Environmental Catalysis and Nanomaterials for Water Pollution Control

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Environmental Catalysis".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 1117

Special Issue Editors

College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
Interests: nanomaterials; water remediation technology; environmental health
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
Interests: water pollution control; environmental catalysis; environmental nano-functional materials; advanced oxidation technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Water pollution has become an important issue worldwide. Removing toxic pollutants via environmental catalytic processes has become an emerging wastewater treatment technology. Nanostructured materials exhibit high performance in catalytic processes due to their extremely small size and unique physicochemical properties. In recent years, nanomaterial catalysis has been actively researched and applied in the field of environmental protection, with great potential and unique advantages in water pollution control. The design, modification, and reaction mechanism of nanomaterials are important in environmental catalysis.

This Special Issue, “Environmental Catalysis and Nanomaterials for Water Pollution Control”, seeks high-quality research focusing on the latest novel advances in nanomaterials and their applications in environmental catalysis for water treatment. Topics of interest include, but are not limited to, the following:

  • The synthesis and modification of nanocatalytic materials.
  • The catalytic performance and selectivity of nanomaterials.
  • The theory and mechanism of environmental catalysis.
  • The design, analysis, control, optimization, and operation of the environmental catalysis system.
  • Nanomaterial catalysis for water pollution control.
  • The treatment of emerging environmental contaminants.
  • The development and application of nanomaterial catalysis in the industry.

We look forward to receiving your contributions.

Dr. Tielong Li
Guest Editor

Dr. Wei Wang
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • environmental catalysis
  • nanomaterials
  • water pollution
  • wastewater treatment
  • environmental remediation
  • organic pollutants
  • heavy metals
  • emerging contaminants
  • catalytic degradation
  • sustainable technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2127 KB  
Article
Study on Photocatalytic Peroxone Process for Treating Organic Pollutants in Leachate Based on Modified Carbon Quantum Dots
by Shuo Wu, Nuo Meng, Lin Ma, Xiguo Zhang, Shihu Ding and Wei Wang
Catalysts 2025, 15(9), 903; https://doi.org/10.3390/catal15090903 - 18 Sep 2025
Viewed by 393
Abstract
This study couples a carbon quantum dot photocatalyst with a proton relay installed (EDTA-CQDs) for efficient hydrogen peroxide (H2O2) production with an ozone (O3) system. In situ activation of O3 is achieved by the photogenerated H [...] Read more.
This study couples a carbon quantum dot photocatalyst with a proton relay installed (EDTA-CQDs) for efficient hydrogen peroxide (H2O2) production with an ozone (O3) system. In situ activation of O3 is achieved by the photogenerated H2O2, which integrates the photocatalytic hydrogen peroxide production (PHP) and advanced oxidation processes (AOPs) to form a new photocatalytic peroxone (H2O2/O3) system, achieving highly efficient solar-driven degradation of recalcitrant organic pollutants in landfill leachate without the addition of external H2O2. The composite system exhibits efficient degradation ability for various typical pollutants in landfill leachate, among which the degradation percentage of 100 mg L−1 hydroquinone (HQ) reaches 97% within 30 min. This is due to the synergistic effects of O3 oxidation, photoactivation of O3, activation of O3 by EDTA-CQDs, and activation of O3 by in situ-generated H2O2. In the EDTA-CQD-based H2O2/O3 system, free radicals can be dynamically regenerated after the addition of pollutants, achieving sustained and efficient degradation. Therefore, in the treatment of actual leachate, the removal percentages of COD, TOC, and UV254 are nearly 90%, 70%, and 55%, respectively, demonstrating the significant advantage of this system in treating high-concentration recalcitrant organic pollutants in wastewater of complex quality. Full article
(This article belongs to the Special Issue Environmental Catalysis and Nanomaterials for Water Pollution Control)
Show Figures

Graphical abstract

16 pages, 4730 KB  
Article
Carbon and Silica Supports Enhance the Durability and Catalytic Performance of Cobalt Oxides Derived from Cobalt Benzene-1,3,5-Tricarboxylate Complex
by Hassan H. Hammud, Waleed A. Aljamhi, Kawther AlAbdullah, Muhammad Humayun and Ihab Shawish
Catalysts 2025, 15(9), 881; https://doi.org/10.3390/catal15090881 - 13 Sep 2025
Viewed by 521
Abstract
Addressing the urgent need for robust and sustainable catalysts to detoxify nitroaromatic pollutants, this study introduces a novel approach for synthesizing cobalt oxide nanocomposites via pyrolysis of cobalt benzene-1,3,5-tricarboxylate. By integrating porous carbon (PC) and nano silica (NS) supports with Co3O [...] Read more.
Addressing the urgent need for robust and sustainable catalysts to detoxify nitroaromatic pollutants, this study introduces a novel approach for synthesizing cobalt oxide nanocomposites via pyrolysis of cobalt benzene-1,3,5-tricarboxylate. By integrating porous carbon (PC) and nano silica (NS) supports with Co3O4 to form (Co3O4/PC) and (Co3O4/NS), we achieved precise morphological control, as evidenced by SEM and TEM analysis. SEM revealed 80–500 nm Co3O4 microspheres, 300 nm Co3O4/PC microfibers, and 2–5 µm Co3O4/NS spheres composed of 100 nm nanospheres. TEM further confirmed the presence of ~15 nm nanoparticles. Additionally, FTIR spectra exhibited characteristic Co–O bands at 550 and 650 cm−1, while UV–Vis absorption bands appeared in the range of 450–550 nm, confirming the formation of cobalt oxide structures. Catalytic assays toward p-nitrophenol reduction revealed exceptional kinetics (k = 0.459, 0.405, and 0.384 min−1) and high turnover numbers (TON = 5.1, 6.7, and 6.3 mg 4-NP reduced per mg of catalyst), outperforming most of the recently reported systems. Notably, both supported catalysts retained over 95% activity after two regeneration cycles. These findings not only fill a gap in the development of efficient, regenerable cobalt-based catalysts, but also pave the way for practical applications in environmental remediation. Full article
(This article belongs to the Special Issue Environmental Catalysis and Nanomaterials for Water Pollution Control)
Show Figures

Figure 1

Back to TopTop