Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (619)

Search Parameters:
Keywords = nanoparticle porous structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5272 KB  
Article
Mechanical and Adhesive Properties of Hydrothermally Treated Bamboo Composites Reinforced with Phenolic Resin: Effect of Impregnation with Silica Nanoparticles
by Lionnel Frederique Bidzanga Bessala and Yanjun Li
Polymers 2025, 17(22), 2989; https://doi.org/10.3390/polym17222989 - 11 Nov 2025
Viewed by 23
Abstract
This study investigates the synergistic effect of phenolic resin impregnation on the mechanical and adhesive properties of hydrothermally treated bamboo composites further reinforced with a silica nanoparticle sol–gel catalyzed by Fe3O4 (SiO2/Fe3O4). The hydrothermal [...] Read more.
This study investigates the synergistic effect of phenolic resin impregnation on the mechanical and adhesive properties of hydrothermally treated bamboo composites further reinforced with a silica nanoparticle sol–gel catalyzed by Fe3O4 (SiO2/Fe3O4). The hydrothermal pre-treatment was found to enhance cellulose crystallinity, as confirmed through XRD analysis. Dynamic mechanical analysis (DMA) and nanoindentation tests revealed that the hybrid treatment significantly influences the viscoelastic response. Composites treated only with hot water and resin (GB-W) exhibited superior short-term creep resistance and higher elasticity, attributed to their optimized crystalline structure. In contrast, the silica-reinforced composites (GB-M) demonstrated the most viscous behavior and lowest stress relaxation, making them most effective at minimizing elastic springback. Nanoindentation further showed that GB-W had the highest nano-adherence at the fiber cell wall level. FTIR analysis indicated a stronger interaction between the phenolic resin and the hydroxyl groups of the bamboo matrix in GB-0 and GB-W compared to GB-M, where the silica layer potentially altered this interface. Microscopy confirmed a resin penetration depth of at least 1 mm, primarily into porous tissues. The results demonstrate that while silica reinforcement enhances relaxation properties, the hydrothermal pre-treatment combined with phenolic resin creates a more favorable interface, leading to better overall creep resistance and adherence. Full article
Show Figures

Figure 1

21 pages, 24027 KB  
Article
Multifunctional Prussian-Blue-Based Nanocomposite Hydrogel for Infected Wound Regeneration
by Pengchao Zhao, Zhishen Zhang, Dianhao Gong, Hongzhen Luo, Huiying Yu, Xin Li, Kun Lei, Chunshan Quan, Yun Xue and Lijun Guan
Gels 2025, 11(11), 895; https://doi.org/10.3390/gels11110895 - 8 Nov 2025
Viewed by 205
Abstract
The wound healing (WH) process is often severely hindered by bacterial infections and prolonged inflammatory responses. To address this problem, we developed a novel injectable nanocomposite DPB-ODQ hydrogel, which comprises polydopamine-modified Prussian blue nanoparticles (PB@PDA, also called DPB) and an oxidized dextran/quaternized chitosan [...] Read more.
The wound healing (WH) process is often severely hindered by bacterial infections and prolonged inflammatory responses. To address this problem, we developed a novel injectable nanocomposite DPB-ODQ hydrogel, which comprises polydopamine-modified Prussian blue nanoparticles (PB@PDA, also called DPB) and an oxidized dextran/quaternized chitosan (QCS)-based Schiff-base network. This hydrogel possesses a highly interconnected porous structure, an excellent swelling rate (730%), rapid gelling speed (45 s), a high mass retention rate over a three-day period (73.20%), and exceptional self-healing properties. Based on the presence of PDA and the Schiff base, it also exhibited good adhesive strength (13.5 kPa). In addition, under near-infrared irradiation at 1.0 W/cm2, temperatures increased by more than 35 °C within 5 min, indicating excellent photothermal (PT) performance. The PT performance of DPB, synergized with the inherent antibacterial properties of QCS, endowed it with a bactericidal rate exceeding 96% against both Staphylococcus aureus and Escherichia coli. In vitro cell experiments have shown that it significantly promoted fibroblast proliferation and migration. In experiments involving mice infected with S. aureus, DPB-ODQ demonstrated an impressive WH rate of 92.82%, greatly promoting collagen deposition. Full article
(This article belongs to the Special Issue Synthesis of Novel Antimicrobial Gels)
Show Figures

Figure 1

24 pages, 4939 KB  
Article
Engineering Rare Earth-Assisted Cobalt Oxide Gels Toward Superior Energy Storage in Asymmetric Supercapacitors
by Pritam J. Morankar, Rutuja U. Amate, Aviraj M. Teli, Aditya A. Patil, Sonali A. Beknalkar and Chan-Wook Jeon
Gels 2025, 11(11), 867; https://doi.org/10.3390/gels11110867 - 29 Oct 2025
Viewed by 359
Abstract
The rational design of transition metal oxides with tailored electronic structures and defect chemistries is critical for advancing high-performance supercapacitors. Herein, we report the engineering of cobalt oxide (Co3O4) gels through controlled sol–gel synthesis and rare earth (RE) incorporation [...] Read more.
The rational design of transition metal oxides with tailored electronic structures and defect chemistries is critical for advancing high-performance supercapacitors. Herein, we report the engineering of cobalt oxide (Co3O4) gels through controlled sol–gel synthesis and rare earth (RE) incorporation using neodymium (Nd), gadolinium (Gd), and dual neodymium/gadolinium (Nd/Gd) doping. X-ray diffraction (XRD) confirmed the preservation of the cubic spinel structure with systematic peak shifts and broadening, evidencing lattice strain, oxygen vacancy generation, and defect enrichment. Field-emission scanning electron microscopy (FE-SEM) analyses revealed distinct morphological evolution from compact nanoparticle assemblies in pristine Co3O4 to highly porous, interconnected frameworks in Nd/Gd–Co3O4 (Nd/Gd-Co). X-ray photoelectron spectroscopy (XPS) verified the stable incorporation of RE ions, accompanied by electronic interaction with the Co–O matrix and enhanced oxygen defect states. Electrochemical measurements demonstrated that the Nd/Gd–Co electrode achieved a remarkable areal capacitance of 25 F/cm2 at 8 mA/cm2, superior ionic diffusion coefficients, and the lowest equivalent series resistance (0.26 Ω) among all samples. Long-term cycling confirmed 84.35% capacitance retention with 94.46% coulombic efficiency after 12,000 cycles. Furthermore, the asymmetric pouch-type supercapacitor (APSD) constructed with Nd/Gd–Co as the positive electrode and activated carbon as the negative electrode delivered a wide operational window of 1.5 V, an areal capacitance of 140 mF/cm2, an energy density of 0.044 mWh/cm2, and 89.44% retention after 7000 cycles. These findings establish Nd/Gd-Co gels as robust and scalable electrode materials and demonstrate that RE co-doping is an effective strategy for bridging high energy density with long-term electrochemical stability in asymmetric supercapacitors. Full article
(This article belongs to the Special Issue Gel-Based Materials for Energy Storage)
Show Figures

Figure 1

19 pages, 8169 KB  
Article
The Electrochemical Performance of Co3O4 Electrodes with Platinum Nanoparticles for Chlorine Evolution
by Guan-Ting Pan and Aleksandar N. Nikoloski
Inorganics 2025, 13(11), 355; https://doi.org/10.3390/inorganics13110355 - 28 Oct 2025
Viewed by 371
Abstract
Different morphologies of cobalt oxide (Co3O4) electrodes were prepared through the electrochemical deposition technique with various electrodeposition times from 10 min to 50 min. Platinum (Pt) nanoparticles were deposited on the Co3O4 electrodes through sputter coating. [...] Read more.
Different morphologies of cobalt oxide (Co3O4) electrodes were prepared through the electrochemical deposition technique with various electrodeposition times from 10 min to 50 min. Platinum (Pt) nanoparticles were deposited on the Co3O4 electrodes through sputter coating. The crystallographic, microstructural, surface functional, textural–structural, and electric properties of the Co3O4 electrodes were investigated. X-ray diffraction analysis identified a pure cubic Co3O4 crystal structure in the samples. In the electrodeposition process, the microstructure of the electrodes varied from hierarchical 3D flower-like to 2D hexagonal porous nanoplates due to an increase in oxygen vacancies. The carrier densities of all samples were between 5.77 × 1014 cm−3 and 8.77 × 1014 cm−3. The flat band potentials of all samples were between −5.91 V and −6.21 V vs. an absolute electron potential, and the potential values for electrodes became more positive as the oxygen vacancy concentration in the film structure increased. The 2D hexagonal porous nanoplate Pt/Co3O4 electrodes offered the highest oxygen vacancies and thus the maximum current density of 102.66 mA/cm2, with an external potential set at 1.5 V vs. an Ag/AgCl reference electrode. Full article
Show Figures

Graphical abstract

19 pages, 2469 KB  
Article
Tuning Multi-Wavelength Reflection Properties of Porous Silicon Bragg Reflectors Using Silver-Nanoparticle-Assisted Electrochemical Etching
by Sheng-Yang Huang, Hsiao-Han Hsu, Amal Muhammed Musthafa, I-An Lin, Chia-Man Chou and Vincent K. S. Hsiao
Micromachines 2025, 16(11), 1198; https://doi.org/10.3390/mi16111198 - 22 Oct 2025
Viewed by 422
Abstract
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm [...] Read more.
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm2), the transition from single-peak to multi-peak reflection spectra was successfully achieved. The results demonstrate that at a concentration of 10 mg/mL silver nanoparticles, up to four distinct reflection bands can be obtained. A systematic investigation was conducted on the influence of etching cycles (4–20 cycles) and silver nanoparticle concentration on the optical performance and microstructure. SEM analysis revealed well-defined periodic multilayer structures, while XPS analysis confirmed the presence of metallic silver on the porous silicon surface. This work provides a simple, controllable, and cost-effective approach to the development of multifunctional photonic devices, with promising applications in laser optics, solar cells, chemical sensing, and surface-enhanced Raman scattering. Full article
(This article belongs to the Special Issue Micro-Nano Photonics: From Design and Fabrication to Application)
Show Figures

Figure 1

11 pages, 2006 KB  
Article
Synthesis of Poly(Lactic Acid-co-Arginine) and Construction of Its Ternary Phase Diagram for Nonsolvent Induced Phase Separation
by Yinying Zhu, Hongxia Yan, Bei Wang, Zihan Shangguan and Junyan Yao
Materials 2025, 18(20), 4816; https://doi.org/10.3390/ma18204816 - 21 Oct 2025
Viewed by 332
Abstract
L-arginine, a basic amino acid, exhibits high biocompatibility, reactivity, and absorbability. It was selected as the co-polymer modification monomer for L-lactic acid with the objective of enhancing the hydrophilicity of poly(lactic acid) (PLA), neutralizing the acidity of PLA degradation products, and regulating the [...] Read more.
L-arginine, a basic amino acid, exhibits high biocompatibility, reactivity, and absorbability. It was selected as the co-polymer modification monomer for L-lactic acid with the objective of enhancing the hydrophilicity of poly(lactic acid) (PLA), neutralizing the acidity of PLA degradation products, and regulating the degradation cycle. The copolymer poly(lactic acid-co-arginine) (PLAA) was synthesized by direct melting polycondensation of L-arginine and L-lactic acid, and the structures and properties of PLAA were characterized. The results indicated the presence of –NH2, –NH–, and NH= in the molecular chain of the copolymer PLAA. Furthermore, the PLAA was identified as an amorphous copolymer. The “PLAA/CHCl3/C6H14” ternary phase diagram was constituted by nonsolvent-induced phase separation (NIPS) by selecting chloroform (CHCl3) as a good solvent and n-hexane (C6H14) as a nonsolvent. The phase diagram displays three distinguishable regions: the homogeneous zone, the metastable zone, and the phase separation zone. These regions are identified by the binodal and spinodal curves. The ternary phase diagram establishes a theoretical foundation for the preparation and processing of PLAA nanoparticles, composite materials, and porous fibers or membranes. Full article
Show Figures

Figure 1

26 pages, 1624 KB  
Review
Silver-Exchanged Zeolites: Preparation and Applications—A Review
by Marin Senila, Eniko Kovacs and Lacrimioara Senila
Materials 2025, 18(20), 4779; https://doi.org/10.3390/ma18204779 - 19 Oct 2025
Viewed by 701
Abstract
Zeolites are widely acknowledged as minerals with outstanding characteristics, primarily due to their complex porous structure and large specific surface area. The modification of natural and synthetic zeolites can improve their properties, making them suitable for a wider range of applications. In recent [...] Read more.
Zeolites are widely acknowledged as minerals with outstanding characteristics, primarily due to their complex porous structure and large specific surface area. The modification of natural and synthetic zeolites can improve their properties, making them suitable for a wider range of applications. In recent years, silver-exchanged natural zeolites have been increasingly studied because silver is known for its antimicrobial and electrical conductivity properties, which enhance their utility in various fields. This study aims to provide a comprehensive review specifically focused on the silver-zeolite composite system. It synthesizes advancements in silver modified zeolites, offering a targeted analysis that connects synthesis methodologies to enhanced properties and applications. The paper is structured to include an overview of the general characteristics of both natural and synthetic zeolites, and methods for their modification to serve as supports for Ag+ and silver nanoparticles (AgNPs). It subsequently covers the properties of silver-exchanged zeolites and their principal applications. The study also summarizes the advantages and limitations of these materials, along with an analysis of future trends regarding new production possibilities and potential applications. Full article
Show Figures

Graphical abstract

15 pages, 1772 KB  
Article
Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries
by Sarmila Dutta, Yasin Emre Durmus, Eunmi Im, Hans Kungl, Hermann Tempel and Rüdiger-A. Eichel
Batteries 2025, 11(10), 359; https://doi.org/10.3390/batteries11100359 - 29 Sep 2025
Viewed by 1067
Abstract
The commercialization of rechargeable alkaline zinc–air batteries has been constrained by critical challenges associated with the zinc electrode, including passivation, dendrite growth, and hydrogen evolution reaction. These issues severely limit the cycle life and pose a major barrier to large-scale industrial deployment. Integration [...] Read more.
The commercialization of rechargeable alkaline zinc–air batteries has been constrained by critical challenges associated with the zinc electrode, including passivation, dendrite growth, and hydrogen evolution reaction. These issues severely limit the cycle life and pose a major barrier to large-scale industrial deployment. Integration of porous anode structures and electrode additives—two widely investigated approaches for mitigating challenges related to zinc anode—shows significant promise. However, effectively combining these approaches remains challenging. This study introduces a method for fabricating zinc anodes that can combine the benefits of a porous structure and electrode additive. The polytetrafluoroethylene (PTFE) polymer binder used in fabricating the anode material resulted in a stable scaffold, providing the desired anode porosity of approximately 60% and effectively anchoring ZnO nanoparticles. The zinc anodes prepared using a nickel mesh current collector without any electrode additives demonstrated stable cycling performance, sustaining 350 cycles at a current density of 60 mA gZn−1 with a coulombic efficiency of approximately 95%. Incorporating 2 wt.% Bi2O3 as an electrode additive further enhanced the cycling performance, achieving 200 stable cycles with 100% coulombic efficiency under an increased current density of 120 mA gZn−1, signifying the effectiveness of the proposed fabrication strategy. Full article
Show Figures

Figure 1

16 pages, 4730 KB  
Article
Carbon and Silica Supports Enhance the Durability and Catalytic Performance of Cobalt Oxides Derived from Cobalt Benzene-1,3,5-Tricarboxylate Complex
by Hassan H. Hammud, Waleed A. Aljamhi, Kawther AlAbdullah, Muhammad Humayun and Ihab Shawish
Catalysts 2025, 15(9), 881; https://doi.org/10.3390/catal15090881 - 13 Sep 2025
Viewed by 599
Abstract
Addressing the urgent need for robust and sustainable catalysts to detoxify nitroaromatic pollutants, this study introduces a novel approach for synthesizing cobalt oxide nanocomposites via pyrolysis of cobalt benzene-1,3,5-tricarboxylate. By integrating porous carbon (PC) and nano silica (NS) supports with Co3O [...] Read more.
Addressing the urgent need for robust and sustainable catalysts to detoxify nitroaromatic pollutants, this study introduces a novel approach for synthesizing cobalt oxide nanocomposites via pyrolysis of cobalt benzene-1,3,5-tricarboxylate. By integrating porous carbon (PC) and nano silica (NS) supports with Co3O4 to form (Co3O4/PC) and (Co3O4/NS), we achieved precise morphological control, as evidenced by SEM and TEM analysis. SEM revealed 80–500 nm Co3O4 microspheres, 300 nm Co3O4/PC microfibers, and 2–5 µm Co3O4/NS spheres composed of 100 nm nanospheres. TEM further confirmed the presence of ~15 nm nanoparticles. Additionally, FTIR spectra exhibited characteristic Co–O bands at 550 and 650 cm−1, while UV–Vis absorption bands appeared in the range of 450–550 nm, confirming the formation of cobalt oxide structures. Catalytic assays toward p-nitrophenol reduction revealed exceptional kinetics (k = 0.459, 0.405, and 0.384 min−1) and high turnover numbers (TON = 5.1, 6.7, and 6.3 mg 4-NP reduced per mg of catalyst), outperforming most of the recently reported systems. Notably, both supported catalysts retained over 95% activity after two regeneration cycles. These findings not only fill a gap in the development of efficient, regenerable cobalt-based catalysts, but also pave the way for practical applications in environmental remediation. Full article
(This article belongs to the Special Issue Environmental Catalysis and Nanomaterials for Water Pollution Control)
Show Figures

Figure 1

18 pages, 6073 KB  
Article
Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles
by Bedour Almalki, Maymounah A. Alrayyani, Effat A. Bahaidarah, Maha M. Alotaibi, Shaista Taimur, Dalal Alezi, Fatmah M. Alshareef and Nazeeha S. Alkayal
Polymers 2025, 17(18), 2443; https://doi.org/10.3390/polym17182443 - 9 Sep 2025
Viewed by 550
Abstract
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil [...] Read more.
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil and water ecosystems has led to poor water quality. Noble metal nanoparticles (MNPs), for instance, Pd, Ag, Pt, and Au, have emerged as promising solutions for addressing environmental pollution. However, the practical utilization of MNPs faces challenges as they tend to aggregate and lose stability. To overcome this issue, the reverse double-solvent method (RDSM) was utilized to synthesis melamine-based porous polyaminals (POPs) as a supportive material for the in situ growing of silver nanoparticles (Ag NPs). The porous structure of melamine-based porous polyaminals, featuring aminal-linked (-HN-C-NH-) and triazine groups, provides excellent binding sites for capturing Ag+ ions, thereby improving the dispersion and stability of the nanoparticles. The resulting material exhibited ultrafine particle sizes for Ag NPs, and the incorporation of Ag NPs within the porous polyaminals demonstrated a high surface area (~279 m2/g) and total pore volume (1.21 cm3/g), encompassing micropores and mesopores. Additionally, the Ag NPs@POPs showcased significant capacity for CO2 capture (2.99 mmol/g at 273 K and 1 bar) and effectively removed Cu (II), with a remarkable removal efficiency of 99.04%. The nitrogen-rich porous polyaminals offer promising prospects for immobilizing and encapsulating Ag nanoparticles, making them outstanding adsorbents for selectively capturing carbon dioxide and removing metal ions. Pursuing this approach holds immense potential for various environmental applications. Full article
(This article belongs to the Collection Progress in Polymer Composites and Nanocomposites)
Show Figures

Figure 1

59 pages, 2624 KB  
Review
Aerogels Part 1: A Focus on the Most Patented Ultralight, Highly Porous Inorganic Networks and the Plethora of Their Advanced Applications
by Silvana Alfei
Gels 2025, 11(9), 718; https://doi.org/10.3390/gels11090718 - 8 Sep 2025
Viewed by 1932
Abstract
Aerogels (AGs) are highly porous, low-density, disordered, ultralight macroscopic materials with immense surface areas. Traditionally synthesized using aqueous sol–gel chemistry, starting by molecular precursors, the nanoparticles (NPs) dispersions gelation method is nowadays the most used procedure to obtain AGs with improved crystallinity and [...] Read more.
Aerogels (AGs) are highly porous, low-density, disordered, ultralight macroscopic materials with immense surface areas. Traditionally synthesized using aqueous sol–gel chemistry, starting by molecular precursors, the nanoparticles (NPs) dispersions gelation method is nowadays the most used procedure to obtain AGs with improved crystallinity and broader structural, morphological and compositional complexity. The Sol–gel process consists of preparing a solution by hydrolysis of different precursors, followed by gelation, ageing and a drying phase, via supercritical, freeze-drying or ambient evaporation. AGs can be classified based on various factors, such as appearance, synthetic methods, chemical origin, drying methods, microstructure, etc. Due to their nonpareil characteristics, AGs are completely different from common NPs, thus covering different and more extensive applications. AGs can be applied in supercapacitors, acoustic devices, drug delivery, thermal insulation, catalysis, electrocatalysis, gas absorption, gas separation, organic and inorganic xenobiotics removal from water and air and radionucleotides management. This review provides first an analysis on AGs according to data found in CAS Content Collection. Then, an AGs’ classification based on the chemical origin of their precursors, as well as the different methods existing to prepare AGs and the current optimization strategies are discussed. Following, focusing on AGs of inorganic origin, silica and metal oxide-based AGs are reviewed, deeply discussing their properties, specific synthesis and possible uses. These classes were chosen based on the evidence that they are the most experimented, patented and marketed AGs. Several related case studies are reported, some of which have been presented in reader-friendly tables and discussed. Full article
(This article belongs to the Special Issue Recent Advances in Aerogels and Aerogel Composites)
Show Figures

Graphical abstract

17 pages, 2819 KB  
Article
Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing
by Asghar Niyazi, Ashley Linden and Mirella Di Lorenzo
Biosensors 2025, 15(9), 588; https://doi.org/10.3390/bios15090588 - 8 Sep 2025
Viewed by 736
Abstract
Effective glucose monitoring is paramount for patients with diabetes to effectively manage their condition and prevent health complications. Electrochemical sensors for glucose monitoring have key advantages over other systems, including cost-effectiveness, miniaturisation and portability, enabling the design of compact and wearable devices. Typically, [...] Read more.
Effective glucose monitoring is paramount for patients with diabetes to effectively manage their condition and prevent health complications. Electrochemical sensors for glucose monitoring have key advantages over other systems, including cost-effectiveness, miniaturisation and portability, enabling the design of compact and wearable devices. Typically, enzymes are used in these sensors, with the limitations of poor stability and high cost. In alternative, this study reports the development of a gold and platinum composite nanostructured electrode and its testing as an abiotic (enzyme-free) electrocatalyst for glucose oxidation. The electrode consists of a film of highly porous gold electrodeposited onto gold-plated electrodes on a printed circuit board (PCB), which is coated with polyaniline decorated with platinum nanoparticles. The resulting nanocomposite structure shows a sensitivity towards glucose as high as 95.12 ± 2.54 µA mM−1 cm−2, nearly twice that of the highly porous gold electrodes, and excellent stability in synthetic interstitial fluid over extended testing, thus demonstrating robustness. Accordingly, this study lays the groundwork for the next generation of durable, selective, and affordable abiotic glucose biosensors. Full article
Show Figures

Figure 1

23 pages, 3367 KB  
Review
Noble Metal-Based Nanocomposites for Surface-Enhanced Raman Spectroscopy Detection of Food Contaminants
by Huilin Li, Rui Gao, Xiaochun Hu, Mengmeng Gao and Mingfei Pan
Foods 2025, 14(17), 3108; https://doi.org/10.3390/foods14173108 - 5 Sep 2025
Viewed by 1032
Abstract
Public health concerns related to food contaminants, including biotoxins, pesticide and veterinary drug residues, illegal additives, foodborne pathogens, and heavy metals, have garnered significant public attention in recent years. Consequently, there is an urgent need to develop rapid and accurate technologies to detect [...] Read more.
Public health concerns related to food contaminants, including biotoxins, pesticide and veterinary drug residues, illegal additives, foodborne pathogens, and heavy metals, have garnered significant public attention in recent years. Consequently, there is an urgent need to develop rapid and accurate technologies to detect these harmful substances. Surface-enhanced Raman spectroscopy (SERS), due to its characteristics of high sensitivity and specificity enabling the detection of food contaminants within complex matrices, has attracted widespread interest. This review focuses on the application of noble metal-based nanocomposites as SERS-active substrates for food contaminant detection. It particularly highlights the structure–performance relationships of metallic nanomaterials, including gold and silver nanoparticles (e.g., nanospheres, nanostars, nanorods), bimetallic structures (e.g., Au@Ag core–shell), as well as metal–nonmetal composite nanomaterials such as semiconductor-based, carbon-based, and porous framework-based materials. All of which play a crucial role in achieving effective Raman signal enhancement. Furthermore, the significant applications in detecting various contaminants and distinct advantages in terms of the sensitivity and selectivity of noble metal-based nanomaterials are also discussed. Finally, this review addresses current challenges associated with SERS technology based on noble metal-based nanomaterials and proposes corresponding strategies alongside future perspectives. Full article
Show Figures

Figure 1

15 pages, 9157 KB  
Article
Biomass-Derived Magnetic Fe3O4/Biochar Nanoparticles from Baobab Seeds for Sustainable Wastewater Dye Remediation
by Samah Daffalla
Int. J. Mol. Sci. 2025, 26(17), 8499; https://doi.org/10.3390/ijms26178499 - 1 Sep 2025
Viewed by 882
Abstract
This work presents the synthesis and application of magnetic Fe3O4 nanoparticles supported on baobab seed-derived biochar (Fe3O4/BSB) for removing Congo red (CR) dye from aqueous solutions through an oxidative process. The biochar support offered a porous [...] Read more.
This work presents the synthesis and application of magnetic Fe3O4 nanoparticles supported on baobab seed-derived biochar (Fe3O4/BSB) for removing Congo red (CR) dye from aqueous solutions through an oxidative process. The biochar support offered a porous structure with a surface area of 85.6 m2/g, facilitating uniform dispersion of Fe3O4 nanoparticles and efficient oxidative activity. Fourier-transform infrared (FT–IR) spectroscopy analysis confirmed surface fictionalization after Fe3O4 incorporation, while scanning electron microscopy (SEM) images revealed a rough, porous morphology with well-dispersed nanoparticles. Thermogravimetric analysis (TGA) demonstrated enhanced thermal stability, with Fe3O4/BSB retaining ~40% of its mass at 600 °C compared to ~15–20% for raw baobab seeds. Batch experiments indicated that operational factors such as pH, nanoparticles dosage, and initial dye concentration significantly affected removal efficiency. Optimal CR removal (94.2%) was achieved at pH 4, attributed to stronger electrostatic interactions, whereas efficiency declined from 94.1% to 82.8% as the initial dye concentration increased from 10 to 80 mg/L. Kinetic studies showed that the pseudo-second-order model accurately described the oxidative degradation process. Reusability tests confirmed good stability, with removal efficiency decreasing only from 92.6% to 80.7% after four consecutive cycles. Overall, Fe3O4/BSB proves to be a thermally stable, magnetically recoverable, and sustainable catalyst system for treating dye-contaminated wastewater. Full article
Show Figures

Figure 1

34 pages, 3105 KB  
Review
Synthesis and Applications of Zeolite-Encapsulated Metal Catalysts
by Teng Zhu, Tianwei Zhang, Lei Xiao, Cunwei Zhang and Yuming Li
Catalysts 2025, 15(9), 836; https://doi.org/10.3390/catal15090836 - 1 Sep 2025
Viewed by 1866
Abstract
Supported metal catalysts are extensively applied in the heterogeneous catalysis field. However, metal species are prone to migration and aggregation during catalytic reactions due to their high surface energy, which leads to deactivation. In recent years, the use of porous materials, particularly zeolites, [...] Read more.
Supported metal catalysts are extensively applied in the heterogeneous catalysis field. However, metal species are prone to migration and aggregation during catalytic reactions due to their high surface energy, which leads to deactivation. In recent years, the use of porous materials, particularly zeolites, to anchor metal species has gained significant attention. By confining metal single atoms, subnanometer metal clusters, and nanoparticles within the pores or nanocavities of these materials, the dispersion and stability of the metal species can be greatly enhanced, thereby improving the catalytic performance. This review systematically discussed the synthesis principles and diverse methodologies to fabricate zeolite-encapsulated metal catalysts. It further outlined their catalytic applications across various catalysis fields, emphasizing enhanced stability and selectivity enabled by confinement effects. Finally, the review provided critical perspectives on future developments, addressing challenges in precise structural control and scalability for industrial implementation. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Figure 1

Back to TopTop