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Mislav Matić and Mirko Poljak *

Computational Nanoelectronics Group, Faculty of Electrical Engineering and Computing, University of Zagreb,
HR 10000 Zagreb, Croatia; mislav.matic@fer.hr
* Correspondence: mirko.poljak@fer.hr; Tel.: +385-1-6129-924

Abstract: Hafnium disulfide (HfS2) monolayer is one of the most promising two-dimensional (2D)
materials for future nanoscale electronic devices, and patterning it into quasi-one-dimensional HfS2
nanoribbons (HfS2NRs) enables multi-channel architectures for field-effect transistors (FETs). Elec-
tronic, transport and ballistic device characteristics are studied for sub-7 nm-wide and ~15 nm-long
zigzag HfS2NR FETs using non-equilibrium Green’s functions (NEGF) formalism with density func-
tional theory (DFT) and maximally localized Wannier functions (MLWFs). We provide an in-depth
analysis of quantum confinement effects on ON-state performance. We show that bandgap and
hole transport mass are immune to downscaling effects, while the ON-state performance is boosted
by up to 53% but only in n-type devices. Finally, we demonstrate that HfS2NR FETs can fulfill the
industry requirements for future technology nodes, which makes them a promising solution for FET
architectures based on multiple nanosheets or nanowires.

Keywords: density functional theory (DFT); hafnium disulfide (HfS2); nanoribbon; non-equilibrium
Green’s function (NEGF); quantum transport; quasi-one-dimensional

1. Introduction

Atomically thin two-dimensional (2D) materials (2DMs) have arisen as potential
candidates for future transistor channel materials [1–3] since the discovery of graphene
in 2004 [4]. The 2DMs exhibit near-ballistic transport properties and show potential for
future high-performance electronic devices due to atomic thickness and dangling-bond-free
surfaces [5]. Despite their promising characteristics, the 2DM devices are severely limited
by the high contact resistance that degrades the device performance [6–8]. After graphene,
more than 1800 2DMs have been predicted to be stable [9], and many of them have shown
promise as channel material with transition metal dichalcogenides (TMDs), such as MoS2,
MoTe2, WS2, WSe2, SnS2, etc. [10–12], being among the most promising for future FETs.
One hundred 2DMs were studied recently in [13] for future logic devices where monolayer
hafnium disulfide (HfS2) is reported to be one of the best-performing 2DMs for future
ultra-scaled FETs due to a combination of electronic and transport properties such as low
effective mass and high injection velocity that result in high ON-state current for both
n- and p-FETs. The electronic, transport, and device properties of 2D HfS2 were studied
in detail in [13–15] by advanced theoretical calculations, whereas experimental work on
few-layer HfS2 FETs was reported in [16,17] where integration compatibility of monolayer
HfS2 with HfO2 high-k dielectric was emphasized as one the biggest strengths of realization
of devices with HfS2.

With current state-of-the-art multi-bridge channel (MBC) FETs with silicon nanosheets or
nanowires gaining momentum in the industry, 2DMs patterned into quasi-one-dimensional
(quasi-1D) structures such as nanoribbons could replace silicon and extend Moore’s law
by offering higher integration density [18–20]. Additionally, quantum confinement effects
provide avenues for tuning the material properties, which could benefit the performance of
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such electronic nanodevices. Recently, various nanoribbons with ultimately downscaled
widths were experimentally reported, including graphene nanoribbons (GNRs) [21,22] and
phosphorene nanoribbons (PNRs) [23,24], which affirms the possibility of constructing
MBC FETs, at least in principle, with quasi-1D 2DM nanostructures. Therefore, given the
promising performance of 2D HfS2 FETs, it is imperative to systematically explore the
electronic, transport, and device properties of quasi-1D nanoribbons of HfS2 (HfS2NRs)
about which nothing is currently known in the literature.

In this paper, we present an ab initio study on HfS2NRs using density functional theory
(DFT) to obtain the electronic structure, and maximally localized Wannier functions (ML-
WFs) to transform DFT Hamiltonians into localized basis suitable for quantum transport
simulation. The MLWF Hamiltonians are then coupled to our in-house non-equilibrium
Green’s function (NEGF)-based quantum transport [25,26] solver to obtain the relevant
properties of HfS2NRs and HfS2NR FETs. Most importantly, we report the degradation
of pFET performance while scaling down the nanoribbon width; however, the driving
current in HfS2NR nFETs is surprisingly boosted in ~2 nm-wide transistors by the quantum
confinement effects. These findings are further explained by investigating the bandgap,
density of states and carriers, current density, and injection velocity. Finally, we compare
HfS2NR n- and p-type FETs to other 2DMs and to the requirements set in the International
Roadmap for Devices and Systems (IRDS). We show that both n- and p-type HfS2NR FETs
with nanoribbon widths in the range from ≈2 nm to ≈5 nm can fulfil the goals set for
future logic devices.

2. Methods

The unit cell of monolayer HfS2 (Figure 1a) is obtained from the Materials Cloud [27]
and scaled to construct the supercells of zigzag HfS2 nanoribbons with hydrogen-passivated
edges. The nanoribbon structure from the top and side views is shown in Figures 1b and 1c,
respectively. The zigzag direction exhibits the highest curvature of the dominant subbands
in the valence and conduction bands, which hints at excellent carrier transport in these
devices. The HfS2NR supercells are constructed with respect to the number of HfS2 unit
cells repeated along the nanoribbon width (W). This number ranges from 2 to 10 unit cells,
which corresponds to W from 1.36 nm to 6.39 nm. After defining the initial structure, we
employ an ab initio plane-wave DFT, implemented in the Quantum Espresso (QE) program
package (v.6.8) [28], to relax the nanoribbon structure and obtain the Hamiltonians. A
20 Å vacuum is added in confined directions to exclude any interactions between layers.
The DFT calculations use Perdew–Burke–Ernzerhof generalized gradient approximation
(PBE-GGA) [29] as the exchange–correlation functional with plane augmented wave (PAW)
pseudopotentials. The Brillouin zone is sampled with 1 × 15 × 1 Monkhorst–Pack k-point
grid [30] where 15 k-points are in transport direction, and the cutoff energy is set to 1360 eV.
Convergence thresholds for ionic forces are fixed to 10–3 eV/Å, while 10–4 eV is used for
total energy.

Energy-localized plane-wave Hamiltonians from QE are then converted into a space-
localized basis using MLWFs [31] implemented in the Wannier90 (v.3.1.0) program pack-
age [32,33]. The main input into the Wannier90 tool are the trial orbitals that are used for
Wannier transformation, and here we use d orbitals for Hf atoms and p orbitals for S atoms.
The band structure calculated with MLWF and DFT Hamiltonians shows good agreement
in the relevant energy region around the bandgap, as seen in Figure 1d that reports the dis-
persion of the 3.25 nm wide HfS2NR. Finally, the supercell MLWF Hamiltonian matrices are
upscaled to construct the total HfS2NR Hamiltonian, where the ~15 nm-long nanoribbon
represents the channel of the HfS2NR FET.
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Figure 1. Illustration of (a) HfS2 monolayer. (b) Top and (c) side view of the monolayer HfS2 nano-
ribbon with zigzag edges. (d) Band structure obtained from DFT (blue dots) and MLWF (red lines). 
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nanoribbon with zigzag edges. (d) Band structure obtained from DFT (blue dots) and MLWF
(red lines).

Being primarily interested in the ON-state performance, we use the top-of-the-barrier
(ToB) ballistic FET model [34] to simulate single gate n- and p-type FETs with HfS2NR chan-
nel. Within the ToB model, only the thermionic current is calculated, which is reasonable
because the assumed 15 nm long channel is long enough for negligible tunnelling. The
main inputs of the ToB FET model are transmission and density of states (DOS) calculated
using the NEGF formalism implemented in our in-house code [35,36]. Within NEGF, the
channel is described with the total HfS2NR Hamiltonian and source/drain (S/D) contacts
are described with S/D self-energy matrices calculated using the numerically efficient
Sancho–Rubio method [37,38]. The n- and p-type FETs with zigzag HfS2NR channels are
simulated with ideal electrostatic control by the gate, resulting in a perfect subthreshold
slope, equivalent oxide thickness (EOT) of 1 nm, S/D doping set at 0.01 areal molar fraction
or ≈2.7 × 1013 cm−2, and supply voltage (VDD) set to 0.7 V. To provide a meaningful
comparison between various HfS2NR devices, simulations are performed with a common
OFF-state current (IOFF) set to 10 nA/µm as defined by IRDS for high performance (HP)
devices [39].The setting of IOFF is performed by adjusting the gate work function for each
device automatically within our code. The ballistic ON-state current (ION) and the ON-state
charge density at ToB are extracted when both gate and drain are biased at the supply
voltage. Finally, we set EOT to 0.6 nm and compare ION and injection velocity to our
previous work on GeS nanoribbon devices, in addition to one hundred 2DMs reported
in [13].

3. Results and Discussion

Band structure of HfS2NRs with various widths is reported in Figure 2a–d. All
HfS2NRs exhibit a direct bandgap at the Γ point and we observe an immunity of bandgap
(Eg) to width scaling. The bandgap keeps a constant value of ≈1 eV in all nanoribbons,
as reported in Figure 2e, which is slightly smaller than the 1.3 eV reported in [13] for the
HfS2 monolayer. As W is scaled down, the conduction band (CB) exhibits fewer bands
near the CB minimum (CBM), while the dominant subband qualitatively remains the
same. On the other hand, two degenerate subbands are visible in the valence band (VB)
of wide HfS2NRs with W > 4 nm, and this degeneracy is broken in narrower nanoribbons
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due to strong quantum confinement effect. Namely, two-hole subbands separate and this
separation increases with W downscaling, which is followed by an increase in the curvature
of the second subband near the VB maximum (VBM). To further investigate the quantum
confinement effects on the band structure of all HfS2NR widths, we extract the electron
and hole–band structure effective mass of the dominant subband, closest to the CBM or
VBM, from the band structure by fitting its curvature with a parabolic approximation
(Figure 2f). Electron effective mass (me*) is immune to scaling with me* ≈ 0.2m0 for all
nanoribbon widths. In contrast, hole effective mass (mh*) experiences a significant width-
scaling effect. Namely, mh* is ≈0.37m0 for HfS2NRs with W ≥ 3.25 nm; while scaling
down the width linearly decreases mh* to 0.33m0 when W = 1.36 nm. Considering only the
observed differences in CB and VB, where the mh* of the dominant (highest) subband is at
least 1.6 × lower than the me* for all observed HfS2NRs, we expect a considerable difference
in the performance of n- and p-FETs with HfS2NR channels. However, this metric does
not take into account degeneracy in VB or the higher number of subbands near CBM in
wider nanoribbons.
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monotonic increase of ION when HfS2NR width decreases. The ON-state performance is en-
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Figure 2. Band structure of zigzag HfS2NRs with the widths of (a) 1.36 nm, (b) 1.99 nm, (c) 3.88 nm and
(d) 6.39 nm. (e) Impact of nanoribbon width-scaling on the bandgap of zigzag HfS2NRs. (f) Electron
and hole band structure effective mass dependence on nanoribbon width. Effective masses are
extracted for the lowest (highest) subband in the CB (VB).

To assess the performance of n- and p-type HfS2NR FETs in Figure 3a, we plot the
nanoribbon width dependence of the width-normalized ON-state current. The HfS2NR
pFETs exhibit a monotonic ION decrease from 1.5 mA/µm to 1.12 mA/µm when the width
is downscaled. The only exception is the narrowest pFET that shows a slight ION increase
to 1.18 mA/µm. On the other hand, for HfS2NR nFETs, we surprisingly observe a generally
monotonic increase of ION when HfS2NR width decreases. The ON-state performance is
enhanced from 1.14 mA/µm to 1.74 mA/µm when the width is downscaled from 6.39 nm
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to 1.99 nm, whereas the narrowest nanoribbon with W = 1.36 nm exhibits a slight decrease
of ION to 1.66 mA/µm. Therefore, quantum confinement effects induce a current boosting
of 53% for nFETs with the ≈2 nm wide HfS2NR channel. Since the performance of HfS2NR
FETs shows no correlation to the band structure effective mass, in the following paragraphs,
we explore the features of charge density, density of states, and carrier injection velocity.
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Figure 3. (a) ON-state current and (b) charge density at ToB width dependence in n- and p-type zigzag
HfS2NR FETs. ION and Qch are extracted at VGS = VDS = VDD = 0.7 V with a common IOFF = 10 nA
for all devices. Comparison of DOS in (c) conduction and (d) valence band of HfS2NR FETs. All DOS
and transmission plots are shifted so that the CBM and VBM are positioned at 0 eV. Dependence
of injection velocity on gate voltage in (e) n-type and (f) p-type zigzag HfS2NR FETs for various
nanoribbon widths.

Charge density at the top-of-the-barrier extracted in the ON-state (QCH) for various
HfS2NR widths is plotted in Figure 3b. For HfS2NR nFETs, we report QCH ≈ 8.3 × 1012 cm−2

for W ≥ 3.88 nm, while scaling down decreases QCH to 7.88 × 1012 cm−2 in the 1.36 nm
wide device. On the other hand, in pFETs, charge density increases monotonically from
QCH = 7.87 × 1012 cm−2 for W = 6.39 nm to QCH = 8.24 × 1012 cm−2 for W = 1.36 nm.
Charge density at the top-of-the-barrier depends on DOS near the CBM or VBM. Therefore,
we plot DOS near the CBM (VBM) for various HfS2NR widths in Figure 3c,d. The HfS2NR
nFETs exhibit a dense DOS with a high number of Van Hove singularities (VHS) near
the CBM. Scaling down, HfS2NR width reduces the number of available bands in the CB,
decreases the overall DOS in the 100 meV window, and, therefore, lowers the charge density
in narrower HfS2NRs. However, VB DOS that is relevant for HfS2NR pFETs shows an
increase from a single VHS to two VHSs near the VBM due to band separation of the two
dominant subbands (see Figure 2a) which increases the DOS near the VBM and QCH when
nanoribbon width is scaled down.
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Since the trends in ION and QCH behavior, reported in Figure 3a,b, are qualitatively
opposite, the only reasonable explanation for ION trends should be found in the carrier
transport properties, i.e., injection velocity. Injection velocity (vinj) represents the average
carrier velocity at the top-of-the-barrier under the ballistic limit and it is shown in Figure 3e,f
for n- and p-type HfS2NR FETs, i.e., electrons and holes, respectively. The plots report a gate
voltage (VGS) dependence of vinj in the range from the threshold voltage (VGS ≈ 0.2 V) to
the supply voltage (VGS = 0.7 V). The nFETs with W ≥ 5.14 nm show almost no modulation
by VGS with electron vinj being ≈0.8 × 107 cm/s. In contrast, vinj increases with increasing
bias in the 1.36 nm and 1.99 nm wide HfS2NR nFETs. These two devices exhibit similar vinj
at the threshold voltage; however, HfS2NR nFETs with W = 1.99 nm exhibit a stronger bias
modulation and a higher maximum electron vinj of 1.39 × 107 cm/s. The best observed
vinj coincides with the best reported ION in nFETs for the 1.99 nm wide HfS2NR nFET. We
attribute the optimum performance and highest electron vinj for W ≈ 2 nm to the band
structure evolution, especially to the second CB subband visible in Figure 2b. Namely, for
this nanoribbon, the subband crowding is not as dense as for wider HfS2NRs, which means
that higher subbands with heavier carriers do not contribute significantly to the current-
carrying process. As for pFETs, hole vinj at the threshold equals ≈ 0.8 × 107 cm/s for all
HfS2NR pFETs. Scaling down, HfS2NR width decreases the strength of VGS modulation of
the hole vinj, and devices with W ≤ 2.63 nm show almost no bias modulation. The widest
observed HfS2NR (W = 6.39 nm) shows a 49% increase of hole vinj to 1.2 × 107 cm/s in the
ON-state. As the width is downscaled, the hole vinj decreases monotonically, which agrees
with the ION behavior reported in Figure 3a.

We further explore the current and transport properties in ultra-scaled HfS2NR nan-
odevices by analyzing the current energy density (Jde) in the ON-state. The Jde results are
shown for n- and pFETs in Figures 4a and 4b, respectively. In all devices, the current is
mainly contained in the energy window up to ≈100 meV from the CBM/VBM. The nFETs
exhibit Jde maximum at the CBM for the narrowest HfS2NR, but wider HfS2NRs exhibit a
slight shift of the maximum by 20–30 meV, due to the higher number of occupied subbands.
Namely, setting a common IOFF for all devices results in different S/D Fermi levels (EF)
depending on device width, with a greater EF shift upward generally observed for wider
HfS2NRs. Consequently, there are more current-carrying subbands, and the current density
at the CBM is lower in wider HfS2NR nFETs. The 1.36 nm wide HfS2NR shows maximum
current density near the CBM, with only a single dominant subband. In contrast, for
W = 1.99 nm, the second subband carries current as well, with the second-subband current
density surpassing that of the first subband above CBM + 90 meV, which leads to the
maximum ION for the 2 nm wide device among all the studied HfS2NR nFETs.
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In addition to the current density, band decomposed charge density (BDCD) of nanorib-
bons with the widths of 1.36 nm and 6.39 nm is plotted in Figures 5a and 5b, respectively.
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The BDCD is shown for subbands at the CBM/VBM, along with the nearest next subbands
that are denoted as next-CBM/next-VBM. Figure 5a shows that the electron current in
the narrowest nanoribbon, mainly determined by the first CB subband (see Figure 4a), is
distributed almost through the whole nanoribbon width, except for edge S atoms. On the
other hand, electron current in the widest HfS2NR is mostly determined by the next-CBM
subband (see Figure 4a), so that the current flows away from the edges and somewhat
through the middle, as shown in Figure 5b. As for HfS2NR pFETs with current density
reported in Figure 4b, Jde is localized near the VBM due to the dominant first subband
in the VB with a considerable contribution of the second subband in some devices. The
lowest two VB subbands are slightly separated, i.e., degeneracy is broken, only in the
narrowest HfS2NR (see Figure 2a), and this split results in lower transmission probability
near the VBM and, therefore, lower Jde in pFETs with the narrowest 1.36 nm wide channel.
As shown in the BDCD plots in Figure 5a,b, now addressing the situation for the VBM
subband, we observe that the hole current is expected to flow exclusively along nanoribbon
edges. Furthermore, for wide HfS2NRs where two degenerate subbands are dominant
near the VBM, we observe that the current flows through separate edges in VBM and
next-VBM, as seen in Figure 5b, due to zero overlap between the edges. Scaling down the
nanoribbon width decreases the distance between the edges, which increases the overlap of
the edge states and, therefore, causes the separation of degenerate subbands near the VBM,
as seen in Figure 2. Increasing the current by increasing the width would be limited due
to edge transport; hence, the narrowest HfS2NR pFETs exhibit a decreasing drive current
(Figure 3a) due to higher DOS in S/D regions and related EF downshift.
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Finally, we compare the ON-state performance of HfS2NR FETs with one hundred
2DMs analyzed in [13], to the armchair and zigzag GeSNRs from our previous work [36,40],
and to the IRDS requirements for future logic nodes [39]. For a proper comparison with
the literature data, we set the EOT to 0.6 nm (HfO2 with εr = 20, tox = 3 nm) as in [13]. The
injection velocity in the ON-state for nFET and pFETs is shown in Figure 6a. All HfS2NR
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n- and pFETs exhibit vinj close to, or higher, than the IRDS requirement (0.9 × 107 cm/s),
while achieving comparable vinj values to those in 2D HfS2 along the zigzag direction.
Furthermore, only a few other large-area 2D materials such as Ge2S2, As4 and P4 exhibit
higher vinj compared to HfS2NRs. This is noteworthy because HfS2NRs are quasi-1D
nanostructures with additional quantum confinement in comparison to 2DMs that are
infinite 2D sheets.
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The ON-state current is compared in Figure 6b again for HfS2NR FETs from this work
and one hundred 2DMs reported in [13]. We compare the data against IRDS 2021 [41]
because the IRDS 2022 version, which we have used for all previous comparisons, does not
provide ION requirements with zero series or contact resistance. We observe that HfS2NR
FETs exhibit a relatively high ION and all devices meet the minimum IRDS ION for both nFET
and pFET devices. On the other hand, the maximum IRDS ION specification is met only by
HfS2NR FETs with W in the range from 1.99 nm to 5.14 nm. The remaining HfS2NR FETs
are close but are nevertheless beyond the edges of the acceptable ION window. Compared
to the armchair and zigzag GeSNRs, only armchair GeSNRs with W > 3 nm show better
ION performance than HfS2NR devices in both n- and p-FET configurations. Finally, in
comparison to 2D HfS2 and other 2D materials such as WS2, ZrS2, Ge2S2, arsenene and
phosphorene, all HfS2NR FETs perform relatively poorly. Nevertheless, we stress that
HfS2NRs are quasi-1D nanostructures with strong quantum confinement effects along the
width, so a direct comparison to 2D monolayers is not completely fair.

The usage of zigzag HfS2NR for future FET architectures based on multiple parallel
nanosheets or nanowires is plausible, given their fulfilment of the IRDS requirements
for the ON-state current and injection velocity and, moreover, given the possibility of a
matched performance of n- and p-channel devices. Although several monoelemental 2D
materials and TMDs outperform hafnium disulphide nanoribbon devices, the HfS2NR FETs
still outperform most of the previously studied 2DMs when both n- and p-FET devices and
their performance are considered. Meeting the IRDS requirements for the ON-state current
is obtained here for the ideal single-gate FET structure, whereas the usage of multi-channel
architectures such as MBC FETs could provide opportunities for further improvements
in performance. Additionally, we note that this study deals with purely ballistic devices
so only the upper ballistic performance limits are explored in this work, while taking
into account realistic effects like carrier scattering in quasi-ballistic transport and contact
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resistance would deteriorate the reported HfS2NR FET performance. While investigating
the impact of these issues is important, it is also out of the scope of the current manuscript
and will be addressed in future work. Nevertheless, the potential of using ultra-scaled
HfS2NRs as a channel material in future logic devices is evident.

4. Conclusions

We present a comprehensive study on the electronic, transport and ballistic device
characteristics for HfS2 nanoribbons with a length of 15 nm and widths under 7 nm. We
show that HfS2NRs and HfS2NR FETs exhibit promising transport properties and ON-state
performance combined with an immunity of bandgap to nanoribbon width downscaling.
Moreover, an unexpected and significant ION increase of up to 53% is observed in n-type
FETs with HfS2NR width of ≈2 nm. Concerning the industry goals for future technology
nodes, we demonstrate that HfS2NR FETs with nanoribbon widths in the range from
1.99 nm to 5.14 nm meet all IRDS requirements when EOT is set to 0.6 nm. Therefore, just
like 2D HfS2, quasi-1D nanostructures of monolayer HfS2 present a promising candidate
material system for ultra-scaled logic devices, especially for multi-channel nanosheet or
nanowire nFETs, in which the ~2 nm wide HfS2NRs could provide a significant performance
boost due to the strong quantum confinement effect on the band structure.
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