Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,542)

Search Parameters:
Keywords = natural and human factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

11 pages, 1507 KiB  
Article
Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness
by Kyoko Kanai, Kazal Boron Biswas, Asuka Hirasawa, Misaki Futamura, Kiyotaka Tanaka and Kotaro Sakamoto
Cosmetics 2025, 12(4), 163; https://doi.org/10.3390/cosmetics12040163 - 4 Aug 2025
Abstract
Skin dullness contributes to a fatigued and aged appearance, often exceeding one’s biological age. It is a common dermatological concern influenced by aging and poor lifestyle habits, regardless of ethnicity or age. This study aimed to examine advanced glycation end products (AGEs) and [...] Read more.
Skin dullness contributes to a fatigued and aged appearance, often exceeding one’s biological age. It is a common dermatological concern influenced by aging and poor lifestyle habits, regardless of ethnicity or age. This study aimed to examine advanced glycation end products (AGEs) and their receptor (receptor for AGEs [RAGE]) as contributing factors to skin dullness. AGEs themselves have a yellowish hue, contributing to “yellow dullness.” Additionally, AGE–RAGE signaling promotes melanin production in melanocytes and impairs keratinocyte differentiation as a result of inflammation. Therefore, regulating the AGE–RAGE interaction may help reduce skin dullness. Through screening various natural ingredients, we found that peony root extract (PRE) inhibits AGE formation and blocks AGE–RAGE binding. Furthermore, the presence of PRE leads to the suppression of AGE-induced melanin production in melanocytes and the restoration of impaired keratinocyte differentiation in glycated basement membrane components. In a human clinical study, topical application of a 1% PRE-containing lotion for 2 weeks significantly reduced melanin content, with a trend toward decreased AGE accumulation and visible spots on the cheeks. These findings support the potential of PRE as a multifunctional cosmetic ingredient that comprehensively addresses skin dullness by modulating the AGE–RAGE interaction. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

20 pages, 16139 KiB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

14 pages, 2128 KiB  
Article
Correlation Measures in Metagenomic Data: The Blessing of Dimensionality
by Alessandro Fuschi, Alessandra Merlotti, Thi Dong Binh Tran, Hoan Nguyen, George M. Weinstock and Daniel Remondini
Appl. Sci. 2025, 15(15), 8602; https://doi.org/10.3390/app15158602 (registering DOI) - 2 Aug 2025
Viewed by 137
Abstract
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the [...] Read more.
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the quantification of microbial taxa and their dynamics. In the study of bacterial abundances, it is becoming more relevant to consider their relationship, to embed these data in the framework of network theory, allowing characterization of features like node relevance, pathways, and community structure. In this study, we address the primary biases encountered in reconstructing networks through correlation measures, particularly in light of the compositional nature of the data, within-sample diversity, and the presence of a high number of unobserved species. These factors can lead to inaccurate correlation estimates. To tackle these challenges, we employ simulated data to demonstrate how many of these issues can be mitigated by applying typical transformations designed for compositional data. These transformations enable the use of straightforward measures like Pearson’s correlation to correctly identify positive and negative relationships among relative abundances, especially in high-dimensional data, without having any need for further corrections. However, some challenges persist, such as addressing data sparsity, as neglecting this aspect can result in an underestimation of negative correlations. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Data Analysis)
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 201
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

19 pages, 300 KiB  
Review
Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
by Yan Sun, Caiyun Li and Aejin Lee
Appl. Sci. 2025, 15(15), 8574; https://doi.org/10.3390/app15158574 (registering DOI) - 1 Aug 2025
Viewed by 246
Abstract
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination [...] Read more.
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination and their relevance to metabolic health. We examined recent in vitro, animal, and human studies focusing on how germination enhances the nutritional and functional properties of grains, particularly through the synthesis of compounds such as γ-aminobutyric acid, polyphenols, flavonoids, and antioxidants, while reducing anti-nutritional factors. These bioactive compounds have been shown to modulate metabolic and inflammatory pathways by inhibiting carbohydrate-digesting enzymes, suppressing pro-inflammatory cytokines, improving redox balance, and influencing gut microbiota composition. Collectively, these effects contribute to improved insulin sensitivity and glycemic control. The findings suggest that sprouted grains serve not only as functional food ingredients but also as accessible dietary tools for preventing or alleviating IR. Their role in delivering multiple bioactive molecules through a simple, environmentally friendly process highlights their promise in developing future nutrition-based strategies for metabolic disease prevention. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
35 pages, 5094 KiB  
Article
Analysis of Influencing Factors on Spatial Distribution Characteristics of Traditional Villages in the Liaoxi Corridor
by Han Cao and Eunyoung Kim
Land 2025, 14(8), 1572; https://doi.org/10.3390/land14081572 - 31 Jul 2025
Viewed by 168
Abstract
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the [...] Read more.
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the historical heritage of multicultural intermingling. This study fills the gap in the spatial distribution of traditional villages in the Liaoxi Corridor and reveals their spatial distribution pattern, which is of great theoretical significance. Using Geographic Information System (GIS) spatial analysis and quantitative geography, this study analyzes the spatial pattern of traditional villages and the influencing factors. The results show that traditional villages in the Liaoxi Corridor are clustered, forming high-density settlement areas in Chaoyang County and Beizhen City. Most villages are located in hilly and mountainous areas and river valleys and are affected by the natural geographic environment (topography and water sources) and historical and human factors (immigration and settlement, border defense, ethnic integration, etc.). In conclusion, this study provides a scientific basis and practical reference for rural revitalization, cultural heritage protection, and regional coordinated development, aiming at revealing the geographical and cultural mechanisms behind the spatial distribution of traditional villages. Full article
Show Figures

Figure 1

30 pages, 10655 KiB  
Review
Accidents in Oil and Gas Pipeline Transportation Systems
by Nediljka Gaurina-Međimurec, Karolina Novak Mavar, Katarina Simon and Fran Djerdji
Energies 2025, 18(15), 4056; https://doi.org/10.3390/en18154056 - 31 Jul 2025
Viewed by 337
Abstract
The paper provides an analysis of the causes of accidents in oil and gas pipeline systems. As part of a comprehensive overview of the topic, it also presents the historical development of pipeline systems, from the first commercial oil pipelines in the United [...] Read more.
The paper provides an analysis of the causes of accidents in oil and gas pipeline systems. As part of a comprehensive overview of the topic, it also presents the historical development of pipeline systems, from the first commercial oil pipelines in the United States to modern infrastructure projects, with a particular focus on the role of regulatory requirements and measures (prevention, detection, and mitigation) to improve transport efficiency and pipeline safety. The research uses historical accident data from various databases to identify the main causes of accidents and analyse trends. The focus is on factors such as corrosion, third-party interference, and natural disasters that can lead to accidents. A comparison of the various accident databases shows that there are different practises and approaches to operation and reporting. As each database differs in terms of inclusion criteria, the categories are divided into five main groups to allow systematic interpretation of the data and cross-comparison of accident causes. Regional differences in the causes of accidents involving oil and gas pipelines in Europe, the USA, and Canada are visible. However, an integrated analysis shows that the number of accidents is declining in almost all categories. The majority of all recorded accidents are in the “Human factors and Operational disruption” and “Corrosion and Material damage” groups. It is recommended to use the database as required, as each category has its own specifics. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 153
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

17 pages, 1207 KiB  
Article
Assessing Critical Risk Factors to Sustainable Housing in Urban Areas: Based on the NK-SNA Model
by Guangyu Sun and Hui Zeng
Sustainability 2025, 17(15), 6918; https://doi.org/10.3390/su17156918 - 30 Jul 2025
Viewed by 207
Abstract
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of [...] Read more.
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of life and property damage. This study aims to identify the key factors influencing housing sustainability and provide a basis for the prevention and control of housing-related safety risks. This study has developed a housing sustainability evaluation indicator system comprising three primary indicators and 16 secondary indicators. This system is based on an analysis of the causes of over 500 typical housing accidents that occurred in China over the past 10 years, employing research methods such as literature reviews and expert consultations, and drawing on the analytical frameworks of risk management theory and system safety theory. Subsequently, the NK-SNA model, which significantly outperforms traditional models in terms of adaptive learning and optimization, as well as the explicit modeling of complex nonlinear relationships, was used to identify the key risk factors affecting housing sustainability. The empirical results indicate that the risk coupling value is correlated with the number of risk coupling factors; the greater the number of risk coupling factors, the larger the coupling value. Human misconduct is prone to forming two-factor risk coupling with housing, and the physical risk factors are prone to coupling with other factors. The environmental factors easily trigger ‘physical–environmental’ two-factor risk coupling. The key factors influencing housing sustainability are poor supervision, building facilities, the main structure, the housing height, foundation settlement, and natural disasters. On this basis, recommendations are made to make full use of modern information technologies such as the Internet of Things, big data, and artificial intelligence to strengthen the supervision of housing safety and avoid multi-factor coupling, and to improve upon early warnings of natural disasters and the design of emergency response programs to control the coupling between physical and environmental factors. Full article
Show Figures

Figure 1

15 pages, 280 KiB  
Article
Evaluation of Bone Mineral Density and Related Factors in Romanian HIV-Positive Patients Undergoing Antiretroviral Therapy
by Ioana-Melinda Luput-Andrica, Adelina-Raluca Marinescu, Talida Georgiana Cut, Alexandra Herlo, Lucian-Flavius Herlo, Andra-Elena Saizu, Ruxandra Laza, Anca Lustrea, Andreea-Cristina Floruncut, Adina Chisalita, Narcisa Nicolescu, Cristian Iulian Oancea, Diana Manolescu, Romanita Jumanca, Daniela-Ica Rosoha and Voichita Elena Lazureanu
Microorganisms 2025, 13(8), 1768; https://doi.org/10.3390/microorganisms13081768 - 29 Jul 2025
Viewed by 222
Abstract
Human Immunodeficiency Virus (HIV) infection remains a major global health issue, with effective antiretroviral therapy (ART) extending life expectancy but also increasing age-related issues like osteopenia and osteoporosis. This cross-sectional study examines bone mineral density (BMD) and related risk factors in Romanian HIV-positive [...] Read more.
Human Immunodeficiency Virus (HIV) infection remains a major global health issue, with effective antiretroviral therapy (ART) extending life expectancy but also increasing age-related issues like osteopenia and osteoporosis. This cross-sectional study examines bone mineral density (BMD) and related risk factors in Romanian HIV-positive patients, emphasizing regional and therapy influences. The patients varying in HIV infection duration underwent DXA scanning to measure BMD in the lumbar spine, femoral neck, and total femur. A high prevalence of low BMD, especially in the lumbar spine, was identified along with significant associations between reduced BMD and factors such as smoking, alcohol use, vitamin D deficiency and serum phosphorus levels. ART like Protease Inhibitors and Nucleoside Reverse Transcriptase Inhibitors were linked to increased bone loss, emphasizing the multifactorial nature of osteoporosis in HIV-infected individuals and underscore the importance of regular BMD assessments, lifestyle adjustments, and careful management of antiretroviral therapy to minimize fracture risk and enhance overall health and quality of life. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
19 pages, 3026 KiB  
Article
Gallic, Aconitic, and Crocetin Acids as Potential TNF Modulators: An Integrated Study Combining Molecular Docking, Dynamics Simulations, ADMET Profiling, and Gene Expression Analysis
by Adolat Manakbayeva, Andrey Bogoyavlenskiy, Timur Kerimov, Igor Yershov, Pavel Alexyuk, Madina Alexyuk, Vladimir Berezin and Vyacheslav Dushenkov
Molecules 2025, 30(15), 3175; https://doi.org/10.3390/molecules30153175 - 29 Jul 2025
Viewed by 211
Abstract
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, [...] Read more.
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, followed by detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling and molecular dynamics (MD) simulations for three lead candidates: gallic, aconitic, and crocetin acids. Their effects on TNF gene expression were then assessed in vivo using a mouse leukocyte model. The in silico results indicated that crocetin had the highest TNF binding affinity (−5.6 to −4.6 kcal/mol), while gallic acid formed the most stable protein-ligand complex during MD simulations, and aconitic acid established hydrogen bond interactions. ADMET analysis suggested potential pharmacokinetic limitations, including low permeability. Contrasting its high predicted binding affinity, in vivo gene expression analysis revealed that crocetin stimulated TNF synthesis, whereas gallic and aconitic acids acted as inhibitors. This research explores organic acids as potential TNF modulators, highlighting their complex interactions and providing a foundation for developing these compounds as anti-inflammatory agents targeting TNF-mediated diseases. Full article
Show Figures

Figure 1

13 pages, 535 KiB  
Article
Measurement of Connectedness with Nature: Evidence of Validity and Reliability for Use in Colombian Urban and Rural Sustainability Contexts
by Willian Sierra-Barón, Andrés Gómez-Acosta, María Delfina Luna-Krauletz, Sergio Falla-Tapias and Erika Judith López-Santamaria
Int. J. Environ. Res. Public Health 2025, 22(8), 1185; https://doi.org/10.3390/ijerph22081185 - 29 Jul 2025
Viewed by 152
Abstract
The growing disconnection between humans and nature—particularly in urban environments—has been associated with declining well-being and lower engagement in pro-environmental behavior. Although the Connectedness with Nature Scale (CNS) has been widely used internationally to measure this relationship, there is a lack of evidence [...] Read more.
The growing disconnection between humans and nature—particularly in urban environments—has been associated with declining well-being and lower engagement in pro-environmental behavior. Although the Connectedness with Nature Scale (CNS) has been widely used internationally to measure this relationship, there is a lack of evidence on its validity and reliability in Latin American contexts, especially in urban and rural settings. This study aims to address this gap by examining the psychometric properties of the CNS in a sample of 956 Colombian participants. Using exploratory and confirmatory factor analyses, we tested two versions of the scale (14-item and 12-item models), both showing good fit and high internal consistency (α > 0.90). Convergent validity was confirmed through strong correlations with the Environmental Identity and Pro-environmental Behavior Scales. These findings support the CNS as a valid and reliable tool to assess the human–nature connection in Colombia and highlight its potential for informing urban sustainability initiatives, environmental education, and public policy in diverse sociocultural contexts. Full article
(This article belongs to the Special Issue Trends in Sustainable and Healthy Cities)
Show Figures

Figure 1

25 pages, 480 KiB  
Article
Audit 5.0 in Risk and Materiality Assessment: An Ethnographic Approach
by Maria C. Tavares, Maria F. R. Almeida, José Vale and Amra Kapo
J. Risk Financial Manag. 2025, 18(8), 419; https://doi.org/10.3390/jrfm18080419 - 29 Jul 2025
Viewed by 278
Abstract
The historical evolution of auditing reflects an increasing complexity in organizational demands, culminating in the emergence of Audit 5.0—an approach that integrates emerging technologies with professional judgment. This study aims to analyze how technological adoption influences risk assessment and materiality determination in financial [...] Read more.
The historical evolution of auditing reflects an increasing complexity in organizational demands, culminating in the emergence of Audit 5.0—an approach that integrates emerging technologies with professional judgment. This study aims to analyze how technological adoption influences risk assessment and materiality determination in financial auditing within a practical, real-world context. The research, qualitative in nature, combines narrative and thematic analysis of the literature, ethnography in a professional setting, and task analysis, developed over four years of experience in a firm of Chartered Accountants. The findings reveal that although digital tools enhance efficiency and accuracy, professional judgment remains essential to ensure the ethics, reliability, and contextualization of audited information. This study contributes to the advancement of understanding regarding the complementarity between technology and the human factor, proposing paths toward more robust and digitally adapted auditing practices. Full article
(This article belongs to the Section Risk)
Show Figures

Figure 1

25 pages, 3167 KiB  
Article
A Sustainability-Oriented Assessment of Noise Impacts on University Dormitories: Field Measurements, Student Survey, and Modeling Analysis
by Xiaoying Wen, Shikang Zhou, Kainan Zhang, Jianmin Wang and Dongye Zhao
Sustainability 2025, 17(15), 6845; https://doi.org/10.3390/su17156845 - 28 Jul 2025
Viewed by 311
Abstract
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three [...] Read more.
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three representative major urban universities in a major provincial capital city in China and designed and implemented a comprehensive questionnaire and surveyed 1005 students about their perceptions of their acoustic environment. We proposed and applied a sustainability–health-oriented, multidimensional assessment framework to assess the acoustic environment of the dormitories and student responses to natural sound, technological sounds, and human-made sounds. Using the Structural Equation Modeling (SEM) approach combined with the field measurements and student surveys, we identified three categories and six factors on student health and well-being for assessing the acoustic environment of university dormitories. The field data indicated that noise levels at most of the measurement points exceeded the recommended or regulatory thresholds. Higher noise impacts were observed in early mornings and evenings, primarily due to traffic noise and indoor activities. Natural sounds (e.g., wind, birdsong, water flow) were highly valued by students for their positive effect on the students’ pleasantness and satisfaction. Conversely, human and technological sounds (traffic noise, construction noise, and indoor noise from student activities) were deemed highly disturbing. Gender differences were evident in the assessment of the acoustic environment, with male students generally reporting higher levels of the pleasantness and preference for natural sounds compared to female students. Educational backgrounds showed no significant influence on sound perceptions. The findings highlight the need for providing actionable guidelines for dormitory ecological design, such as integrating vertical greening in dormitory design, water features, and biodiversity planting to introduce natural soundscapes, in parallel with developing campus activity standards and lifestyle during noise-sensitive periods. The multidimensional assessment framework will drive a sustainable human–ecology–sound symbiosis in university dormitories, and the category and factor scales to be employed and actions to improve the level of student health and well-being, thus, providing a reference for both research and practice for sustainable cities and communities. Full article
Show Figures

Figure 1

Back to TopTop