Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (626)

Search Parameters:
Keywords = nanostructured gold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 235
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

17 pages, 3738 KiB  
Article
Beyond Spheres: Evaluating Gold Nano-Flowers and Gold Nano-Stars for Enhanced Aflatoxin B1 Detection in Lateral Flow Immunoassays
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
Biosensors 2025, 15(8), 495; https://doi.org/10.3390/bios15080495 - 1 Aug 2025
Viewed by 243
Abstract
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the [...] Read more.
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the introduction of gold nanoparticles, which provide enhanced sensitivity and selectivity (compared, for example, to latex beads or carbon nanoparticles) for the detection of target analytes, due to their optical properties, chemical stability and ease of functionalization. In this work, gold nanoparticle-based LFIAs are developed for the detection of aflatoxin B1, and the relative performance of different morphology particles is evaluated. LFIA using gold nano-labels allowed for aflatoxin B1 detection over a range of 0.01 ng/mL–100 ng/mL. Compared to spherical gold nanoparticles and gold nano-flowers, star-shaped gold nanoparticles show increased antibody binding efficiency of 86% due to their greater surface area. Gold nano-stars demonstrated the highest sensitivity, achieving a limit of detection of 0.01ng/mL, surpassing the performance of both spherical gold nanoparticles and gold nano-flowers. The use of star-shaped particles as nano-labels has demonstrated a five-fold improvement in sensitivity, underscoring the potential of integrating diverse nanostructures into LFIA for significantly improving analyte detection. Moreover, the robustness and feasibility of gold nano-stars employed as labels in LFIA was assessed in detecting aflatoxin B1 in a wheat matrix. Improved sensitivity with gold nano-stars holds promise for applications in food safety monitoring, public health diagnostics and rapid point-of-care diagnostics. This work opens the pathway for further development of LFIA utilizing novel nanostructures to achieve unparallel precision in diagnostics and sensing. Full article
Show Figures

Figure 1

12 pages, 3396 KiB  
Article
The Influence of Precursor pH on the Synthesis and Morphology of AuNPs Synthesized Using Green Tea Leaf Extract
by Oksana Velgosova, Zuzana Mikulková and Maksym Lisnichuk
Crystals 2025, 15(8), 682; https://doi.org/10.3390/cryst15080682 - 26 Jul 2025
Viewed by 236
Abstract
This study investigates the effect of precursor pH (1.3, 2, 4, 6, 8, and 10) on the synthesis of gold nanoparticles (AuNPs) via a green synthesis approach using an aqueous extract of green tea (Camellia sinensis) leaves. The formation of AuNPs [...] Read more.
This study investigates the effect of precursor pH (1.3, 2, 4, 6, 8, and 10) on the synthesis of gold nanoparticles (AuNPs) via a green synthesis approach using an aqueous extract of green tea (Camellia sinensis) leaves. The formation of AuNPs was monitored using UV-vis spectrophotometry and confirmed using transmission electron microscopy (TEM). The results confirmed that the morphology and size of the AuNPs are strongly dependent on the pH of the reaction medium. Based on spectral features, the color of the colloids, and TEM analysis, the synthesized samples were classified into three groups. The first (pH 8 and 10) contained predominantly spherical nanoparticles with an average diameter of ~18 nm, the second (pH 1.3 and 2) contained different shaped nanoparticles (20–250 nm in diameter), and the third (pH 4 and 6) contained flower-like nanostructures with a mean diameter of ~60 nm. UV-vis analysis revealed good stability of all AuNP colloids, except at pH 1.3, where a significant decrease in absorbance intensity over time was observed. These findings confirm that tuning the precursor pH allows for controlled manipulation of nanoparticle morphology and stability in green synthesis systems. Full article
Show Figures

Figure 1

18 pages, 3248 KiB  
Article
Electrochemical Nanostructured Aptasensor for Direct Detection of Glycated Hemoglobin
by Luminita Fritea, Cosmin-Mihai Cotrut, Iulian Antoniac, Simona Daniela Cavalu, Luciana Dobjanschi, Angela Antonescu, Liviu Moldovan, Maria Domuta and Florin Banica
Int. J. Mol. Sci. 2025, 26(15), 7140; https://doi.org/10.3390/ijms26157140 - 24 Jul 2025
Viewed by 265
Abstract
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and [...] Read more.
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and combined with gold nanoparticles (AuNPs) electrochemically deposited onto a screen-printed carbon electrode. The nanomaterials significantly improved the analytical performance of the sensor due to their increased surface area and high electrical conductivity. This nanoplatform was employed as a substrate for the covalent attachment of thiolated ferrocene-labeled HbA1c specific aptamer through Au-S binding. The electrochemical signal of ferrocene was covered by a stronger oxidation peak of Fe2+ from the HbA1c structure, leading to the elaboration of a nanostructured aptasensor capable of the direct detection of HbA1c. The electrochemical aptasensor presented a very wide linear range (0.688–11.5%), an acceptable limit of detection (0.098%), and good selectivity and stability, being successfully applied on real samples. This miniaturized, simple, easy-to-use, and fast-responding aptasensor, requiring only a small sample volume, can be considered as a promising candidate for the efficient on-site determination of HbA1c. Full article
Show Figures

Figure 1

16 pages, 4720 KiB  
Article
Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles
by David Oswaldo Romero-Quitl, Siva Kumar Krishnan, Martha Alicia Palomino-Ovando, Orlando Hernández-Cristobal, José Concepción Torres-Guzmán, Jesús Eduardo Lugo and Miller Toledo-Solano
Nanomaterials 2025, 15(14), 1125; https://doi.org/10.3390/nano15141125 - 19 Jul 2025
Viewed by 343
Abstract
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the [...] Read more.
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the Ag shell and the particle shape, transitioning from spherical nanoparticles to distinctly defined nanocubes. Bright field and high-angle annular dark-field scanning transmission electron microscopy (BF-STEM and HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) were employed to validate the structural and compositional changes. To link morphology with optical behavior, we utilized the Mie and Maxwell–Garnett theoretical models to simulate the dielectric response of the core–shell nanostructures, showing trends that align with experimental UV-visible absorption spectra. This research presents an easy and adjustable method for modifying the plasmonic properties of Ag@Au nanoparticles by varying their shape and shell, offering opportunities for advanced applications in sensing, photonics, and nanophotonics. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

46 pages, 3177 KiB  
Review
Recent Advancements in Lateral Flow Assays for Food Mycotoxin Detection: A Review of Nanoparticle-Based Methods and Innovations
by Gayathree Thenuwara, Perveen Akhtar, Bilal Javed, Baljit Singh, Hugh J. Byrne and Furong Tian
Toxins 2025, 17(7), 348; https://doi.org/10.3390/toxins17070348 - 11 Jul 2025
Viewed by 666
Abstract
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, [...] Read more.
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, but they are generally confined to laboratory settings. Consequently, there is a growing demand for point-of-care testing (POCT) solutions that are rapid, sensitive, portable, and cost-effective. Lateral flow assays (LFAs) are a pivotal technology in POCT due to their simplicity, rapidity, and ease of use. This review synthesizes data from 78 peer-reviewed studies published between 2015 and 2024, evaluating advances in nanoparticle-based LFAs for detection of singular or multiplex mycotoxin types. Gold nanoparticles (AuNPs) remain the most widely used, due to their favorable optical and surface chemistry; however, significant progress has also been made with silver nanoparticles (AgNPs), magnetic nanoparticles, quantum dots (QDs), nanozymes, and hybrid nanostructures. The integration of multifunctional nanomaterials has enhanced assay sensitivity, specificity, and operational usability, with innovations including smartphone-based readers, signal amplification strategies, and supplementary technologies such as surface-enhanced Raman spectroscopy (SERS). While most singular LFAs achieved moderate sensitivity (0.001–1 ng/mL), only 6% reached ultra-sensitive detection (<0.001 ng/mL), and no significant improvement was evident over time (ρ = −0.162, p = 0.261). In contrast, multiplex assays demonstrated clear performance gains post-2022 (ρ = −0.357, p = 0.0008), largely driven by system-level optimization and advanced nanomaterials. Importantly, the type of sample matrix (e.g., cereals, dairy, feed) did not significantly influence the analytical sensitivity of singular or multiplex lateral LFAs (Kruskal–Wallis p > 0.05), confirming the matrix-independence of these optimized platforms. While analytical challenges remain for complex targets like fumonisins and deoxynivalenol (DON), ongoing innovations in signal amplification, biorecognition chemistry, and assay standardization are driving LFAs toward becoming reliable, ultra-sensitive, and field-deployable platforms for high-throughput mycotoxin screening in global food safety surveillance. Full article
Show Figures

Graphical abstract

30 pages, 3682 KiB  
Review
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response
by Bojana B. Zmejkovski, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2025, 18(7), 999; https://doi.org/10.3390/ph18070999 - 3 Jul 2025
Viewed by 705
Abstract
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs [...] Read more.
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs that combine in vivo imaging (using fluorescent nanomaterials) with targeted drug delivery, aiming to maximize therapeutic efficacy while minimizing toxicity. These fascinating nanoscale “magic bullets” should be available in the near future. Inorganic nanovehicles are flexible carriers to deliver drugs to their biological targets. Most commonly, mesoporous nanostructured silica, carbon nanotubes, gold, and iron oxide nanoparticles have been thoroughly studied in recent years. Opposite to polymeric and lipid nanostructured materials, inorganic nanomaterial drug carriers are unique because they have shown astonishing theranostic (therapy and diagnostics) effects, expressing an undeniable part of future use in medicine. This review summarizes research from development to the most recent discoveries in the field of nanostructured materials and their applications in drug delivery, including promising metal-based complexes, platinum, palladium, ruthenium, titanium, and tin, to tumor cells and possible use in theranostics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

11 pages, 1648 KiB  
Article
Solar-Driven Interfacial Evaporation Using Bumpy Gold Nanoshell Films with Controlled Shell Thickness
by Yoon-Hee Kim, Hye-Seong Cho, Kwanghee Yoo, Cho-Hee Yang, Sung-Kyu Lee, Homan Kang and Bong-Hyun Jun
Int. J. Mol. Sci. 2025, 26(13), 6160; https://doi.org/10.3390/ijms26136160 - 26 Jun 2025
Viewed by 281
Abstract
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal [...] Read more.
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible–NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m−2 h−1 under sunlight exposure (937.1 W/m2), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems. Full article
Show Figures

Figure 1

12 pages, 3717 KiB  
Article
Sustainable Eco-Friendly Synthesis of Gold Nanoparticles Anchored on Graphene Oxide: Influence of Reductant Concentration on Nanoparticle Morphology
by Mariano Palomba, Gianfranco Carotenuto, Maria Grazia Raucci, Antonio Ruotolo and Angela Longo
Materials 2025, 18(13), 3003; https://doi.org/10.3390/ma18133003 - 25 Jun 2025
Viewed by 401
Abstract
Gold nanoparticles (AuNPs) anchored on graphene oxide (GO) have had a significant interest for their unique optical, electrical, and catalytic properties. This study presents an eco-friendly and sustainable synthesis of AuNPs on GO sheets using L-ascorbic acid (L-aa) as a green reducing agent [...] Read more.
Gold nanoparticles (AuNPs) anchored on graphene oxide (GO) have had a significant interest for their unique optical, electrical, and catalytic properties. This study presents an eco-friendly and sustainable synthesis of AuNPs on GO sheets using L-ascorbic acid (L-aa) as a green reducing agent and polyvinylpyrrolidone (PVP) as a stabilizer. The effect of reductant concentration on nanoparticle morphology was systematically investigated using UV–Visible spectroscopy and transmission electron microscopy (TEM). Results indicate the formation of AuNPs anchored on GO sheets and that an increase in the L-aa amount leads to both an increase in nanoparticle size and a morphological transition from spherical to irregular structures. The simultaneous nucleation and growth processes result in the formation of multiple families of nanostructures, as confirmed by TEM analysis, which reveals two distinct size distributions. At higher L-aa concentrations, the nanoparticles shape evolves into irregular morphologies due to selective growth along a preferential facet. This approach not only enables precise control over AuNP size and shape but also aligns with green chemistry principles, making it a promising route for applications in plasmonics, sensors, and photothermal therapy. Full article
Show Figures

Figure 1

21 pages, 6541 KiB  
Article
A Sensitive Epinephrine Sensor Based on Photochemically Synthesized Gold Nanoparticles
by Eyup Metin, Gonul S. Batibay, Meral Aydin and Nergis Arsu
Chemosensors 2025, 13(7), 229; https://doi.org/10.3390/chemosensors13070229 - 23 Jun 2025
Viewed by 510
Abstract
In this study, gold nanoparticles (AuNPs) and AuNPs-graphene oxide (AuNPs@GO) nanostructures were synthesized in aqueous media using an in-situ photochemical method with bis-acyl phosphine oxide (BAPO) photoinitiator as a photoreducing agent in the presence of HAuCl4. The parameters for synthesis were [...] Read more.
In this study, gold nanoparticles (AuNPs) and AuNPs-graphene oxide (AuNPs@GO) nanostructures were synthesized in aqueous media using an in-situ photochemical method with bis-acyl phosphine oxide (BAPO) photoinitiator as a photoreducing agent in the presence of HAuCl4. The parameters for synthesis were arranged to obtain stable and reproducible dispersions with desirable chemical and optical properties. Both AuNPs and AuNPs@GO were employed as sensing platforms for the detection of epinephrine in two concentration ranges: micromolar (µM) and nanomolar (nM). Field emission scanning electron microscopy (FE-SEM), Dynamic Light Scattering (DLS), UV-Vis absorption, fluorescence emission, and Fourier Transform Infrared (FT-IR) spectroscopy techniques were used to investigate the morphological, optical, and chemical properties of the nanostructures as well as their sensing ability towards epinephrine. Fluorescence spectroscopy played a crucial role in demonstrating the high sensitivity and effectiveness of these systems, especially in the low concentration (nM) range, confirming their strong potential as fluorescence-based sensors. By constructing calibration curves on best linear subranges, limit of detection (LOD) and limit of quantification (LOQ) were calculated with two different approaches, SEintercept and Sy/x. Among all the investigated nanostructures, AuNPs@GO exhibited the highest sensitivity towards epinephrine. The efficiency and reproducibility of the in-situ photochemical AuNPs synthesis approach highlight its applicability in small-molecule detection and particularly in analytical and bio-sensing applications. Full article
(This article belongs to the Section Nanostructures for Chemical Sensing)
Show Figures

Graphical abstract

33 pages, 4158 KiB  
Review
Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors
by Waqas Ahmad, Yihuan Wang, Guangqing Du, Qing Yang and Feng Chen
Nanomaterials 2025, 15(12), 943; https://doi.org/10.3390/nano15120943 - 18 Jun 2025
Cited by 1 | Viewed by 896
Abstract
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic [...] Read more.
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic combination of graphene and other functional materials enables superior plasmonic sensitivity, improves biomolecular interaction, and enhances signal transduction. Key focus areas include the fundamental principle of graphene-enhanced SPR, the functional advantages of graphene hybrid platforms, and their recent applications in detecting biomolecules, disease biomarkers, and pathogens. Finally, current limitations and potential future perspectives are discussed, highlighting the transformative potential of these hybrid nanomaterials in next-generation optical biosensing Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

17 pages, 3390 KiB  
Article
Controlled Formation of Au Nanonetworks via Discrete BTA-Oligo(Acrylic Acid)3 Supramolecular Templates
by Sadaf Aiman, Soonyoung Choi, Hyosun Lee, Sang-Ho Lee and Eunyong Seo
Polymers 2025, 17(12), 1662; https://doi.org/10.3390/polym17121662 - 15 Jun 2025
Viewed by 393
Abstract
Precise control over molecular dispersity and supramolecular assembly is essential for designing nanostructures with targeted properties and functionalities. In this study, we explore the impact of molecular dispersity in BTA-oligo(AA)3 oligomers on the formation and structural organization of Au nanomaterials in an [...] Read more.
Precise control over molecular dispersity and supramolecular assembly is essential for designing nanostructures with targeted properties and functionalities. In this study, we explore the impact of molecular dispersity in BTA-oligo(AA)3 oligomers on the formation and structural organization of Au nanomaterials in an aqueous system. Discrete and polydisperse BTA-oligo(AA)3 samples are systematically synthesized and characterized to evaluate their role as templates for nanostructure formation. UV-vis spectroscopy and TEM analyses reveal distinct differences in the resulting nanostructures. Specifically, discrete oligomers facilitate the formation of well-defined, interconnected Au nanonetworks with high structural uniformity, even at elevated concentrations. In contrast, polydisperse oligomers facilitated the formation of isolated Au nanoparticles with limited control over morphology and connectivity. These differences are attributed to the greater molecular uniformity and enhanced self-assembly capabilities of the discrete oligomers, which serve as effective templates for directing Au precursor organization and reduction into ordered nanostructures. This study provides mechanistic insight into how molecular dispersity affects the templating and assembly of gold nanomaterials. The findings offer a promising strategy for developing tailored nanostructures with interconnected morphologies and controlled optical and structural properties, paving the way for advanced applications. Full article
(This article belongs to the Special Issue Advanced Polymer Structures: Chemistry for Engineering Applications)
Show Figures

Graphical abstract

11 pages, 11517 KiB  
Article
Kinetics-Controlled Simple Method for the Preparation of Au@Ag Hierarchical Superstructures for SERS Analysis
by Mengqi Lyu, Ming Jiang, Hanting Yu, Kailiang Wu, Peitao Zhu, Yingke Zhu, Yan Xia and Juan Li
Inorganics 2025, 13(6), 191; https://doi.org/10.3390/inorganics13060191 - 7 Jun 2025
Viewed by 497
Abstract
Silver nanostructures exhibit exceptional surface-enhanced Raman scattering (SERS) performance due to their strong plasmonic resonance. However, their practical applications are often hindered by structural instability, leading to deformation and performance degradation. In this study, we developed a kinetics-controlled synthetic strategy to fabricate gold-encapsulated [...] Read more.
Silver nanostructures exhibit exceptional surface-enhanced Raman scattering (SERS) performance due to their strong plasmonic resonance. However, their practical applications are often hindered by structural instability, leading to deformation and performance degradation. In this study, we developed a kinetics-controlled synthetic strategy to fabricate gold-encapsulated silver (Au@Ag) hierarchical superstructures (HSs) with enhanced SERS activity and stability. By leveraging polyvinylpyrrolidone (PVP) as a surface modifier and precisely regulating the introduction rate of reaction precursors, we achieved meticulous control over the galvanic replacement kinetics, thereby preserving the structural integrity of pre-synthesized Ag HSs during the formation of Au@Ag HSs. The resulting well-defined Au@Ag HSs demonstrated superior SERS performance, achieving a detection limit of 10−9 M for crystal violet (CV) while exhibiting outstanding signal reproducibility (relative standard deviation, RSD = 11.60%). This work provides a robust and scalable approach to designing stable, high-efficiency SERS-active nanostructures with broad potential in analytical and sensing applications. Full article
Show Figures

Figure 1

21 pages, 3470 KiB  
Article
Lignin-Based Nanostructured Sensor for Selective Detection of Volatile Amines at Trace Levels
by Paolo Papa, Giuseppina Luciani, Rossella Grappa, Virginia Venezia, Ettore Guerriero, Simone Serrecchia, Fabrizio De Cesare, Emiliano Zampetti, Anna Rita Taddei and Antonella Macagnano
Sensors 2025, 25(11), 3536; https://doi.org/10.3390/s25113536 - 4 Jun 2025
Viewed by 638
Abstract
A nanostructured sensing platform was developed by integrating gold-decorated lignin nanoparticles (AuLNPs) into electrospun polylactic acid (PLA) fibre mats. The composite material combines the high surface-to-volume ratio of PLA nanofibres with the chemical functionality of lignin—a polyphenolic biopolymer rich in hydroxyl and aromatic [...] Read more.
A nanostructured sensing platform was developed by integrating gold-decorated lignin nanoparticles (AuLNPs) into electrospun polylactic acid (PLA) fibre mats. The composite material combines the high surface-to-volume ratio of PLA nanofibres with the chemical functionality of lignin—a polyphenolic biopolymer rich in hydroxyl and aromatic groups—enabling selective interactions with volatile amines through hydrogen bonding and Van der Waals forces. The embedded gold nanoparticles (AuNPs) further enhance the sensor’s electrical conductivity and provide catalytic sites for improved analyte interaction. The sensor exhibited selective adsorption of amine vapours, showing particularly strong affinity for dimethylamine (DMA), with a limit of detection (LOD) of approximately 440 ppb. Relative humidity (RH) was found to significantly influence sensor performance by facilitating amine protonation, thus promoting interaction with the sensing surface. The developed sensor demonstrated excellent selectivity, sensitivity and reproducibility, highlighting its potential for real-time detection of amines in environmental monitoring, industrial safety and healthcare diagnostics. Full article
(This article belongs to the Special Issue Gas Sensors: Progress, Perspectives and Challenges)
Show Figures

Figure 1

20 pages, 6956 KiB  
Article
Chiral Growth of Gold Horns on Polyhedrons for SERS Identification of Enantiomers and Polarized Light-Induced Photothermal Sterilization
by Bowen Shang and Guijian Guan
Materials 2025, 18(11), 2627; https://doi.org/10.3390/ma18112627 - 4 Jun 2025
Viewed by 542
Abstract
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement [...] Read more.
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement enables synergistic optimization of chiral optical responses and surface-enhanced Raman scattering (SERS) performance. The proposed chiral HNSs can be used to recognize amino acid enantiomers, in which homochiral amino acid has distinct affinities to the chiral HNSs of homogeneous handedness. The 4-mercaptobenzoic acid (4-MPBA)-modified D-HNS demonstrates significantly enhanced targeting affinity for D-amino acids in the Escherichia coli (E. coli) cell wall, enabling successful amplification of SERS signals and advancing bacterial detection methodologies. By demonstrating the rotation-selective interaction between chiral HNSs and circularly polarized light (CPL), D-HNS exhibits excellent photothermal conversion efficiency under right-handed circularly polarized light (RCP) irradiation. This enables the synergistic combination of targeted physical disruption and photothermal sterilization, which leads to efficient eradication of E. coli. The D-HNS hydrogel composite system further expands the practical application of photothermal sterilization. Altogether, chiral HNSs have achieved SERS detection of bacteria and efficient polarization photothermal sterilization, which helps further develop applications based on chiral nanomaterials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

Back to TopTop