Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = nanowire FET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
3 pages, 825 KiB  
Correction
Correction: Hsieh et al. Single-Grain Gate-All-Around Si Nanowire FET Using Low-Thermal-Budget Processes for Monolithic Three-Dimensional Integrated Circuits. Micromachines 2020, 11, 741
by Tung-Ying Hsieh, Ping-Yi Hsieh, Chih-Chao Yang, Chang-Hong Shen, Jia-Min Shieh, Wen-Kuan Yeh and Meng-Chyi Wu
Micromachines 2025, 16(5), 537; https://doi.org/10.3390/mi16050537 - 30 Apr 2025
Viewed by 332
Abstract
In the original publication [...] Full article
Show Figures

Figure 2

19 pages, 1864 KiB  
Article
An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction
by Ahmed Hadded, Mossaad Ben Ayed and Shaya A. Alshaya
Sensors 2025, 25(1), 236; https://doi.org/10.3390/s25010236 - 3 Jan 2025
Cited by 1 | Viewed by 1257
Abstract
Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon [...] Read more.
Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency. The integration of a 1D CNN model on FPGA hardware for adaptive, non-linear noise filtering sets this design apart from conventional filtering approaches by achieving high accuracy and low power consumption in a portable format. This integration of SiNW-FET with FPGA-based CNN noise reduction offers a unique approach, as prior noise reduction techniques for biosensors typically rely on linear filtering or digital smoothing, which lack adaptive capabilities for complex, non-linear noise patterns. By introducing the 1D CNN on FPGA, this architecture enables real-time, high-fidelity noise reduction, preserving critical signal characteristics without compromising processing speed. Notably, the findings presented in this work are based exclusively on comprehensive simulations using COMSOL and MATLAB, as no physical prototypes or biomarker detection experiments were conducted. The SiNW-FET biosensor, functionalized with antibodies specific to viral antigens, detects impedance shifts caused by antibody–antigen interactions, providing a highly sensitive platform for viral detection. A high-gain folded-cascade amplifier enhances the Signal-to-Noise Ratio (SNR) to approximately 70 dB, verified through COMSOL and MATLAB simulations. Additionally, a 1D CNN model is employed for adaptive noise reduction, filtering out non-linear noise patterns and achieving an approximate 75% noise reduction across a broad frequency range. The CNN model, implemented on an Altera DE2 FPGA, enables high-throughput, low-latency signal processing, making the system viable for real-time applications. Performance evaluations confirmed the proposed system’s capability to enhance the SNR significantly while maintaining a compact and energy-efficient design suitable for portable diagnostics. This integrated architecture thus provides a powerful solution for high-precision, real-time viral detection, and continuous health monitoring, advancing the role of biosensors in accessible point-of-care diagnostics. Full article
(This article belongs to the Special Issue Advanced Sensor Technologies for Biomedical-Information Processing)
Show Figures

Figure 1

12 pages, 9057 KiB  
Article
Low Temperature (Down to 6 K) and Quantum Transport Characteristics of Stacked Nanosheet Transistors with a High-K/Metal Gate-Last Process
by Xiaohui Zhu, Lei Cao, Guilei Wang and Huaxiang Yin
Nanomaterials 2024, 14(11), 916; https://doi.org/10.3390/nano14110916 - 23 May 2024
Cited by 3 | Viewed by 1746
Abstract
Silicon qubits based on specific SOI FinFETs and nanowire (NW) transistors have demonstrated promising quantum properties and the potential application of advanced Si CMOS devices for future quantum computing. In this paper, for the first time, the quantum transport characteristics for the next-generation [...] Read more.
Silicon qubits based on specific SOI FinFETs and nanowire (NW) transistors have demonstrated promising quantum properties and the potential application of advanced Si CMOS devices for future quantum computing. In this paper, for the first time, the quantum transport characteristics for the next-generation transistor structure of a stack nanosheet (NS) FET and the innovative structure of a fishbone FET are explored. Clear structures are observed by TEM, and their low-temperature characteristics are also measured down to 6 K. Consistent with theoretical predictions, greatly enhanced switching behavior characterized by the reduction of off-state leakage current by one order of magnitude at 6 K and a linear decrease in the threshold voltage with decreasing temperature is observed. A quantum ballistic transport, particularly notable at shorter gate lengths and lower temperatures, is also observed, as well as an additional bias of about 1.3 mV at zero bias due to the asymmetric barrier. Additionally, fishbone FETs, produced by the incomplete nanosheet release in NSFETs, exhibit similar electrical characteristics but with degraded quantum transport due to additional SiGe channels. These can be improved by adjusting the ratio of the channel cross-sectional areas to match the dielectric constants. Full article
Show Figures

Figure 1

7 pages, 1574 KiB  
Communication
Effect of Quasi-One-Dimensional Properties on Source/Drain Contacts in Vertical Nanowire Field-Effect Transistors (VNWFETs)
by Iksoo Park, Jaeyong Choi, Jungsik Kim, Byoung Don Kong and Jeong-Soo Lee
Micromachines 2024, 15(4), 481; https://doi.org/10.3390/mi15040481 - 30 Mar 2024
Viewed by 1506
Abstract
In this study, we investigated the influence of quasi-one-dimensional (Quasi-1D) characteristics on the source and drain contact resistances within vertical nanowire (NW) field-effect transistors (FETs) of diminutive diameter. The top contact of the NW is segregated into two distinct regions: the first encompassing [...] Read more.
In this study, we investigated the influence of quasi-one-dimensional (Quasi-1D) characteristics on the source and drain contact resistances within vertical nanowire (NW) field-effect transistors (FETs) of diminutive diameter. The top contact of the NW is segregated into two distinct regions: the first encompassing the upper surface, designated as the axial contact, and the second encircling the side surface, known as the radial contact, which is formed during the top-contact metal deposition process. Quantum confinement effects, prominent within Quasi-1D NWs, exert significant constraints on radial transport, consequently inducing a noticeable impact on contact resistance. Notably, in the radial direction, electron tunneling occurs only through quantized, discrete energy levels. Conversely, along the axial direction, electron tunneling freely traverses continuous energy levels. In a meticulous numerical analysis, these disparities in transport mechanisms unveiled that NWs with diameters below 30 nm exhibit a markedly higher radial contact resistance compared to their axial counterparts. Furthermore, an increase in the overlap length (less than 5 nm) contributes to a modest reduction in radial resistance; however, it remains consistently higher than the axial contact resistance. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

3 pages, 423 KiB  
Abstract
Rational Design of a Planar Junctionless Field-Effect Transistor for Sensing Biomolecular Interactions
by Rajendra P. Shukla, Johan G. Bomer, Daniel Wijnperle, Naveen Kumar, Janwa El Maiss, Divya Balakrishanan, Aruna Chandra Singh, Vihar P. Georgiev, Cesar Pascual Garcia, Sivashankar Krishnamoorthy and Sergii Pud
Proceedings 2024, 97(1), 121; https://doi.org/10.3390/proceedings2024097121 - 29 Mar 2024
Viewed by 1222
Abstract
In the ElectroMed project, we are interested in screening certain peptide sequences for their ability to selectively interact with antibodies or MHC proteins. This poses a combinatorial challenge that requires a highly multiplexed setup of label-free immunosensors. Label-free FET-based immunosensors are good candidates [...] Read more.
In the ElectroMed project, we are interested in screening certain peptide sequences for their ability to selectively interact with antibodies or MHC proteins. This poses a combinatorial challenge that requires a highly multiplexed setup of label-free immunosensors. Label-free FET-based immunosensors are good candidates due to their high multiplexing capability and fast response time. Nanowire-based FET sensors have shown high sensitivity but are unreliable for clinical applications due to drift and gate stability issues. To address this, a label-free immuno-FET architecture based on planar junctionless FET devices is proposed. This geometry can improve the signal-to-noise ratio due to its larger planar structure, which is less prone to defects that cause noise and is better suited to the functionalization of different receptor molecules. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

13 pages, 6824 KiB  
Article
Ultrasensitive 3D Stacked Silicon Nanosheet Field-Effect Transistor Biosensor with Overcoming Debye Shielding Effect for Detection of DNA
by Yinglu Li, Shuhua Wei, Enyi Xiong, Jiawei Hu, Xufang Zhang, Yanrong Wang, Jing Zhang, Jiang Yan, Zhaohao Zhang, Huaxiang Yin and Qingzhu Zhang
Biosensors 2024, 14(3), 144; https://doi.org/10.3390/bios14030144 - 14 Mar 2024
Cited by 3 | Viewed by 2616
Abstract
Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in [...] Read more.
Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings. Full article
Show Figures

Figure 1

11 pages, 5690 KiB  
Article
Ballistic Performance of Quasi-One-Dimensional Hafnium Disulfide Field-Effect Transistors
by Mislav Matić and Mirko Poljak
Electronics 2024, 13(6), 1048; https://doi.org/10.3390/electronics13061048 - 11 Mar 2024
Cited by 4 | Viewed by 1643
Abstract
Hafnium disulfide (HfS2) monolayer is one of the most promising two-dimensional (2D) materials for future nanoscale electronic devices, and patterning it into quasi-one-dimensional HfS2 nanoribbons (HfS2NRs) enables multi-channel architectures for field-effect transistors (FETs). Electronic, transport and ballistic device characteristics [...] Read more.
Hafnium disulfide (HfS2) monolayer is one of the most promising two-dimensional (2D) materials for future nanoscale electronic devices, and patterning it into quasi-one-dimensional HfS2 nanoribbons (HfS2NRs) enables multi-channel architectures for field-effect transistors (FETs). Electronic, transport and ballistic device characteristics are studied for sub-7 nm-wide and ~15 nm-long zigzag HfS2NR FETs using non-equilibrium Green’s functions (NEGF) formalism with density functional theory (DFT) and maximally localized Wannier functions (MLWFs). We provide an in-depth analysis of quantum confinement effects on ON-state performance. We show that bandgap and hole transport mass are immune to downscaling effects, while the ON-state performance is boosted by up to 53% but only in n-type devices. Finally, we demonstrate that HfS2NR FETs can fulfill the industry requirements for future technology nodes, which makes them a promising solution for FET architectures based on multiple nanosheets or nanowires. Full article
(This article belongs to the Special Issue Feature Papers in Semiconductor Devices)
Show Figures

Figure 1

21 pages, 2971 KiB  
Review
Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity
by Huiping Li, Dujuan Li, Huiyi Chen, Xiaojie Yue, Kai Fan, Linxi Dong and Gaofeng Wang
Sensors 2023, 23(15), 6808; https://doi.org/10.3390/s23156808 - 30 Jul 2023
Cited by 30 | Viewed by 7595
Abstract
As a new type of one-dimensional semiconductor nanometer material, silicon nanowires (SiNWs) possess good application prospects in the field of biomedical sensing. SiNWs have excellent electronic properties for improving the detection sensitivity of biosensors. The combination of SiNWs and field effect transistors (FETs) [...] Read more.
As a new type of one-dimensional semiconductor nanometer material, silicon nanowires (SiNWs) possess good application prospects in the field of biomedical sensing. SiNWs have excellent electronic properties for improving the detection sensitivity of biosensors. The combination of SiNWs and field effect transistors (FETs) formed one special biosensor with high sensitivity and target selectivity in real-time and label-free. Recently, SiNW-FETs have received more attention in fields of biomedical detection. Here, we give a critical review of the progress of SiNW-FETs, in particular, about the reversible surface modification methods. Moreover, we summarized the applications of SiNW-FETs in DNA, protein, and microbial detection. We also discuss the related working principle and technical approaches. Our review provides an extensive discussion for studying the challenges in the future development of SiNW-FETs. Full article
Show Figures

Figure 1

16 pages, 4591 KiB  
Article
Pushing the Limits of Biosensing: Selective Calcium Ion Detection with High Sensitivity via High-k Gate Dielectric Engineered Si Nanowire Random Network Channel Dual-Gate Field-Effect Transistors
by Tae-Hwan Hyun and Won-Ju Cho
Sensors 2023, 23(15), 6720; https://doi.org/10.3390/s23156720 - 27 Jul 2023
Cited by 6 | Viewed by 2190
Abstract
Calcium ions (Ca2+) are abundantly present in the human body; they perform essential roles in various biological functions. In this study, we propose a highly sensitive and selective biosensor platform for Ca2+ detection, which comprises a dual-gate (DG) field-effect transistor [...] Read more.
Calcium ions (Ca2+) are abundantly present in the human body; they perform essential roles in various biological functions. In this study, we propose a highly sensitive and selective biosensor platform for Ca2+ detection, which comprises a dual-gate (DG) field-effect transistor (FET) with a high-k engineered gate dielectric, silicon nanowire (SiNW) random network channel, and Ca2+-selective extended gate. The SiNW channel device, which was fabricated via the template transfer method, exhibits superior Ca2+ sensing characteristics compared to conventional film channel devices. An exceptionally high Ca2+ sensitivity of 208.25 mV/dec was achieved through the self-amplification of capacitively coupled DG operation and an enhanced amplification ratio resulting from the high surface-to-volume ratio of the SiNW channel. The SiNW channel device demonstrated stable and reliable sensing characteristics, as evidenced by minimal hysteresis and drift effects, with the hysteresis voltage and drift rate measuring less than 6.53% of the Ca2+ sensitivity. Furthermore, the Ca2+-selective characteristics of the biosensor platform were elucidated through experiments with pH buffer, NaCl, and KCl solutions, wherein the sensitivities of the interfering ions were below 7.82% compared to the Ca2+ sensitivity. The proposed Ca2+-selective biosensor platform exhibits exceptional performance and holds great potential in various biosensing fields. Full article
(This article belongs to the Special Issue Novel Field-Effect Transistor Gas/Chem/Bio Sensing)
Show Figures

Figure 1

14 pages, 9817 KiB  
Article
Implementation of Gate-All-Around Gate-Engineered Charge Plasma Nanowire FET-Based Common Source Amplifier
by Sarabdeep Singh, Leo Raj Solay, Sunny Anand, Naveen Kumar, Ravi Ranjan and Amandeep Singh
Micromachines 2023, 14(7), 1357; https://doi.org/10.3390/mi14071357 - 30 Jun 2023
Cited by 10 | Viewed by 2908
Abstract
This paper examines the performance of a Gate-Engineered Gate-All-Around Charge Plasma Nanowire Field Effect Transistor (GAA-DMG-GS-CP NW-FET) and the implementation of a common source (CS) amplifier circuit. The proposed GAA-DMG-GS-CP NW-FET incorporates dual-material gate (DMG) and gate stack (GS) as gate engineering techniques [...] Read more.
This paper examines the performance of a Gate-Engineered Gate-All-Around Charge Plasma Nanowire Field Effect Transistor (GAA-DMG-GS-CP NW-FET) and the implementation of a common source (CS) amplifier circuit. The proposed GAA-DMG-GS-CP NW-FET incorporates dual-material gate (DMG) and gate stack (GS) as gate engineering techniques and its analog/RF performance parameters are compared to those of the Gate-All-Around Single-Material Gate Charge Plasma Nanowire Field Effect Transistor (GAA-SMG-CP NW-FET) device. Both Gate-All-Around (GAA) devices are designed using the Silvaco TCAD tool. GAA structures have demonstrated good gate control because the gate holds the channel, which is an inherent advantage for both devices discussed herein. The charge plasma dopingless technique is used, in which the source and drain regions are formed using metal contacts and necessary work functions rather than doping. This dopingless technique eliminates the need for doping, reducing fluctuations caused by random dopants and lowering the device’s thermal budget. Gate engineering techniques such as DMG and GS significantly improved the current characteristics which played a crucial role in obtaining maximum gain for circuit designs. The lookup table (LUT) approach is used in the implementation of the CS amplifier circuit with the proposed device. The transient response of the circuit is analyzed with both the device structures where the gain achieved for the CS amplifier circuit using the proposed GAA-DMG-GS-CP NW-FET is 15.06 dB. The superior performance showcased by the proposed GAA-DMG-GS-CP NW-FET device with analog, RF and circuit analysis proves its strong candidature for future nanoscale and low-power applications. Full article
(This article belongs to the Special Issue Recent Advances in Thin Film Electronic Devices and Circuits)
Show Figures

Figure 1

14 pages, 5466 KiB  
Article
Piezotronic and Piezo-Phototronic Effects-Enhanced Core–Shell Structure-Based Nanowire Field-Effect Transistors
by Xiang Liu, Fangpei Li, Wenbo Peng, Quanzhe Zhu, Yangshan Li, Guodong Zheng, Hongyang Tian and Yongning He
Micromachines 2023, 14(7), 1335; https://doi.org/10.3390/mi14071335 - 29 Jun 2023
Cited by 3 | Viewed by 1678
Abstract
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core–shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established [...] Read more.
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core–shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established using the finite element method. We performed a sweep analysis of several parameters of the model. The results show that the channel current increases with the channel radial thickness and channel doping concentration, while it decreases with the channel length, gate doping concentration, and gate voltage. Under a tensile strain of 0.39‰, the saturation current change rate can reach 38%. Finally, another core–shell structure-based ZnO/Si nanowire HJFET model with the same parameters was established. The simulation results show that at a compressive strain of −0.39‰, the saturation current change rate is about 18%, which is smaller than that of the Si/ZnO case. Piezoelectric potential and photogenerated electromotive force jointly regulate the carrier distribution in the channel, change the width of the channel depletion layer and the channel conductivity, and thus regulate the channel current. The research results provide a certain degree of reference for the subsequent experimental design of Zn-based HJFETs and are applicable to other kinds of FETs. Full article
(This article belongs to the Special Issue Nanowires for Novel Technological Applications)
Show Figures

Figure 1

14 pages, 3971 KiB  
Article
Ultrasensitive Silicon Nanowire Biosensor with Modulated Threshold Voltages and Ultra-Small Diameter for Early Kidney Failure Biomarker Cystatin C
by Jiawei Hu, Yinglu Li, Xufang Zhang, Yanrong Wang, Jing Zhang, Jiang Yan, Junjie Li, Zhaohao Zhang, Huaxiang Yin, Qianhui Wei, Qifeng Jiang, Shuhua Wei and Qingzhu Zhang
Biosensors 2023, 13(6), 645; https://doi.org/10.3390/bios13060645 - 13 Jun 2023
Cited by 16 | Viewed by 2794 | Correction
Abstract
Acute kidney injury (AKI) is a frequently occurring severe disease with high mortality. Cystatin C (Cys-C), as a biomarker of early kidney failure, can be used to detect and prevent acute renal injury. In this paper, a biosensor based on a silicon nanowire [...] Read more.
Acute kidney injury (AKI) is a frequently occurring severe disease with high mortality. Cystatin C (Cys-C), as a biomarker of early kidney failure, can be used to detect and prevent acute renal injury. In this paper, a biosensor based on a silicon nanowire field-effect transistor (SiNW FET) was studied for the quantitative detection of Cys-C. Based on the spacer image transfer (SIT) processes and channel doping optimization for higher sensitivity, a wafer-scale, highly controllable SiNW FET was designed and fabricated with a 13.5 nm SiNW. In order to improve the specificity, Cys-C antibodies were modified on the oxide layer of the SiNW surface by oxygen plasma treatment and silanization. Furthermore, a polydimethylsiloxane (PDMS) microchannel was involved in improving the effectiveness and stability of detection. The experimental results show that the SiNW FET sensors realize the lower limit of detection (LOD) of 0.25 ag/mL and have a good linear correlation in the range of Cys-C concentration from 1 ag/mL to 1 pg/mL, exhibiting its great potential in the future real-time application. Full article
(This article belongs to the Special Issue Biosensors Based on Transistors)
Show Figures

Figure 1

16 pages, 2756 KiB  
Article
Ultra-Scaled Si Nanowire Biosensors for Single DNA Molecule Detection
by Aryan Afzalian and Denis Flandre
Sensors 2023, 23(12), 5405; https://doi.org/10.3390/s23125405 - 7 Jun 2023
Cited by 2 | Viewed by 1686
Abstract
In this study, we use NEGF quantum transport simulations to study the fundamental detection limit of ultra-scaled Si nanowire FET (NWT) biosensors. A N-doped NWT is found to be more sensitive for negatively charged analytes as explained by the nature of the detection [...] Read more.
In this study, we use NEGF quantum transport simulations to study the fundamental detection limit of ultra-scaled Si nanowire FET (NWT) biosensors. A N-doped NWT is found to be more sensitive for negatively charged analytes as explained by the nature of the detection mechanism. Our results predict threshold voltage shifts due to a single-charge analyte of tens to hundreds of mV in air or low-ionic solutions. However, with typical ionic solutions and SAM conditions, the sensitivity rapidly drops to the mV/q range. Our results are then extended to the detection of a single 20-base-long DNA molecule in solution. The impact of front- and/or back-gate biasing on the sensitivity and limit of detection is studied and a signal-to-noise ratio of 10 is predicted. Opportunities and challenges to reach down to single-analyte detection in such systems are also discussed, including the ionic and oxide-solution interface-charge screening and ways to recover unscreened sensitivities. Full article
(This article belongs to the Special Issue Advanced Field-Effect Sensors: Volume II)
Show Figures

Figure 1

11 pages, 1859 KiB  
Article
Solution pH Effect on Drain-Gate Characteristics of SOI FET Biosensor
by Anastasia Bulgakova, Anton Berdyugin, Olga Naumova, Boris Fomin, Dmitrii Pyshnyi, Alexey Chubarov, Elena Dmitrienko and Alexander Lomzov
Electronics 2023, 12(3), 777; https://doi.org/10.3390/electronics12030777 - 3 Feb 2023
Cited by 5 | Viewed by 2611
Abstract
Nanowire or nanobelt sensors based on silicon-on-insulator field-effect transistors (SOI-FETs) are one of the leading directions of label-free biosensors. An essential issue in this device construction type is obtaining reproducible results from electrochemical measurements. It is affected by many factors, including the measuring [...] Read more.
Nanowire or nanobelt sensors based on silicon-on-insulator field-effect transistors (SOI-FETs) are one of the leading directions of label-free biosensors. An essential issue in this device construction type is obtaining reproducible results from electrochemical measurements. It is affected by many factors, including the measuring solution and the design parameters of the sensor. The biosensor surface should be charged minimally for the highest sensitivity and maximum effect from interaction with other charged molecules. Therefore, the pH value should be chosen so that the surface has a minimum charge. Here, we studied the SOI-FET sensor containing 12 nanobelt elements concatenated on a single substrate. Two types of sensing elements of similar design and different widths (0.2 or 3 μm) were located in the chips. The drain-gate measurements of wires with a width of 3 µm are sufficiently reproducible for the entire chip to obtain measurement statistics in air and deionized water. For the pH values from 3 to 12, we found significant changes in source-drain characteristics of nanobelts, which reach the plateau at pH values of 7 and higher. High pH sensitivity (ca. 1500 and 970 mV/pH) was observed in sensors of 3 μm and 0.2 μm in width in the range of pH values from 3 to 7. We found a higher “on” current to “off” current ratio for wide wires. At all studied pH values, Ion/Ioff was up to 4600 and 30,800 for 0.2 and 3 μm wires, respectively. In the scheme on the source-drain current measurements at fixed gate voltages, the highest sensitivity to the pH changes reaches a gate voltage of 13 and 19 V for 0.2 μm and 3 μm sensors, respectively. In summary, the most suitable is 3 μm nanobelt sensing elements for the reliable analysis of biomolecules and measurements at pH over 7. Full article
Show Figures

Figure 1

21 pages, 3958 KiB  
Review
Carbon Nanotube-Based Biosensors Using Fusion Technologies with Biologicals & Chemicals for Food Assessment
by Jinyoung Lee
Biosensors 2023, 13(2), 183; https://doi.org/10.3390/bios13020183 - 24 Jan 2023
Cited by 14 | Viewed by 4683
Abstract
High-sensitivity sensors applied in various diagnostic systems are considered to be a promising technology in the era of the fourth industrial revolution. Biosensors that can quickly detect the presence and concentration of specific biomaterials are receiving research attention owing to the breakthroughs in [...] Read more.
High-sensitivity sensors applied in various diagnostic systems are considered to be a promising technology in the era of the fourth industrial revolution. Biosensors that can quickly detect the presence and concentration of specific biomaterials are receiving research attention owing to the breakthroughs in detection technology. In particular, the latest technologies involving the miniaturization of biosensors using nanomaterials, such as nanowires, carbon nanotubes, and nanometals, have been widely studied. Nano-sized biosensors applied in food assessment and in in vivo measurements have the advantages of rapid diagnosis, high sensitivity and selectivity. Nanomaterial-based biosensors are inexpensive and can be applied to various fields. In the present society, where people are paying attention to health and wellness, high-technology food assessment is becoming essential as the consumer demand for healthy food increases. Thus, biosensor technology is required in the food and medical fields. Carbon nanotubes (CNTs) are widely studied for use in electrochemical biosensors. The sensitive electrical characteristics of CNTs allow them to act as electron transfer mediators in electrochemical biosensors. CNT-based biosensors require novel technologies for immobilizing CNTs on electrodes, such as silicon wafers, to use as biosensor templates. CNT-based electrochemical biosensors that serve as field-effect transistors (FET) increase sensitivity. In this review, we critically discuss the recent advances in CNT-based electrochemical biosensors applied with various receptors (antibodies, DNA fragments, and other nanomaterials) for food evaluation, including pathogens, food allergens, and other food-based substances. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

Back to TopTop