Materials, Technologies, and Applications
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Polymers 2026, 18(2), 196; https://doi.org/10.3390/polym18020196 - 10 Jan 2026
Viewed by 515
Abstract
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing [...] Read more.
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing natural biopolymers including polysaccharides, proteins, and their composites. The integration of antimicrobial agents, natural colorimetric indicators, nanofillers, and advanced fabrication techniques has enabled the creation of multifunctional packaging materials capable of extending shelf life, monitoring food quality in real-time, and reducing environmental impact. This review organizes the current research on starch, chitosan-, cellulose-, pectin-, bacterial cellulose-, pullulan-, gelatin-, zein-, and dextran-based packaging systems, with particular emphasis on their physicochemical properties, functional performance, and practical applications for preserving various food products, including meat, fish, fruits, and other perishables. The challenges associated with mechanical strength, water resistance, scalability, and commercial viability are critically evaluated alongside emerging solutions involving chemical modifications, nanocomposite formulations, and innovative processing technologies. Future perspectives highlight the need for standardization, life cycle assessments, regulatory frameworks, and consumer acceptance studies to facilitate the transition from laboratory innovations to industrial-scale implementation of sustainable biopolymer packaging solutions. Full article
Show Figures

Figure 1

22 pages, 3453 KB  
Article
Influence of Deep Eutectic Solvents and Polyphenolic Extracts on the Structure and Functional Properties of Sodium Alginate Films
by Daniel Szopa, Paulina Wróbel, Julia Zwolińska, Hira Anwar, Maciej Kaniewski and Anna Witek-Krowiak
Polymers 2026, 18(2), 186; https://doi.org/10.3390/polym18020186 - 9 Jan 2026
Viewed by 335
Abstract
The growing demand for biodegradable and functional packaging has driven research toward polysaccharide-based materials with improved performance. In this study, sodium alginate films were modified using natural deep eutectic solvents (NADES) and acorn polyphenolic extract to enhance their antimicrobial, mechanical, and thermal properties. [...] Read more.
The growing demand for biodegradable and functional packaging has driven research toward polysaccharide-based materials with improved performance. In this study, sodium alginate films were modified using natural deep eutectic solvents (NADES) and acorn polyphenolic extract to enhance their antimicrobial, mechanical, and thermal properties. The films were acquired by solvent casting and characterized through mechanical, spectroscopic, thermal, and microbiological analyses. Both NADES and the polyphenolic extract enhanced tensile strength and flexibility through additional hydrogen bonding within the alginate network, while the extract also introduced antioxidant functionality. Among all tested formulations, the A4E2 film exhibited the most balanced performance. FTIR spectra revealed hydrogen bonding between the film components, and thermogravimetric analysis showed an approximately 15 °C (F-EXT) and 20 °C (F-DES) shift in the main DTG degradation peak, indicating enhanced thermal stability. Controlled-release experiments demonstrated the gradual diffusion of phenolic compounds in aqueous, acidic, and fatty simulants, with an initial release phase within the first 6 h followed by sustained release up to 48 h, confirming the films’ suitability for various food environments. The combined modification reduced the growth of Escherichia coli and Staphylococcus aureus by 30–35%, with inhibition zone diameters reaching 27.52 ± 2.87 mm and 25.68 ± 1.52 mm, respectively, evidencing synergistic antimicrobial activity. These results highlight the potential of NADES- and extract-modified alginate films as sustainable materials for active food packaging applications. Full article
Show Figures

Graphical abstract

23 pages, 1396 KB  
Article
Physicochemical and Sensory Evaluation of Dark Chocolate Enriched with Aloe vera-Derived Polysaccharide
by Veronika Kotrcová, Ekambaranellore Prakash, Marcela Sluková, Jana Čopíková and Natália Palugová
Polysaccharides 2026, 7(1), 6; https://doi.org/10.3390/polysaccharides7010006 - 9 Jan 2026
Viewed by 250
Abstract
The demand for clean-label functional foods has increased interest in natural polysaccharides with health benefits. Acemannan, an O-acetylated glucomannan from Aloe vera, possesses antioxidant, immunomodulatory, and prebiotic activities, but its performance in fat-based systems is not well understood. This study examined the [...] Read more.
The demand for clean-label functional foods has increased interest in natural polysaccharides with health benefits. Acemannan, an O-acetylated glucomannan from Aloe vera, possesses antioxidant, immunomodulatory, and prebiotic activities, but its performance in fat-based systems is not well understood. This study examined the incorporation of acemannan into dark chocolate at 1% and 5% (w/w) and its effects on physicochemical, rheological, antioxidant, and sensory properties. Particle size distribution remained within acceptable limits, though the 5% sample showed a larger mean size and broader span. Rheological tests confirmed shear-thinning behavior, with the higher concentration increasing viscosity at low shear and reducing it at high shear. Antioxidant activity measured by the DPPH assay showed modest improvement in enriched samples. Consumer tests with 30 panelists indicated a strong preference (89%) for the 1% formulation, which maintained a smooth mouthfeel and balanced sensory characteristics, while the 5% sample displayed more fruity and earthy notes with lower acceptance. GC–MS analysis revealed altered volatile profiles, and FTIR spectroscopy confirmed acemannan stability in the chocolate matrix. These findings demonstrate that acemannan can be incorporated into dark chocolate up to 1% as a multifunctional, structurally stable polysaccharide ingredient without compromising product quality. Full article
Show Figures

Graphical abstract

26 pages, 2985 KB  
Review
Marine Derived Natural Products: Emerging Therapeutics Against Herpes Simplex Virus Infection
by Vaibhav Tiwari, James Elste, Chunyu Wang and Fuming Zhang
Biomolecules 2026, 16(1), 100; https://doi.org/10.3390/biom16010100 - 7 Jan 2026
Viewed by 409
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) are highly prevalent human pathogens that establish lifelong latency in sensory neurons, posing a persistent challenge to global public health. Their clinical manifestations range from mild, self-limiting orolabial lesions to severe, life-threatening conditions such as disseminated neonatal [...] Read more.
Herpes simplex viruses (HSV-1 and HSV-2) are highly prevalent human pathogens that establish lifelong latency in sensory neurons, posing a persistent challenge to global public health. Their clinical manifestations range from mild, self-limiting orolabial lesions to severe, life-threatening conditions such as disseminated neonatal infections, focal encephalitis, and herpetic stromal keratitis, which can lead to irreversible corneal blindness. Beyond direct pathology, HSV-mediated genital ulcerative disease (GUD) significantly enhances mucosal susceptibility to HIV-1 and other sexually transmitted infections, amplifying co-infection risk and disease burden. Despite decades of clinical reliance on nucleoside analogues such as acyclovir, the therapeutic landscape has stagnated with rising antiviral resistance, toxicity associated with prolonged use, and the complete inability of current drugs to eliminate latency or prevent reactivation continue to undermine effective disease control. These persistent gaps underscore an urgent need for next-generation antivirals that operate through fundamentally new mechanisms. Marine ecosystems, the planet’s most chemically diverse environments, are providing an expanding repertoire of antiviral compounds with significant therapeutic promise. Recent discoveries reveal that marine-derived polysaccharides, sulfated glycans, peptides, alkaloids, and microbial metabolites exhibit remarkably potent and multi-targeted anti-HSV activities, disrupting viral attachment, fusion, replication, and egress, while also reshaping host antiviral immunity. Together, these agents showcase mechanisms and scaffolds entirely distinct from existing therapeutics. This review integrates emerging evidence on structural diversity, mechanistic breadth, and translational promise of marine natural products with anti-HSV activity. Collectively, these advances position marine-derived compounds as powerful, untapped scaffolds capable of reshaping the future of HSV therapeutics. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Graphical abstract

21 pages, 1212 KB  
Review
Mushroom-Derived Compounds as Inhibitors of Advanced Glycation End-Products
by Filip Šupljika, Monika Kovačević and Mojca Čakić Semenčić
Appl. Sci. 2026, 16(2), 617; https://doi.org/10.3390/app16020617 - 7 Jan 2026
Viewed by 120
Abstract
Mushrooms like Inonotus obliquus and Ganoderma lucidum show significant pharmacological promise. This review analyzes fungi as sources of natural inhibitors against Advanced Glycation End-products (AGEs)—key drivers of diabetes and neurodegeneration. We highlight that extracts from Lignosus rhinocerus and Auricularia auricula exhibit antiglycation potency [...] Read more.
Mushrooms like Inonotus obliquus and Ganoderma lucidum show significant pharmacological promise. This review analyzes fungi as sources of natural inhibitors against Advanced Glycation End-products (AGEs)—key drivers of diabetes and neurodegeneration. We highlight that extracts from Lignosus rhinocerus and Auricularia auricula exhibit antiglycation potency (IC50 as low as 0.001 mg/mL) superior to aminoguanidine. Inhibitory effects are attributed to bioactive fractions including FYGL proteoglycans, uronic acid-rich polysaccharides, and fungal-specific metabolites like ergothioneine. These compounds act through multi-target mechanisms across the glycation cascade: competitive inhibition of Schiff base formation, trapping reactive dicarbonyls (e.g., methylglyoxal), transition metal chelation, and direct scavenging of reactive oxygen species (ROS). Furthermore, the review addresses the transition from in vitro potency to in vivo efficacy (RAGE pathway modulation), stability during food processing (UV-B irradiation), and critical safety issues regarding heavy metal bioaccumulation. Mushroom-derived inhibitors represent a sustainable therapeutic alternative to synthetic agents, offering broader protection against glycative stress. This synthesis provides a foundation for developing standardized mushroom-based nutraceuticals for managing AGE-related chronic disorders. Full article
Show Figures

Figure 1

22 pages, 2668 KB  
Article
Sustainable Sourcing of l-Rhamnose-Rich Polysaccharides from Natural Biomass Diversity: Extraction, Primary Structural Elucidation, and Antioxidant Activity
by Moussa Amroudine, Thomas Flahaut, Christine Gardarin, Gwendoline Christophe, Pascal Dubessay, Alina-Violeta Ursu, Laurent Chaisemartin, Jean-Yves Berthon, Slim Abdelkafi, Philippe Michaud and Guillaume Pierre
Polysaccharides 2026, 7(1), 4; https://doi.org/10.3390/polysaccharides7010004 - 6 Jan 2026
Viewed by 237
Abstract
This study explores a multi-resource approach for extracting and characterizing l-rhamnose-rich polysaccharides from nine natural biomasses, including green macroalgae (Ulva spp.), sumac species (Rhus spp.), and agro-industrial by-products such as sea buckthorn and sesame cakes. Hot-water and alkaline extractions were [...] Read more.
This study explores a multi-resource approach for extracting and characterizing l-rhamnose-rich polysaccharides from nine natural biomasses, including green macroalgae (Ulva spp.), sumac species (Rhus spp.), and agro-industrial by-products such as sea buckthorn and sesame cakes. Hot-water and alkaline extractions were performed by biomass type, and the resulting fractions were analyzed using biochemical assays, monosaccharide profiling (HPAEC/PAD and GC/MS-EI), FTIR, and antioxidant activity tests. Extraction yields ranged from <1% in sea buckthorn residues to 15.48% in Ulva spp., which showed the highest recovery. l-rhamnose enrichment varied across biomasses: the highest proportions were found in Ulva extracts and Rhus semialata galls (PRS), reaching up to 44% of total sugars by HPAEC/PAD and 58% by GC/MS-EI. Antioxidant activities also differed markedly. In DPPH assays, the most active extracts were those from sea buckthorn berry cake (PTBA), Rhus coriaria seeds (PRC), and commercial sea buckthorn powder (PPA), with IC50 values of 32, 43, and 42 µg/mL, respectively. Hydroxyl-radical inhibition was also substantial, reaching 83.0% for PTBA, 79.4% for PRC, and 79.9% for Ulva lactuca at 1 g/L, compared with 97.5% for ascorbic acid. These results highlight specific biomasses as promising dual sources of l-rhamnose and natural antioxidants for valorization within a circular bioeconomy. Full article
Show Figures

Graphical abstract

26 pages, 1529 KB  
Article
Sustainable Valorization of Tsipouro Liquid Waste via Fermentation for Hericium erinaceus Biomass Production
by Eirini Stini, Ilias Diamantis, Stamatina Kallithraka, Seraphim Papanikolaou and Panagiota Diamantopoulou
Processes 2026, 14(1), 168; https://doi.org/10.3390/pr14010168 - 4 Jan 2026
Viewed by 235
Abstract
This study investigates the potential of tsipouro liquid waste (TLW) as a sustainable substrate for cultivating the edible–medicinal mushroom Hericium erinaceus under static liquid fermentation. TLW naturally contains high glycerol levels and significant quantities of phenolic compounds; therefore, five media (0–50% v/ [...] Read more.
This study investigates the potential of tsipouro liquid waste (TLW) as a sustainable substrate for cultivating the edible–medicinal mushroom Hericium erinaceus under static liquid fermentation. TLW naturally contains high glycerol levels and significant quantities of phenolic compounds; therefore, five media (0–50% v/v TLW) with varying phenolic concentrations and a standard initial glycerol level (~20 g/L) were prepared to simulate TLW-type substrates. Throughout fermentation, physicochemical parameters in the culture medium (pH, electrical conductivity, total sugars, free amino nitrogen, proteins, laccase activity, total phenolics, ethanol, glycerol) and biomass composition (intracellular polysaccharides, proteins, lipids, phenolic compounds, flavonoids, triterpenoids, antioxidant activity) were determined. Results showed that increasing TLW concentration enhanced biomass production and bioactive metabolite accumulation. The highest dry biomass (22.8 g/L) and protein (4.06 g/L) content were obtained in 50% v/v TLW, while maximum polysaccharides (6.8 g/L) occurred in 17% v/v TLW. Fungal growth led to a reduction of up to 74% in total phenolic content, indicating simultaneous bioremediation potential. Fruiting body formation—rare and uncommon in liquid cultures—occurred at the end of fermentation period. Fruiting bodies contained higher protein (24.5% w/w) and total phenolic compounds (13.36 mg GAE/g), whereas mycelium accumulated more polysaccharides (49% w/w). This study demonstrates that TLW can serve as a cost-effective, ecofriendly medium for producing high-value H. erinaceus biomass and bioactive metabolites, supporting circular bioeconomy applications in the alcoholic beverage sector. Full article
(This article belongs to the Special Issue Resource Utilization of Food Industry Byproducts)
Show Figures

Graphical abstract

15 pages, 3595 KB  
Article
Advanced Ultrasonic Diagnostics for Restoration: Effectiveness of Natural Consolidants on Painted Surfaces
by Stefania D’Ottavio, Angelo Tatì, Loretta Bacchetta and Chiara Alisi
Appl. Sci. 2026, 16(1), 504; https://doi.org/10.3390/app16010504 - 4 Jan 2026
Viewed by 191
Abstract
This study presents the first application of an automatic ultrasonic mapping system for the assessment of natural consolidants applied to replicas of painted wall surfaces. In Cultural Heritage conservation, evaluating consolidation efficiency remains a critical issue, particularly for substrates characterized by high porosity, [...] Read more.
This study presents the first application of an automatic ultrasonic mapping system for the assessment of natural consolidants applied to replicas of painted wall surfaces. In Cultural Heritage conservation, evaluating consolidation efficiency remains a critical issue, particularly for substrates characterized by high porosity, heterogeneity, and mechanical fragility. Ultrasonic testing offers a fully non-contact diagnostic approach capable of detecting variations in cohesion, stiffness, and internal discontinuities, thus overcoming the limitations of semi-invasive mechanical procedures. Three polysaccharide-based consolidants—Arabic gum, Funori, and Opuntia ficus-indica mucilage—were applied to wall-painting replicas prepared according to historically documented techniques. Their performance was investigated through a comparative methodology combining a peeling test with non-contact air-coupled ultrasonic probes. Results indicate that Opuntia mucilage, although still at an experimental stage, provides significant improvements in cohesion, confirming its potential as a sustainable and substrate-compatible alternative to conventional consolidants. By demonstrating the complementary nature of ultrasonic mapping and peeling tests, this work contributes to the development of reproducible, non-invasive diagnostic strategies for evaluating consolidation treatments, particularly on fragile surfaces where conventional mechanical testing is unsuitable. Full article
(This article belongs to the Special Issue Innovative Approaches to Non-Destructive Evaluation)
Show Figures

Figure 1

33 pages, 1298 KB  
Review
Edible Coatings for Fresh Fruits: Functional Roles, Optimization Strategies, and Analytical Perspectives
by Siphumle Owen Jama, Robert Lufu, Umezuruike Linus Opara, Elke Crouch and Alemayehu Ambaw Tsige
Plants 2026, 15(1), 132; https://doi.org/10.3390/plants15010132 - 2 Jan 2026
Viewed by 300
Abstract
Fresh fruits are inherently prone to postharvest deterioration due to loss of moisture, respiration, mechanical damage, and microbial decay, making quality preservation a persistent challenge across fresh fruit supply chains. While conventional plastic packaging offers barrier protection and cost-efficiency, its environmental footprint, particularly [...] Read more.
Fresh fruits are inherently prone to postharvest deterioration due to loss of moisture, respiration, mechanical damage, and microbial decay, making quality preservation a persistent challenge across fresh fruit supply chains. While conventional plastic packaging offers barrier protection and cost-efficiency, its environmental footprint, particularly poor biodegradability and increasing incidence of plastic waste necessitates a transition toward more sustainable alternatives. Among these, the use of edible coatings, primarily based on natural biopolymers, have emerged as a versatile strategy capable of modulating transpiration, gas exchange, microbial activity, and sensory quality while addressing environmental concerns. Unlike biodegradable plastic films, edible coatings directly interface with the fruit surface and offer multifunctional roles extending beyond passive protection. This review synthesizes recent advances in edible coatings for fresh fruits, with emphasis on material classes, functional performance, optimization strategies, and analytical evaluation methods. Key findings indicate that polysaccharide-based coatings provide adequate gas permeability but limited moisture resistance, while nanocomposite and multi-component systems enhance water-vapor barrier performance without compromising respiration compatibility. Incorporation of bioactive agents such as essential oils, nanoparticles, and plant extracts further extends shelf life through antimicrobial and antioxidant mechanisms, though formulation trade-offs and sensory constraints persist. The review also highlights critical limitations, including variability in barrier and mechanical properties, challenges in industrial-scale application, insufficient long-term validation under commercial cold-chain conditions, and regulatory uncertainty for active formulations. Future research priorities are identified, including mechanistic transport–physiology integration, standardized performance metrics, scalable application technologies, and life-cycle-informed material design. Addressing these gaps is essential for transitioning edible coatings from experimental sustainability concepts to robust, function-driven solutions for fresh-fruit preservation. Full article
(This article belongs to the Special Issue Postharvest and Storage of Horticultural Plants)
Show Figures

Figure 1

Back to TopTop