Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = nanosheet FETs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1608 KiB  
Article
A Reflection-Based Ultra-Fast Measurement Method for the Continuous Characterization of Self-Heating for Advanced MOSFETs
by Wei Liu, Guoqixin Huang, Yaru Ding, Chu Yan, Xinwei Yu, Liang Zhao and Yi Zhao
Electronics 2025, 14(13), 2634; https://doi.org/10.3390/electronics14132634 - 30 Jun 2025
Viewed by 262
Abstract
As semiconductor devices approach the sub-10 nm technology node, the self-heating effect (SHE) induced by confined geometries (e.g., FinFETs and nanosheet FETs) has emerged as a critical bottleneck affecting both performance and reliability. This challenge has prompted extensive research efforts to develop advanced [...] Read more.
As semiconductor devices approach the sub-10 nm technology node, the self-heating effect (SHE) induced by confined geometries (e.g., FinFETs and nanosheet FETs) has emerged as a critical bottleneck affecting both performance and reliability. This challenge has prompted extensive research efforts to develop advanced characterization methodologies to investigate this effect and its corresponding influence on the device’s reliability issues. In this paper, we propose reflection-based ultra-fast measurement techniques for the continuous monitoring of the self-heating effect in advanced MOSFETs. With this approach, the self-heating effect-induced degradation of transistor drain current and the real-time temperature change can be continuously captured using a digital phosphor oscilloscope on a nanosecond scale. The thermal time constant of 17 ns and the thermal resistance of 34,000 K/W have been extracted for the short channel transistors used in this study with the help of this new characterization method. This reflection-based method is useful for the fast extraction of the thermal time constant and thermal resistance and for the continuous monitoring of current degradation as well as the real-time temperature. Therefore, this new characterization method is beneficial for the evaluation of the self-heating effect in advanced ultra-scaled MOSFETs. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

15 pages, 4751 KiB  
Article
SnO Nanosheet Transistor with Remarkably High Hole Effective Mobility and More than Six Orders of Magnitude On-Current/Off-Current
by Kuan-Chieh Chen, Jiancheng Wu, Pheiroijam Pooja and Albert Chin
Nanomaterials 2025, 15(9), 640; https://doi.org/10.3390/nano15090640 - 23 Apr 2025
Viewed by 810
Abstract
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh [...] Read more.
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh) of 1 × 1011 and 5 × 1012 cm−2, respectively. To further improve the on-current/off-current (ION/IOFF), an ultra-thin 7 nm thick SnO nanosheet pFET shows a record-breaking ION/IOFF of 6.9 × 106 and remarkable µeff values of ~70 cm2/V·s and 20.7 cm2/V·s at Qh of 1 × 1011 cm−2 and 5 × 1012 cm−2, respectively. This is the first report of an oxide semiconductor transistor achieving a hole effective mobility µeff that reaches 20% of that in single-crystal Si pFETs at an ultra-thin body thickness of 7 nm. In sharp contrast, the control SnO nanosheet pFET without surface passivation or UV anneal exhibits a small ION/IOFF of 1.8 × 104 and a µeff of only 6.1 cm2/V·s at 5 × 1012 cm−2 Qh. The enhanced SnO pFET performance is attributed to reduced defects and improved quality in the SnO channel, as confirmed by decreased charges related to sub-threshold swing (SS) and threshold voltage (Vth) shift. Such a large improvement is further supported by the increased Sn2+ after passivation and UV anneal, as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. The ION/IOFF ratio exceeding six orders of magnitude, remarkably high hole µeff, and excellent two-month stability demonstrate that this pFET is a strong candidate for integration with SnON nFETs in next-generation ultra-high-definition displays and monolithic three-dimensional integrated circuits (3D ICs). Full article
(This article belongs to the Special Issue Integrated Circuit Research for Nanoscale Field-Effect Transistors)
Show Figures

Figure 1

13 pages, 2441 KiB  
Article
Investigation of Source/Drain Height Variation and Its Impacts on FinFET and GAA Nanosheet FET
by Mingyu Ma, Cong Li, Jianghao Ma, Wangjun Yang, Haokun Li, Hailong You and M. Jamal Deen
Electronics 2025, 14(6), 1091; https://doi.org/10.3390/electronics14061091 - 10 Mar 2025
Viewed by 1427
Abstract
As semiconductor technology and process nodes advance, three-dimensional devices like FinFET and NSFET are increasingly becoming the primary choice, replacing planar MOSFETs. However, the complex manufacturing processes and high process sensitivity of three-dimensional devices at advanced process nodes inevitably cause significant deviations from [...] Read more.
As semiconductor technology and process nodes advance, three-dimensional devices like FinFET and NSFET are increasingly becoming the primary choice, replacing planar MOSFETs. However, the complex manufacturing processes and high process sensitivity of three-dimensional devices at advanced process nodes inevitably cause significant deviations from the ideal structure during actual fabrication, leading to notable changes in their electrical characteristics. This paper investigates the impact of source/drain region height fluctuations caused by etching and epitaxial growth variations on the electrical characteristics of FinFET and NSFET devices, as well as their related circuits. The electrical characteristics when height variations occur in single and multiple electrodes indicate that, although NSFET and FinFET generally exhibit similar properties such as a decrease in the ON-state current when the source/drain height is reduced, the independent nature of the nanosheets in NSFET and the unidirectional conduction of Schottky contact resistance cause significant differences in their electrical characteristics. Additionally, the related circuit-level simulations show that height fluctuations in the source/drain regions of devices can significantly impact circuit characteristics, including voltage and delay, and in severe cases, they may even lead to circuit failure. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

10 pages, 958 KiB  
Article
A Unified Semiconductor-Device-Physics-Based Ballistic Model for the Threshold Voltage of Modern Multiple-Gate Metal-Oxide-Semiconductor Field-Effect-Transistors
by Te-Kuang Chiang
Electron. Mater. 2024, 5(4), 321-330; https://doi.org/10.3390/electronicmat5040020 - 13 Dec 2024
Cited by 1 | Viewed by 1582
Abstract
Based on the minimum conduction band edge caused by the minimum channel potential resulting from the quasi-3D scaling theory and the 3D density of state (DOS) accompanied by the Fermi–Dirac distribution function on the source and drain sides, a unified semiconductor-device-physics-based ballistic model [...] Read more.
Based on the minimum conduction band edge caused by the minimum channel potential resulting from the quasi-3D scaling theory and the 3D density of state (DOS) accompanied by the Fermi–Dirac distribution function on the source and drain sides, a unified semiconductor-device-physics-based ballistic model is developed for the threshold voltage of modern multiple-gate (MG) transistors, including FinFET, Ω-gate MOSFET, and nanosheet (NS) MOSFET. It is shown that the thin silicon, thin gate oxide, and high work function will alleviate ballistic effects and resist threshold voltage degradation. In addition, as the device dimension is further reduced to give rise to the 2D/1D DOS, the lowest conduction band edge is increased to resist threshold voltage degradation. The nanosheet MOSFET exhibits the largest threshold voltage among the three transistors due to the smallest minimum conduction band edge caused by the quasi-3D minimum channel potential. When the n-type MOSFET (N-FET) is compared to the P-type MOSFET (P-FET), the P-FET shows more threshold voltage because the hole has a more effective mass than the electron. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors for Electronic Applications)
Show Figures

Figure 1

15 pages, 1523 KiB  
Article
Efficient Neural Network-Based Compact Modeling for Novel Device Structures Using a Multi-Fidelity Model and Active Learning
by HyunJoon Jeong, JinYoung Choi, Yohan Kim, Jeong-Taek Kong and SoYoung Kim
Electronics 2024, 13(23), 4840; https://doi.org/10.3390/electronics13234840 - 8 Dec 2024
Cited by 1 | Viewed by 1737
Abstract
Neural network (NN)-based compact modeling methodologies are gaining attention due to the challenges of device complexity, narrow model coverage, and SPICE simulation speed in advanced semiconductor technology nodes. As device complexity increases, the number of process and structural variables also increases, which significantly [...] Read more.
Neural network (NN)-based compact modeling methodologies are gaining attention due to the challenges of device complexity, narrow model coverage, and SPICE simulation speed in advanced semiconductor technology nodes. As device complexity increases, the number of process and structural variables also increases, which significantly increases the amount of technology computer-aided design (TCAD) simulation data required for NN-based compact modeling. This study proposes a multi-fidelity model and active learning approach to predict global and local variations of nanosheet FETs (NSFETs) with less than 1.5% error, significantly reducing the number of required TCAD simulations by more than half compared with conventional modeling techniques. In addition, the simplified NN model with a smaller training dataset significantly reduces the SPICE simulation time. Full article
(This article belongs to the Special Issue Advanced CMOS Devices and Applications, 2nd Edition)
Show Figures

Figure 1

11 pages, 3249 KiB  
Article
Simulation of Novel Nano Low-Dimensional FETs at the Scaling Limit
by Pengwen Guo, Yuxue Zhou, Haolin Yang, Jiong Pan, Jiaju Yin, Bingchen Zhao, Shangjian Liu, Jiali Peng, Xinyuan Jia, Mengmeng Jia, Yi Yang and Tianling Ren
Nanomaterials 2024, 14(17), 1375; https://doi.org/10.3390/nano14171375 - 23 Aug 2024
Cited by 1 | Viewed by 1797
Abstract
The scaling of bulk Si-based transistors has reached its limits, while novel architectures such as FinFETs and GAAFETs face challenges in sub-10 nm nodes due to complex fabrication processes and severe drain-induced barrier lowering (DIBL) effects. An effective strategy to avoid short-channel effects [...] Read more.
The scaling of bulk Si-based transistors has reached its limits, while novel architectures such as FinFETs and GAAFETs face challenges in sub-10 nm nodes due to complex fabrication processes and severe drain-induced barrier lowering (DIBL) effects. An effective strategy to avoid short-channel effects (SCEs) is the integration of low-dimensional materials into novel device architectures, leveraging the coupling between multiple gates to achieve efficient electrostatic control of the channel. We employed TCAD simulations to model multi-gate FETs based on various dimensional systems and comprehensively investigated electric fields, potentials, current densities, and electron densities within the devices. Through continuous parameter scaling and extracting the sub-threshold swing (SS) and DIBL from the electrical outputs, we offered optimal MoS2 layer numbers and single-walled carbon nanotube (SWCNT) diameters, as well as designed structures for multi-gate FETs based on monolayer MoS2, identifying dual-gate transistors as suitable for high-speed switching applications. Comparing the switching performance of two device types at the same node revealed CNT’s advantages as a channel material in mitigating SCEs at sub-3 nm nodes. We validated the performance enhancement of 2D materials in the novel device architecture and reduced the complexity of the related experimental processes. Consequently, our research provides crucial insights for designing next-generation high-performance transistors based on low-dimensional materials at the scaling limit. Full article
(This article belongs to the Special Issue Simulation Study of Nanoelectronics)
Show Figures

Figure 1

12 pages, 2991 KiB  
Article
Ohmic Contact Formation to β-Ga2O3 Nanosheet Transistors with Ar-Containing Plasma Treatment
by Jin-Xin Chen, Bing-Yan Liu, Yang Gu and Bin Li
Electronics 2024, 13(16), 3181; https://doi.org/10.3390/electronics13163181 - 12 Aug 2024
Cited by 2 | Viewed by 1730
Abstract
Effective Ohmic contact between metals and their conductive channels is a crucial step in developing high-performance Ga2O3-based transistors. Distinct from bulk materials, excess thermal energy of the annealing process can destroy the low-dimensional material itself. Given the thermal budget [...] Read more.
Effective Ohmic contact between metals and their conductive channels is a crucial step in developing high-performance Ga2O3-based transistors. Distinct from bulk materials, excess thermal energy of the annealing process can destroy the low-dimensional material itself. Given the thermal budget concern, a feasible and moderate solution (i.e., Ar-containing plasma treatment) is proposed to achieve effective Ohmic junctions with (100) β-Ga2O3 nanosheets. The impact of four kinds of plasma treatments (i.e., gas mixtures SF6/Ar, SF6/O2/Ar, SF6/O2, and Ar) on (100) β-Ga2O3 crystals is comparatively studied by X-ray photoemission spectroscopy for the first time. With the optimal plasma pre-treatment (i.e., Ar plasma, 100 W, 60 s), the resulting β-Ga2O3 nanosheet field-effect transistors (FETs) show effective Ohmic contact (i.e., contact resistance RC of 104 Ω·mm) without any post-annealing, which leads to competitive device performance such as a high current on/off ratio (>107), a low subthreshold swing (SS, 249 mV/dec), and acceptable field-effect mobility (μeff, ~21.73 cm2 V−1 s−1). By using heavily doped β-Ga2O3 crystals (Ne, ~1020 cm−3) for Ar plasma treatments, the contact resistance RC can be further decreased to 5.2 Ω·mm. This work opens up new opportunities to enhance the Ohmic contact performance of low-dimensional Ga2O3-based transistors and can further benefit other oxide-based nanodevices. Full article
Show Figures

Figure 1

14 pages, 5077 KiB  
Article
Accurate Evaluation of Electro-Thermal Performance in Silicon Nanosheet Field-Effect Transistors with Schemes for Controlling Parasitic Bottom Transistors
by Jinsu Jeong, Sanguk Lee and Rock-Hyun Baek
Nanomaterials 2024, 14(12), 1006; https://doi.org/10.3390/nano14121006 - 10 Jun 2024
Cited by 1 | Viewed by 1888
Abstract
The electro-thermal performance of silicon nanosheet field-effect transistors (NSFETs) with various parasitic bottom transistor (trpbt)-controlling schemes is evaluated. Conventional punch-through stopper, trench inner-spacer (TIS), and bottom oxide (BOX) schemes were investigated from single-device to circuit-level evaluations to avoid overestimating heat’s [...] Read more.
The electro-thermal performance of silicon nanosheet field-effect transistors (NSFETs) with various parasitic bottom transistor (trpbt)-controlling schemes is evaluated. Conventional punch-through stopper, trench inner-spacer (TIS), and bottom oxide (BOX) schemes were investigated from single-device to circuit-level evaluations to avoid overestimating heat’s impact on performance. For single-device evaluations, the TIS scheme maintains the device temperature 59.6 and 50.4 K lower than the BOX scheme for n/pFETs, respectively, due to the low thermal conductivity of BOX. However, when the over-etched S/D recess depth (TSD) exceeds 2 nm in the TIS scheme, the RC delay becomes larger than that of the BOX scheme due to increased gate capacitance (Cgg) as the TSD increases. A higher TIS height prevents the Cgg increase and exhibits the best electro-thermal performance at single-device operation. Circuit-level evaluations are conducted with ring oscillators using 3D mixed-mode simulation. Although TIS and BOX schemes have similar oscillation frequencies, the TIS scheme has a slightly lower device temperature. This thermal superiority of the TIS scheme becomes more pronounced as the load capacitance (CL) increases. As CL increases from 1 to 10 fF, the temperature difference between TIS and BOX schemes widens from 1.5 to 4.8 K. Therefore, the TIS scheme is most suitable for controlling trpbt and improving electro-thermal performance in sub-3 nm node NSFETs. Full article
(This article belongs to the Special Issue Nanostructured Electronic Components and Devices)
Show Figures

Figure 1

12 pages, 9057 KiB  
Article
Low Temperature (Down to 6 K) and Quantum Transport Characteristics of Stacked Nanosheet Transistors with a High-K/Metal Gate-Last Process
by Xiaohui Zhu, Lei Cao, Guilei Wang and Huaxiang Yin
Nanomaterials 2024, 14(11), 916; https://doi.org/10.3390/nano14110916 - 23 May 2024
Cited by 3 | Viewed by 1746
Abstract
Silicon qubits based on specific SOI FinFETs and nanowire (NW) transistors have demonstrated promising quantum properties and the potential application of advanced Si CMOS devices for future quantum computing. In this paper, for the first time, the quantum transport characteristics for the next-generation [...] Read more.
Silicon qubits based on specific SOI FinFETs and nanowire (NW) transistors have demonstrated promising quantum properties and the potential application of advanced Si CMOS devices for future quantum computing. In this paper, for the first time, the quantum transport characteristics for the next-generation transistor structure of a stack nanosheet (NS) FET and the innovative structure of a fishbone FET are explored. Clear structures are observed by TEM, and their low-temperature characteristics are also measured down to 6 K. Consistent with theoretical predictions, greatly enhanced switching behavior characterized by the reduction of off-state leakage current by one order of magnitude at 6 K and a linear decrease in the threshold voltage with decreasing temperature is observed. A quantum ballistic transport, particularly notable at shorter gate lengths and lower temperatures, is also observed, as well as an additional bias of about 1.3 mV at zero bias due to the asymmetric barrier. Additionally, fishbone FETs, produced by the incomplete nanosheet release in NSFETs, exhibit similar electrical characteristics but with degraded quantum transport due to additional SiGe channels. These can be improved by adjusting the ratio of the channel cross-sectional areas to match the dielectric constants. Full article
Show Figures

Figure 1

13 pages, 6824 KiB  
Article
Ultrasensitive 3D Stacked Silicon Nanosheet Field-Effect Transistor Biosensor with Overcoming Debye Shielding Effect for Detection of DNA
by Yinglu Li, Shuhua Wei, Enyi Xiong, Jiawei Hu, Xufang Zhang, Yanrong Wang, Jing Zhang, Jiang Yan, Zhaohao Zhang, Huaxiang Yin and Qingzhu Zhang
Biosensors 2024, 14(3), 144; https://doi.org/10.3390/bios14030144 - 14 Mar 2024
Cited by 3 | Viewed by 2616
Abstract
Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in [...] Read more.
Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings. Full article
Show Figures

Figure 1

11 pages, 5690 KiB  
Article
Ballistic Performance of Quasi-One-Dimensional Hafnium Disulfide Field-Effect Transistors
by Mislav Matić and Mirko Poljak
Electronics 2024, 13(6), 1048; https://doi.org/10.3390/electronics13061048 - 11 Mar 2024
Cited by 4 | Viewed by 1643
Abstract
Hafnium disulfide (HfS2) monolayer is one of the most promising two-dimensional (2D) materials for future nanoscale electronic devices, and patterning it into quasi-one-dimensional HfS2 nanoribbons (HfS2NRs) enables multi-channel architectures for field-effect transistors (FETs). Electronic, transport and ballistic device characteristics [...] Read more.
Hafnium disulfide (HfS2) monolayer is one of the most promising two-dimensional (2D) materials for future nanoscale electronic devices, and patterning it into quasi-one-dimensional HfS2 nanoribbons (HfS2NRs) enables multi-channel architectures for field-effect transistors (FETs). Electronic, transport and ballistic device characteristics are studied for sub-7 nm-wide and ~15 nm-long zigzag HfS2NR FETs using non-equilibrium Green’s functions (NEGF) formalism with density functional theory (DFT) and maximally localized Wannier functions (MLWFs). We provide an in-depth analysis of quantum confinement effects on ON-state performance. We show that bandgap and hole transport mass are immune to downscaling effects, while the ON-state performance is boosted by up to 53% but only in n-type devices. Finally, we demonstrate that HfS2NR FETs can fulfill the industry requirements for future technology nodes, which makes them a promising solution for FET architectures based on multiple nanosheets or nanowires. Full article
(This article belongs to the Special Issue Feature Papers in Semiconductor Devices)
Show Figures

Figure 1

20 pages, 8766 KiB  
Review
A Review of Reliability in Gate-All-Around Nanosheet Devices
by Miaomiao Wang
Micromachines 2024, 15(2), 269; https://doi.org/10.3390/mi15020269 - 13 Feb 2024
Cited by 12 | Viewed by 8728
Abstract
The gate-all-around (GAA) nanosheet (NS) field-effect-transistor (FET) is poised to replace FinFET in the 3 nm CMOS technology node and beyond, marking the second seminal shift in device architecture across the extensive 60-plus-year history of MOSFET. The introduction of a new device structure, [...] Read more.
The gate-all-around (GAA) nanosheet (NS) field-effect-transistor (FET) is poised to replace FinFET in the 3 nm CMOS technology node and beyond, marking the second seminal shift in device architecture across the extensive 60-plus-year history of MOSFET. The introduction of a new device structure, coupled with aggressive pitch scaling, can give rise to reliability challenges. In this article, we present a review of the key reliability mechanisms in GAA NS FET, including bias temperature instability (BTI), hot carrier injection (HCI), gate oxide (Gox) time-dependent dielectric breakdown (TDDB), and middle-of-line (MOL) TDDB. We aim to not only underscore the unique reliability attributes inherent to NS architecture but also provide a holistic view of the status and prospects of NS reliability, taking into account the challenges posed by future scaling. Full article
(This article belongs to the Special Issue Reliability Issues in Advanced Transistor Nodes)
Show Figures

Figure 1

13 pages, 1505 KiB  
Article
Compact Modeling of Advanced Gate-All-Around Nanosheet FETs Using Artificial Neural Network
by Yage Zhao, Zhongshan Xu, Huawei Tang, Yusi Zhao, Peishun Tang, Rongzheng Ding, Xiaona Zhu, David Wei Zhang and Shaofeng Yu
Micromachines 2024, 15(2), 218; https://doi.org/10.3390/mi15020218 - 31 Jan 2024
Cited by 5 | Viewed by 3719
Abstract
As the architecture of logic devices is evolving towards gate-all-around (GAA) structure, research efforts on advanced transistors are increasingly desired. In order to rapidly perform accurate compact modeling for these ultra-scaled transistors with the capability to cover dimensional variations, neural networks are considered. [...] Read more.
As the architecture of logic devices is evolving towards gate-all-around (GAA) structure, research efforts on advanced transistors are increasingly desired. In order to rapidly perform accurate compact modeling for these ultra-scaled transistors with the capability to cover dimensional variations, neural networks are considered. In this paper, a compact model generation methodology based on artificial neural network (ANN) is developed for GAA nanosheet FETs (NSFETs) at advanced technology nodes. The DC and AC characteristics of GAA NSFETs with various physical gate lengths (Lg), nanosheet widths (Wsh) and thicknesses (Tsh), as well as different gate voltages (Vgs) and drain voltages (Vds) are obtained through TCAD simulations. Subsequently, a high-precision ANN model architecture is evaluated. A systematical study on the impacts of ANN size, activation function, learning rate, and epoch (the times of complete pass through the entire training dataset) on the accuracy of ANN models is conducted, and a shallow neural network configuration for generating optimal ANN models is proposed. The results clearly show that the optimized ANN model can reproduce the DC and AC characteristics of NSFETs very accurately with a fitting error (MSE) of 0.01. Full article
(This article belongs to the Special Issue Latest Advancements in Semiconductor Materials, Devices, and Systems)
Show Figures

Figure 1

11 pages, 1430 KiB  
Article
Ambipolar to Unipolar Conversion in C70/Ferrocene Nanosheet Field-Effect Transistors
by Dorra Mahdaoui, Chika Hirata, Kahori Nagaoka, Kun’ichi Miyazawa, Kazuko Fujii, Toshihiro Ando, Manef Abderrabba, Osamu Ito, Shinjiro Yagyu, Yubin Liu, Yoshiyuki Nakajima, Kazuhito Tsukagoshi and Takatsugu Wakahara
Nanomaterials 2023, 13(17), 2469; https://doi.org/10.3390/nano13172469 - 1 Sep 2023
Cited by 3 | Viewed by 1805
Abstract
Organic cocrystals, which are assembled by noncovalent intermolecular interactions, have garnered intense interest due to their remarkable chemicophysical properties and practical applications. One notable feature, namely, the charge transfer (CT) interactions within the cocrystals, not only facilitates the formation of an ordered supramolecular [...] Read more.
Organic cocrystals, which are assembled by noncovalent intermolecular interactions, have garnered intense interest due to their remarkable chemicophysical properties and practical applications. One notable feature, namely, the charge transfer (CT) interactions within the cocrystals, not only facilitates the formation of an ordered supramolecular network but also endows them with desirable semiconductor characteristics. Here, we present the intriguing ambipolar CT properties exhibited by nanosheets composed of single cocrystals of C70/ferrocene (C70/Fc). When heated to 150 °C, the initially ambipolar monoclinic C70/Fc nanosheet-based field-effect transistors (FETs) were transformed into n-type face-centered cubic (fcc) C70 nanosheet-based FETs owing to the elimination of Fc. This thermally induced alteration in the crystal structure was accompanied by an irreversible switching of the semiconducting behavior of the device; thus, the device transitions from ambipolar to unipolar. Importantly, the C70/Fc nanosheet-based FETs were also found to be much more thermally stable than the previously reported C60/Fc nanosheet-based FETs. Furthermore, we conducted visible/near-infrared diffuse reflectance and photoemission yield spectroscopies to investigate the crucial role played by Fc in modulating the CT characteristics. This study provides valuable insights into the overall functionality of these nanosheet structures. Full article
Show Figures

Figure 1

13 pages, 10659 KiB  
Article
Effect of Non-Ideal Cross-Sectional Shape on the Performance of Nanosheet-Based FETs
by Fengyu Kuang, Cong Li, Haokun Li, Hailong You and M. Jamal Deen
Electronics 2023, 12(16), 3419; https://doi.org/10.3390/electronics12163419 - 11 Aug 2023
Viewed by 2532
Abstract
In this article, the effects of non-ideal cross-sectional shapes of stacked nanosheet FET (NSFET) and nanosheet FET with inter-bridge channel (TreeFET) are studied through calibrated 3D TCAD simulations. The impact of non-ideal cross-sectional shapes on the electrical characteristics due to insufficient/excessive etch processes [...] Read more.
In this article, the effects of non-ideal cross-sectional shapes of stacked nanosheet FET (NSFET) and nanosheet FET with inter-bridge channel (TreeFET) are studied through calibrated 3D TCAD simulations. The impact of non-ideal cross-sectional shapes on the electrical characteristics due to insufficient/excessive etch processes are investigated in terms of inner spacer (IS), nanosheet (NS) channel, and inter-bridge (IB) channel. Simulation results show that the geometry and material of the IS have significant effects on the performance of the NSFET. Compared with the rectangular inner spacer (RIS), the low-k crescent inner spacer (CIS) enhances the gate control capability while the high-k CIS degrades the drain-induced barrier lowering (DIBL) and reduces the gate capacitance (Cgg). The tapered NS channel improves short-channel effects (SCEs), but sacrifices the driving current. For the TreeFET, considering the fin angle and concave arc, the IB channel can degrade the gate control capability, and SCEs degradation is severe compared to the ideal structure. Therefore, the non-ideal cross-sectional shapes have a significant impact on NSFET-based structure. This research provides development guidelines for process and structure optimization in advanced transistor technology nodes. Full article
(This article belongs to the Special Issue Advanced CMOS Devices)
Show Figures

Figure 1

Back to TopTop