Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = native-fish conservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5598 KB  
Article
Spawning Habitat Partitioning of Sympatric Salmonid Populations in the Upper Bois Brule River, Wisconsin
by Benjamin T. Schleppenbach, Thomas R. Hrabik, Daniel D. McCann, Karen B. Gran and Greg G. Sass
Fishes 2025, 10(10), 506; https://doi.org/10.3390/fishes10100506 - 8 Oct 2025
Viewed by 117
Abstract
Spawning habitat partitioning can be important for maintaining sympatric fish species. Likewise, critical spawning habitat loss may challenge the long-term persistence of sympatric fish species. The Bois Brule River, Wisconsin, USA, is a spring-fed, western Lake Superior tributary that supports five naturally reproducing [...] Read more.
Spawning habitat partitioning can be important for maintaining sympatric fish species. Likewise, critical spawning habitat loss may challenge the long-term persistence of sympatric fish species. The Bois Brule River, Wisconsin, USA, is a spring-fed, western Lake Superior tributary that supports five naturally reproducing populations of salmonids (native brook trout Salvelinus fontinalis; introduced brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, coho salmon O. kisutch, and chinook salmon O. tshawytscha). Given increases in recreational angler use and predicted climate-associated changes to trout stream habitat, a better understanding of species interactions during spawning is important to guide future management and conservation of these anthropogenically derived sympatric native and introduced salmonids. Our aim was to establish whether there was partitioning or overlapping in the redd site location preferences among native and introduced salmonids inhabiting the Bois Brule River. We mapped species-specific redd locations by canoe over a 15.3 river km section known to be important for salmonid spawning and evaluated physical, flow, and thermal conditions of these habitats of the Bois Brule River during 2021–2022. We found that spring spawning rainbow trout and fall spawning pacific salmonids and brown trout used the same spawning locations on mid-channel, larger gravel reefs downstream of riffle sections. Native brook trout spawned on smaller substrates with lower streamflow on the edges of the channel, with the highest spawning activity occurring in littoral areas of lentic portions of the river. Our findings provide valuable knowledge of critical spawning habitats for sympatric salmonids that may inform habitat conservation and enhancement efforts in the Bois Brule River and other Great Lakes tributaries with similar sympatric, naturally reproducing salmonids populations. Full article
Show Figures

Figure 1

40 pages, 7229 KB  
Article
Influence of Habitat on the Impact of Non-Native Fishes on Native Ichthyofauna in a Group of Lakes of the Lower Doce River, Espírito Santo, Southeastern Brazil
by Eduardo Hoffmam de Barros, Nuno Caiola, Renan Luxinger Betzel, Ronaldo Fernando Martins-Pinheiro and Luisa Maria Sarmento-Soares
Diversity 2025, 17(9), 650; https://doi.org/10.3390/d17090650 - 16 Sep 2025
Viewed by 597
Abstract
The Doce River basin is the largest river system in southeastern Brazil. Over the last century, the Doce River has been undergoing a serious process of degradation, culminating in a huge environmental disaster due to Fundão tailing dam bursting in Mariana (Minas Gerais) [...] Read more.
The Doce River basin is the largest river system in southeastern Brazil. Over the last century, the Doce River has been undergoing a serious process of degradation, culminating in a huge environmental disaster due to Fundão tailing dam bursting in Mariana (Minas Gerais) and causing severe damage to biodiversity and local human communities. Near its mouth, the Doce River harbors an extensive lake area, with over ninety lakes on coastal lowlands. These lakes are of fluvial origin and connected to each other and to the main Doce River by small tributary streams. In this area, one of the main sources of impact on the fish fauna is the presence of non-native fish species. We compared richness, taxonomic diversity, beta diversity, species composition and proportion of non-native species in lakes and streams, and related these variables to each other and to environmental variables. We used the indicator species index (IndVal) to identify species associated with each type of environment. We used multivariate analyses to test the influence of stream habitat on the fish fauna in streams and Generalized Linear Models (GLMs) to test the influence of distance to lakes on the proportion of non-native species in streams, and the influence of this proportion on total and native fish richness and diversity. The results showed that some non-native species originating from lentic environments have adapted to the lakes and are spread throughout the internal lake system. In streams, there are proportionally fewer non-native fish and their distribution is more fragmented, as some stretches do not provide the conditions for the establishment of some of these species, making them potential refuges for native ichthyofauna. As the streams move away from the lakes, the proportion of non-native species tends to decrease. In streams, the richness and diversity of native species are affected by the proportion of non-native species, but not in lakes. The native vegetation in the landscape showed no potential for reducing the invasion of non-native species. The depth and width of the streams are directly related to the proportion of non-native species within the streams and are structural characteristics that should be considered in strategies for the conservation of the fish fauna. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

27 pages, 5561 KB  
Review
Threats of Climate Change to Freshwater Ecosystems in Pakistan: eDNA Monitoring Will Be the Next-Generation Tool Used in Biodiversity, Conservation, and Management
by Ghazanfer Ali, Sidra Abbas, Satoshi Nagai, Norhafiza Mohd Arshad and Subha Bhassu
Biology 2025, 14(9), 1191; https://doi.org/10.3390/biology14091191 - 4 Sep 2025
Viewed by 1858
Abstract
Freshwater ecosystems are a significant entity that govern the livelihood of people and are an important source of food, employment, and recreation. However, climate change is impacting freshwater ecosystems by altering their natural habitats. The purpose of this review is to highlight the [...] Read more.
Freshwater ecosystems are a significant entity that govern the livelihood of people and are an important source of food, employment, and recreation. However, climate change is impacting freshwater ecosystems by altering their natural habitats. The purpose of this review is to highlight the vulnerability of freshwater fish to climate change. Climate change is invariably affecting natural ecosystems everywhere and in every part of the world, but these threats are more severe in Pakistan. Freshwater fish are important biotic drivers of freshwater ecosystems. Unfortunately, uncertain climate changes and anthropogenic activities have led to a decline in the diversity of these fishes. Rising temperatures, melting glaciers, changes in seasonal patterns, disturbances in the natural flow of rivers, pollution, and invasive species are major threats to native freshwater fish fauna, leading to a decline in fish diversity and population. Tor putitora, Glyptothorax kashmirensis, and Triplophysa kashmirensis are some of the species that are critically endangered in Pakistan due to these factors. In recent decades, insufficient attention has been paid to the freshwater ecosystem. This review of threats to the endemic fish species in this region is presented so that the government and policymakers can use this information as part of their management and conservation policy, thus safeguarding Pakistan’s fish industry. Environmental DNA (eDNA) biomonitoring is a new technique for assessing biodiversity and species distribution and can be useful for conserving biodiversity in this region. Another purpose of this review is to introduce this new conservation strategy to Pakistan. Full article
Show Figures

Figure 1

31 pages, 2884 KB  
Review
Towards Ethical and Effective Conservation of New Zealand’s Natural Heritage
by Joanna C. Pollard
Conservation 2025, 5(3), 47; https://doi.org/10.3390/conservation5030047 - 3 Sep 2025
Viewed by 2357
Abstract
Major human impacts on New Zealand’s ecology began about 800 years ago with immigration firstly from Polynesia, then Europe starting a few centuries later. The humans cleared habitat, hunted species to extinction, and introduced biota, including plants, birds, fish, invertebrates, and mammals. Over [...] Read more.
Major human impacts on New Zealand’s ecology began about 800 years ago with immigration firstly from Polynesia, then Europe starting a few centuries later. The humans cleared habitat, hunted species to extinction, and introduced biota, including plants, birds, fish, invertebrates, and mammals. Over the last 70 years, government-funded campaigns have been waged against some of the introduced mammals that became considered harmful to native biota. These campaigns spread poisonous food baits from aircraft to kill and suppress target animals (mainly brushtail possums (Trichosurus vulpecula) and rats (Rattus spp.)) over large areas. Increased intensity, frequency, and scale of poisoning are being trialled under a new conservation strategy (Predator Free 2050) to eradicate several mammalian species. The present study investigates the opportunity for a paradigm shift in conservation, emphasizing the rationales for transitioning from spreading of pesticides to a more targeted approach. NZ’s poison- and predator-focused ecological management has been criticized internationally as cruel and unnecessary, while independent NZ ecologists have called for, and outlined, a new system of conservation management based on ecological knowledge, which embraces all threats to native biota. A central tenet of proposed new methods is the engagement of all relevant stakeholders. Efficient management tools include remote monitoring, and smart, self-resetting kill traps for targeted small mammal control. Ecology-driven, commercially sound, targeted, monitored, relatively humane management can be implemented to protect the remnants of NZ’s natural heritage. Full article
Show Figures

Figure 1

17 pages, 1795 KB  
Article
Facilitation and Interference Between Native Fishes Influence Invasion Resistance
by Jeffrey E. Hill and Theresa P. Floyd
Fishes 2025, 10(8), 398; https://doi.org/10.3390/fishes10080398 - 8 Aug 2025
Viewed by 389
Abstract
Understanding the dynamics of species invasions in aquatic ecosystems is crucial for conservation and management efforts. We investigated the influence of species interactions and habitat complexity on biotic resistance to invasion by small-bodied freshwater fishes in peninsular Florida. Specifically, we focused on the [...] Read more.
Understanding the dynamics of species invasions in aquatic ecosystems is crucial for conservation and management efforts. We investigated the influence of species interactions and habitat complexity on biotic resistance to invasion by small-bodied freshwater fishes in peninsular Florida. Specifically, we focused on the interactions between two native species, Florida bass (Micropterus salmoides) and eastern mosquitofish (Gambusia holbrooki), and a common invader, the green swordtail (Xiphophorus hellerii). Our experiments included tanks with varying levels of structural complexity to mimic different habitat types. The presence of both native species significantly reduced swordtail survival, but the effect varied depending on habitat complexity. In habitats with strong predation refuge, mosquitofish facilitated bass predation on swordtails, whereas in habitats with weak predation refuge, bass suppressed mosquitofish aggression, leading to interference. Mosquitofish predominantly occupied vegetated areas and aggressively interacted with swordtails, significantly reducing invader survival. Our findings highlight the importance of considering species interactions and habitat complexity in predicting biotic resistance to invasions. We conclude that diverse interactions among native species can either enhance or impede invasion resistance, with implications for conservation and management strategies. Further research is needed to understand the broader impacts of multiple predators and competitors on invader dynamics in aquatic ecosystems. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

12 pages, 2254 KB  
Article
Evolution of the Jawed Vertebrate (Gnathostomata) Stomach Through Gene Repertoire Loss: Findings from Agastric Species
by Jackson Dann and Frank Grützner
J. Dev. Biol. 2025, 13(3), 27; https://doi.org/10.3390/jdb13030027 - 5 Aug 2025
Viewed by 793
Abstract
The stomach has been a highly conserved organ throughout vertebrate evolution; however, there are now over 20 lineages composed of monotremes, lungfish and teleost fish displaying a secondary loss of stomach function and morphology. This “agastric phenotype” has evolved convergently and is typified [...] Read more.
The stomach has been a highly conserved organ throughout vertebrate evolution; however, there are now over 20 lineages composed of monotremes, lungfish and teleost fish displaying a secondary loss of stomach function and morphology. This “agastric phenotype” has evolved convergently and is typified by a loss of gastric glands and gastric acid secretion and a near-to-complete loss of storage capacity of the stomach. All agastric species have lost the genes for gastric enzymes (Pga and Pgc) and proton pump subunits (Atp4a and Atp4b), and gastrin (Gast) has been lost in monotremes. As a key gastric hormone, the conservation of gastrin has not yet been investigated in the lungfish or agastric teleosts, and it is unclear how the loss of gastrin affects the evolution and selection of the native receptor (Cckbr), gastrin-releasing peptide (Grp) and gastrin-releasing peptide receptor (Grpr) in vertebrates. Furthermore, there are still many genes implicated in gastric development and function which have yet to be associated with the agastric phenotype. We analysed the evolution, selection and conservation of the gastrin pathway and a novel gastric gene repertoire (Gkn1, Gkn2, Tff1, Tff2, Vsig1 and Anxa10) to determine the correlation with the agastric phenotype. We found that the loss of gastrin or its associated genes does not correlate with the agastric phenotype, and their conservation is due to multiple pleiotropic roles throughout vertebrate evolution. We found a loss of the gastric gene repertoire in the agastric phenotype, except in the echidna, which retained several genes (Gkn1, Tff2 and Vsig1). Our findings suggest that the gastrin physiological pathway evolved differently in pleiotropic roles throughout vertebrate evolution and support the convergent evolution of the agastric phenotype through shared independent gene-loss events. Full article
Show Figures

Figure 1

24 pages, 34309 KB  
Article
Assessing the Motile Fauna of Eastern Mediterranean Marine Caves
by Markos Digenis, Michail Ragkousis, Charalampos Dimitriadis, Stelios Katsanevakis and Vasilis Gerovasileiou
Fishes 2025, 10(8), 383; https://doi.org/10.3390/fishes10080383 - 5 Aug 2025
Viewed by 2494
Abstract
Although marine caves are among the most species-diverse habitats in the Mediterranean Sea, most available studies have focused on their sessile fauna. This study provides the first quantitative assessment of motile fauna in 27 marine caves across four geographical subareas of the Aegean [...] Read more.
Although marine caves are among the most species-diverse habitats in the Mediterranean Sea, most available studies have focused on their sessile fauna. This study provides the first quantitative assessment of motile fauna in 27 marine caves across four geographical subareas of the Aegean and Ionian Seas, using a rapid assessment visual census protocol, applied through 3 min time transects in each ecological cave zone. Multivariate analysis revealed that the motile community structure of the cave entrance was differentiated from that of the semidark and dark zones. Deeper caves were distinct from shallower ones while caves of the east Aegean differed from those around Crete Island. A total of 163 taxa were recorded, 27 of which are reported herein for the first time in marine caves of the eastern Mediterranean Sea, while three species (two native and one introduced) are recorded in Greek waters for the first time, enriching our knowledge on the permanent and occasional cave residents. Seventeen species were introduced, comprising more than half of the total fish abundance in the southeasternmost cave. Our limited knowledge of the motile fauna of Mediterranean marine caves coupled with the continued spread of introduced species highlights the urgent need for monitoring and conservation actions, especially within marine protected areas. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

14 pages, 2347 KB  
Article
Linking Life History Traits to the Threat Level of European Freshwater Fish
by Olga Petriki and Dimitra C. Bobori
Water 2025, 17(15), 2254; https://doi.org/10.3390/w17152254 - 29 Jul 2025
Viewed by 479
Abstract
Over 40% of freshwater fish species in Europe are currently at risk of extinction, highlighting the need for improved conservation planning. This study examines whether the threat status is associated with life-history and ecological traits across 580 autochthonous (native and endemic) freshwater fish [...] Read more.
Over 40% of freshwater fish species in Europe are currently at risk of extinction, highlighting the need for improved conservation planning. This study examines whether the threat status is associated with life-history and ecological traits across 580 autochthonous (native and endemic) freshwater fish species in European inland waters. Using data from FishBase and the IUCN Red List, we assessed associations between threat level and both categorical (e.g., migratory behavior, commercial importance, reproductive guild, and body shape) and numerical traits (e.g., maximum length, weight, age, growth parameters, and maturity traits). Significant, though modest, associations were identified between species threat level and migratory behavior and reproductive guild. Non-migratory species exhibited higher median threat levels, while amphidromous species showed a non-significant trend toward higher threat, suggesting that limited dispersal ability and dependence on fragmented freshwater networks may increase extinction vulnerability. Species with unclassified reproductive strategies also showed elevated threat levels, possibly reflecting both actual risk and underlying data gaps. In contrast, body shape and trophic level were not significantly associated with threat status. Critically Endangered species tend to be larger, heavier, and mature later—traits characteristic of slow life history strategies that limit population recovery. Although length at maturity and maximum age did not differ significantly among IUCN categories, age at maturity was significantly higher in more threatened species, and growth rate (K) was negatively correlated with threat level. Together, these patterns suggest that slower-growing, later-maturing species face elevated extinction risk. Overall, the findings underscore that the threat level in European freshwater fish is shaped by complex interactions between intrinsic biological traits and external pressures. Trait-based approaches can enhance extinction risk assessments and conservation prioritization, especially in data-deficient freshwater ecosystems facing multifaceted environmental challenges. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

16 pages, 2141 KB  
Article
Mitochondrial Genomes of Distant Fish Hybrids Reveal Maternal Inheritance Patterns and Phylogenetic Relationships
by Shixi Chen, Fardous Mohammad Safiul Azam, Li Ao, Chanchun Lin, Jiahao Wang, Rui Li and Yuanchao Zou
Diversity 2025, 17(8), 510; https://doi.org/10.3390/d17080510 - 24 Jul 2025
Viewed by 625
Abstract
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse [...] Read more.
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse taxa, including 48 freshwater and 26 marine species, with a focus on Cyprinidae (n = 35) and Epinephelus (n = 14), representing the most frequently hybridized groups in freshwater and marine systems, respectively. Mitogenome lengths were highly conserved (15,973 to 17,114 bp); however, the genetic distances between hybrids and maternal species varied from 0.001 to 0.17, with 19 hybrids (25.7%) showing distances >0.02. Variable sites in these hybrids were randomly distributed but enriched in hypervariable regions, such as the D-loop and NADH dehydrogenase subunits 1, 3 and 6 (ND2, ND3, and ND6) genes, likely reflecting maternal inheritance (reported in Cyprinus carpio × Carassius auratus). Moreover, these genes were under purifying selection pressure, revealing their conserved nature. Phylogenetic reconstruction using complete mitogenomes revealed three distinct clades in hybrids: (1) Acipenseriformes, (2) a freshwater cluster dominated by Cypriniformes and Siluriformes, and (3) a marine cluster comprising Centrarchiformes, Pleuronectiformes, Scombriformes, Cichliformes, Anabantiformes, Tetraodontiformes, Perciformes, and Salmoniformes. The prevalence of Cyprinidae hybrids underscores their importance in aquaculture for hybridization, where traits such as rapid growth and disease resistance are enhanced. In contrast, marine hybrids are valued for their market value and adaptability. While mitogenome data robustly support maternal inheritance in most cases, exceptions suggest complex mechanisms, such as doubly uniparental inheritance (DUI), in distantly related crosses. Moreover, AT-skew of genes in hybrids revealed a paternal leakage of traits in mitogenomes. This study also highlights ecological risks, such as genetic swamping in native populations, emphasizing the need for responsible hybridization practices. These findings advance our understanding of the role of hybridization in fish evolution and aquaculture, providing a genomic framework and policy recommendations for optimizing breeding programs, hybrid introduction, and mitigating conservation challenges. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

14 pages, 1743 KB  
Article
Unravelling Metazoan and Fish Community Patterns in Yujiang River, China: Insights from Beta Diversity Partitioning and Co-Occurrence Network
by Yusen Li, Dapeng Wang, Yuying Huang, Jun Shi, Weijun Wu, Chang Yuan, Shiqiong Nong, Chuanbo Guo, Wenjian Chen and Lei Zhou
Diversity 2025, 17(7), 488; https://doi.org/10.3390/d17070488 - 17 Jul 2025
Viewed by 579
Abstract
Understanding the biodiversity of aquatic communities and the underlying mechanisms that shape biodiversity patterns and community dynamics is crucial for the effective conservation and management of freshwater ecosystems. However, traditional survey methods often fail to comprehensively capture species diversity, particularly for low-abundance taxa. [...] Read more.
Understanding the biodiversity of aquatic communities and the underlying mechanisms that shape biodiversity patterns and community dynamics is crucial for the effective conservation and management of freshwater ecosystems. However, traditional survey methods often fail to comprehensively capture species diversity, particularly for low-abundance taxa. Moreover, studies integrating both metazoan and fish communities at fine spatial scales remain limited. To address these gaps, we employed a multi-marker eDNA metabarcoding approach, targeting both the 12S and 18S rRNA gene regions, to comprehensively investigate the composition of metazoan and fish communities in the Yujiang River. A total of 12 metazoan orders were detected, encompassing 15 families, 21 genera, and 19 species. For the fish community, 32 species were identified, belonging to 25 genera, 10 families, and 7 orders. Among these, Adula falcatoides and Coptodon zillii were identified as the most prevalent and abundant metazoan and fish species, respectively. Notably, the most prevalent fish species, C. zillii and Oreochromis niloticus, are both recognized as invasive species. The Bray–Curtis distance of metazoa (average: 0.464) was significantly lower than that of fish communities (average: 0.797), suggesting higher community heterogeneity among fish assemblages. Beta-diversity decomposition indicated that variations in the metazoan and fish communities were predominantly driven by species replacement (turnover) (65.4% and 70.9% for metazoa and fish, respectively) rather than nestedness. Mantel tests further revealed that species turnover in metazoan communities was most strongly influenced by water temperature, while fish community turnover was primarily affected by water transparency, likely reflecting the physiological sensitivity of metazoans to thermal gradients and the dependence of fish on visual cues for foraging and habitat selection. In addition, a co-occurrence network of metazoan and fish species was constructed, highlighting potential predator-prey interactions between native species and Corbicula fluminea, which emerged as a potential keystone species. Overall, this study demonstrates the utility of multi-marker eDNA metabarcoding in characterizing aquatic community structures and provides new insights into the spatial dynamics and species interactions within river ecosystems. Full article
Show Figures

Figure 1

12 pages, 5993 KB  
Article
Quantifying Threats to Fish Biodiversity of the South Caspian Basin in Iran
by Gohar Aghaie, Asghar Abdoli and Thomas H. White
Diversity 2025, 17(7), 480; https://doi.org/10.3390/d17070480 - 11 Jul 2025
Viewed by 536
Abstract
The South Caspian Basin of Iran (SCBI), a vital ecosystem for unique and valuable fish species, is under severe threats due to anthropogenic activities that are rapidly deteriorating its fish biodiversity. The initial step to effectively combat or mitigate threats to biodiversity is [...] Read more.
The South Caspian Basin of Iran (SCBI), a vital ecosystem for unique and valuable fish species, is under severe threats due to anthropogenic activities that are rapidly deteriorating its fish biodiversity. The initial step to effectively combat or mitigate threats to biodiversity is to precisely identify these threats. While such threats are often categorized qualitatively, there is a lack of a comparative quantitative assessment of their severity. This means that although we may have a general understanding of the threats, we do not have a clear picture of how serious they are relative to one another. This study aimed to quantify and prioritize these threats using a modified quantitative “SWOT” (Strengths, Weaknesses, Opportunities, Threats) analysis. Twenty multidisciplinary experts identified and evaluated 26 threats, and we used multivariate cluster analysis to categorize them as “High”, “Medium”, and “Low” based on their quantitative contributions to overall threat. Invasive non-native species and global warming emerged as the most significant threats, followed by resource exploitation, habitat destruction, and pollution. We then used this information to develop a “Situation Model” and “Results Chains” to guide responses to the threats. According to the Situation Model, these threats are interconnected, driven by factors such as population growth, unsustainable resource use, and climate change. To address these challenges, we propose the Results Chains, including two strategies focused on scientific research, land-use planning, public awareness, and community engagement. Prioritizing these actions is crucial for conserving the Caspian Sea’s unique fish fauna and ensuring the region’s ecological and economic sustainability. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

16 pages, 1276 KB  
Article
Behavioral Responses of Galaxias platei to Salmo trutta: Experimental Evidence of Competition and Predation Risk
by Catterina Sobenes, Evelyn Habit, Konrad Górski and Oscar Link
Water 2025, 17(12), 1774; https://doi.org/10.3390/w17121774 - 13 Jun 2025
Viewed by 787
Abstract
The adverse impacts of invasive salmonids on native galaxiids are well documented at the population level in the freshwater ecosystems of the Southern Hemisphere. However, the mechanism underlying these interactions and sub-lethal effects of salmonids on native galaxiids at the individual level remain [...] Read more.
The adverse impacts of invasive salmonids on native galaxiids are well documented at the population level in the freshwater ecosystems of the Southern Hemisphere. However, the mechanism underlying these interactions and sub-lethal effects of salmonids on native galaxiids at the individual level remain poorly understood. In this study, a series of controlled experiments was conducted to assess sub-lethal interactions between invasive brown trout (Salmo trutta) and the native Galaxias platei at an individual level. The microhabitat preferences of G. platei were evaluated in response to potential competition with juvenile brown trout and predation risk from piscivorous adults. In addition, the swimming capacity of G. platei was assessed to determine their ability to escape predation. The results show that at increasing densities of juvenile brown trout, G. platei fails to increase refuge use and are more frequently observed in open habitats. Furthermore, G. platei juveniles exhibit significantly lower swimming capacity compared to brown trout. In the presence of predatory trout, G. platei does not display a heightened preference for refuge habitats. These findings suggest that the behavioral response of G. platei could be insufficient to reduce competition and predation risks posed by brown trout and potentially other salmonids. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

19 pages, 9173 KB  
Article
Cytogenetic and Molecular Characterization of Sphaerophoria rueppellii (Diptera, Syrphidae)
by Pedro Lorite, José M. Rico-Porras, Teresa Palomeque, Mª Ángeles Marcos-García, Diogo C. Cabral-de-Mello and Pablo Mora
Insects 2025, 16(6), 604; https://doi.org/10.3390/insects16060604 - 8 Jun 2025
Viewed by 1751
Abstract
Sphaerophoria rueppellii is a Palearctic hoverfly widely used as a native biocontrol agent against aphid pests in Mediterranean agroecosystems. In this study, we present a cytogenetic analysis and characterization of the mitochondrial genome of this species. Chromosomal preparations, obtained from third-instar larvae, were [...] Read more.
Sphaerophoria rueppellii is a Palearctic hoverfly widely used as a native biocontrol agent against aphid pests in Mediterranean agroecosystems. In this study, we present a cytogenetic analysis and characterization of the mitochondrial genome of this species. Chromosomal preparations, obtained from third-instar larvae, were used for conventional staining, DAPI staining and C-banding techniques, and major ribosomal DNA (rDNA) location by fluorescence in situ hybridization (FISH). Karyotype analysis revealed a diploid number of 2n = 10, with heterochromatic blocks in the pericentromeric regions of all autosomes and rDNA clusters on both sex chromosomes. The complete mitochondrial genome (16,605 bp) was sequenced and annotated using next-generation sequencing and assembly pipelines. It contains the typical 37 mitochondrial genes and a highly A + T-rich control region with tandem repeats. Gene order and codon usage were conserved compared with other Syrphidae. Phylogenetic reconstruction based on mitochondrial protein-coding genes clarifies the species’ placement within the Syrphini tribe. Our results contribute valuable genomic and cytogenetic information that supports comparative analyses and may aid in taxonomic clarification within the genus. These findings also offer key data that could guide the genetic optimization of S. rueppellii as an efficient, environmentally safe biological control agent in sustainable agriculture. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

13 pages, 2423 KB  
Article
Assessing Fish Diversity in the Chishui River Using Environmental DNA (eDNA) Metabarcoding
by Jing Gao, Jing Zhang, Chengrong Pan, Sheng Xu, Yajie Wu, Wei Lv, Min Hong, Yuxin Hu and Yingru Wang
Fishes 2025, 10(6), 279; https://doi.org/10.3390/fishes10060279 - 7 Jun 2025
Cited by 1 | Viewed by 726
Abstract
Since 2017, a fishing ban in the Chishui River (China) has reduced human disturbances, yet the early-stage recovery of fish resources remains unquantified. Here, we applied environmental DNA (eDNA) metabarcoding to assess fish diversity and restoration status across its upper, middle, and lower [...] Read more.
Since 2017, a fishing ban in the Chishui River (China) has reduced human disturbances, yet the early-stage recovery of fish resources remains unquantified. Here, we applied environmental DNA (eDNA) metabarcoding to assess fish diversity and restoration status across its upper, middle, and lower reaches. An analysis of operational taxonomic units (OTUs) revealed higher unique than shared OTUs among reaches, indicating significant spatial partitioning of fish communities. The upper reaches exhibited the highest diversity due to reduced human activity, attributed to greater species richness, while the middle and lower reaches showed similar community structures. Key findings include the following: (1) the detection of rare endemic species (Schizothorax) and non-native Oreochromis DNA, suggesting invasion risks; (2) the investigation revealed a predominance of small-bodied fish species, indicating that large-bodied fish populations in the Chishui River (China) remained relatively scarce; (3) the recovery of demersal fish DNA from surface waters, confirming eDNA’s broad detection capacity. The results indicate that the fishing ban has contributed to the partial recovery of the fish community in the Chishui River (China). However, risks of biological invasion (e.g., Oreochromis species) remain, and large-bodied fish are still relatively scarce. To ensure effective conservation, it is critical to strengthen the monitoring and evaluation of the fishing ban’s effectiveness and implement timely measures to prevent invasive species proliferation. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

19 pages, 9987 KB  
Article
Dye Plants Used by the Indigenous Peoples of the Amur River Basin on Fish Skin Artefacts
by Elisa Palomino
Heritage 2025, 8(6), 195; https://doi.org/10.3390/heritage8060195 - 29 May 2025
Viewed by 920
Abstract
Research on fish skin artefacts’ dyeing practices among the Nivkh, Nanai, Ulchi, Udegei, Oroch, and Negidal Indigenous Peoples of the Amur River basin remains scarce. These fishing communities traditionally crafted fish skin garments, essential to their subsistence and spiritual life, adorning them with [...] Read more.
Research on fish skin artefacts’ dyeing practices among the Nivkh, Nanai, Ulchi, Udegei, Oroch, and Negidal Indigenous Peoples of the Amur River basin remains scarce. These fishing communities traditionally crafted fish skin garments, essential to their subsistence and spiritual life, adorning them with protective motifs. While artistic and cultural aspects of these belongings have been explored, their dyeing techniques remain understudied. This multidisciplinary research examines natural colourants in fish skin artefacts from international museum collections, using historical textual research, ethnographic records, Native Traditional Knowledge, and previous dye analysis by museum conservators. Findings reveal a restricted but meaningful palette of red, blue, yellow, and black colourants, sourced from plants, minerals, and organic materials. Early dyers extracted blue from indigotin-rich plants such as Polygonum tinctorium, or from Commelina communis petals. Red hues were obtained from Carthamus tinctorius petals, introduced through Silk Route trade networks, or from minerals like red ochre. Black was derived from carbon black, while riverine minerals were ground with dry fish roe diluted with water to create additional colour variations. This study first reviews fish skin use in Amur River Indigenous cultures, explores nineteenth-century dyeing materials and techniques, and finally considers broader implications for Indigenous material heritage. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

Back to TopTop