Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Ag NPs@Bipy-PAN
2.3. Characterization Methods
2.4. Adsorption of Heavy Metal Ions
2.4.1. Effect of pH on Metal Ion Adsorption
2.4.2. Effect of Polymer Dosage on Metal Ion Adsorption
2.4.3. Effects of Initial Concentration on Metal Adsorption
2.4.4. Effects of Contact Time on Metal Ion Adsorption
2.4.5. Desorption and Regeneration Study
3. Results and Discussion
3.1. Morphological Analysis of Ag NPs Incorporated into Bipy-PAN
3.2. BET and BJH Analysis
3.3. CO2 Adsorption
3.4. Metal Adsorption
3.4.1. pH Influence
3.4.2. Effect of Polymer Dose
3.4.3. Adsorption Isotherm Study
3.4.4. Kinetics Study
3.4.5. Regeneration and Reusability Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ayittey, F.K.; Obek, C.A.; Saptoro, A.; Perumal, K.; Wong, M.K. Process modifications for a hot potassium carbonate-based CO2 capture system: A comparative study. Greenh. Gases Sci. Technol. 2020, 10, 130–146. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, H.; Muhammad, A.; Huang, G. Emission mechanism and reduction countermeasures of agricultural greenhouse gases—A review. Greenh. Gases Sci. Technol. 2019, 9, 160–174. [Google Scholar] [CrossRef]
- Allangawi, A.; Alzaimoor, E.F.H.; Shanaah, H.H.; Mohammed, H.A.; Saqer, H.; El-Fattah, A.A.; Kamel, A.H. Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C 2023, 9, 17. [Google Scholar] [CrossRef]
- Donaghy, T.Q.; Healy, N.; Jiang, C.Y.; Battle, C.P. Fossil fuel racism in the United States: How phasing out coal, oil, and gas can protect communities. Energy Res. Soc. Sci. 2023, 100, 103104. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 73005. [Google Scholar] [CrossRef]
- Odunlami, O.A.; Vershima, D.A.; Oladimeji, T.E.; Nkongho, S.; Ogunlade, S.K.; Fakinle, B.S. Advanced techniques for the capturing and separation of CO2—A review. Results Eng. 2022, 15, 100512. [Google Scholar] [CrossRef]
- Khosrowshahi, M.S.; Abdol, M.A.; Mashhadimoslem, H.; Khakpour, E.; Emrooz, H.B.M.; Sadeghzadeh, S.; Ghaemi, A. The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations. Sci. Rep. 2022, 12, 8917. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Blunt, M.J.; Anthony, E.J.; Park, A.-H.A.; Hughes, R.W.; Webley, P.A.; Yan, J. Advances in carbon capture, utilization and storage. Appl. Energy 2020, 278, 115627. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Yu, J.; Yu, H.; Liu, Y.; Hussain, A. Carbon dioxide capture using liquid absorption methods: A review. Environ. Chem. Lett. 2021, 19, 77–109. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Zhang, Z.; Shi, J.; Liu, Y.; Chen, J.; Sun, N.; Wei, W. SiO2-coated Ag nanoparticles for conversion of terminal alkynes to propolic acids via CO2 insertion. ACS Appl. Nano Mater. 2021, 4, 7107–7115. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, R.S. Offshore geological storage of hydrogen: Is this our best option to achieve net-zero? ACS Energy Lett. 2021, 6, 2181–2186. [Google Scholar] [CrossRef]
- Al-Taai, S.H.H. Water pollution Its causes and effects. IOP Conf. Ser. Earth Environ. Sci. 2021, 790, 12026. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Maksoud, M.I.A.A.; Elgarahy, A.M.; Farrell, C.; Ala’a, H.; Rooney, D.W.; Osman, A.I. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. 2020, 403, 213096. [Google Scholar] [CrossRef]
- Soliman, N.K.; Moustafa, A.F. Industrial solid waste for heavy metals adsorption features and challenges; a review. J. Mater. Res. Technol. 2020, 9, 10235–10253. [Google Scholar] [CrossRef]
- Mokarram, M.; Saber, A.; Sheykhi, V. Effects of heavy metal contamination on river water quality due to release of industrial effluents. J. Clean. Prod. 2020, 277, 123380. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.N.; Pandith, A.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 2019, 17, 729–754. [Google Scholar]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar]
- Cui, X.; Xu, Z.; Li, Y.; Xue, C.; Duan, Q. Nanosilver deposited on a porphyrin-benzothiadiazole functionalized nitrogen and sulfur rich porous organic polymer for reduction of 4-nitrophenol. Microporous Mesoporous Mater. 2021, 328, 111468. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Q. Encapsulating metal nanocatalysts within porous organic hosts. Trends Chem. 2020, 2, 214–226. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Yadav, N.; Garg, V.K.; Chhillar, A.K.; Rana, J.S. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. Chemosphere 2021, 280, 130792. [Google Scholar] [CrossRef]
- Yang, D.; Hou, Y.; Zhuang, Q.; Liu, P.; Kong, J. Nitrogen-Rich Porous Organic Polyamines for Stabilization of Highly Dispersed Metal Nanoparticles and Catalytic Application. Macromol. Rapid Commun. 2019, 40, 1900100. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, G.; Yuan, M.; Yang, J.; Xu, D.; Dong, Z. Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl-containing porous organic polymer for catalytic applications. Nanoscale 2018, 10, 21466–21474. [Google Scholar] [CrossRef]
- Kou, J.; Wang, W.D.; Fang, J.; Li, F.; Zhao, H.; Li, J.; Zhu, H.; Li, B.; Dong, Z. Precisely controlled Pd nanoclusters confined in porous organic cages for size-dependent catalytic hydrogenation. Appl. Catal. B Environ. 2022, 315, 121487. [Google Scholar] [CrossRef]
- Zhong, H.; Su, Y.; Cui, C.; Zhou, F.; Li, X.; Wang, R. Palladium nanoparticles supported by carboxylate-functionalized porous organic polymers for additive-free hydrogen generation from formic acid. ACS Sustain. Chem. Eng. 2017, 5, 8061–8069. [Google Scholar]
- Cao, H.-L.; Huang, H.-B.; Chen, Z.; Karadeniz, B.; Lu, J.; Cao, R. Ultrafine silver nanoparticles supported on a conjugated microporous polymer as high-performance nanocatalysts for nitrophenol reduction. ACS Appl. Mater. Interfaces 2017, 9, 5231–5236. [Google Scholar] [CrossRef]
- Song, Q.; Wang, W.D.; Lu, K.; Li, F.; Wang, B.; Sun, L.; Ma, J.; Zhu, H.; Li, B.; Dong, Z. Three-dimensional hydrophobic porous organic polymers confined Pd nanoclusters for phase-transfer catalytic hydrogenation of nitroarenes in water. Chem. Eng. J. 2021, 415, 128856. [Google Scholar] [CrossRef]
- Carvalho, S.; Pires, J.; Moiteiro, C.; Pinto, M.L. Evaluation of an imine-linked polymer organic framework for storage and release of H2S and NO. Materials 2023, 16, 1655. [Google Scholar] [CrossRef]
- Tao, R.; Ma, X.; Wei, X.; Jin, Y.; Qiu, L.; Zhang, W. Porous organic polymer material supported palladium nanoparticles. J. Mater. Chem. A 2020, 8, 17360–17391. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Y.; Tran, C.H.; Choi, H.K.; Yu, D.-G.; Kim, I. Porous Organic Polymers with Defined Morphologies: Synthesis, Assembly, and Emerging Applications. Prog. Polym. Sci. 2023, 142, 101691. [Google Scholar] [CrossRef]
- Fajal, S.; Dutta, S.; Ghosh, S.K. Porous Organic Polymers (POPs) for Environmental Remediation. Mater. Horiz. 2023, 10, 4083–4138. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, S.; Chen, Y.; Hu, T.; Pudukudy, M.; Shi, L.; Shan, S.; Zhi, Y. Modified melamine-based porous organic polymers with imidazolium ionic liquids as efficient heterogeneous catalysts for CO2 cycloaddition. J. Colloid Interface Sci. 2023, 652, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, R.; Yang, J.; Shuai, Q.; Yuliarto, B.; Kaneti, Y.V.; Yamauchi, Y. Nanoarchitectured porous organic polymers and their environmental applications for removal of toxic metal ions. Chem. Eng. J. 2021, 408, 127991. [Google Scholar] [CrossRef]
- Zhang, T.; Xing, G.; Chen, W.; Chen, L. Porous organic polymers: A promising platform for efficient photocatalysis. Mater. Chem. Front. 2020, 4, 332–353. [Google Scholar] [CrossRef]
- Yang, L.; Shao, L.; Wu, Z.; Zhan, P.; Zhang, L. Design and Synthesis of Porous Organic Polymers: Promising Catalysts for Lignocellulose Conversion to 5-Hydroxymethylfurfural and Derivates. Polymers 2023, 15, 2630. [Google Scholar] [CrossRef]
- Choi, M.; Singh, N.; Son, S.; Kim, J.H.; Kang, M.; Park, S.H.; Choi, D.H.; Hong, C.S.; Kim, J.S. A post-synthetically modified porous organic polymer for photocatalytic water purification. Mater. Chem. Front. 2023, 7, 2085–2092. [Google Scholar] [CrossRef]
- Das, S.K.; Bhanja, P.; Kundu, S.K.; Mondal, S.; Bhaumik, A. Role of surface phenolic-OH groups in N-rich porous organic polymers for enhancing the CO2 uptake and CO2/N2 selectivity: Experimental and computational studies. ACS Appl. Mater. Interfaces 2018, 10, 23813–23824. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z. Micro-and ultramicroporous polyaminals for highly efficient adsorption/separation of C1–C3 hydrocarbons and CO2 in natural gas. ACS Appl. Mater. Interfaces 2020, 12, 24488–24497. [Google Scholar] [CrossRef]
- Sandin, R.; Gonzalez-Lucas, M.; Sobarzo, P.A.; Terraza, C.A.; Maya, E.M. Microwave-assisted melamine-based polyaminals and their application for metal cations adsorption. Eur. Polym. J. 2021, 155, 110562. [Google Scholar] [CrossRef]
- Senthilkumaran, M.; Saravanan, C.; Mareeswaran, P.M. Synthesis and characterization of polyaminals from melamine derivative for carbon dioxide capture studies. Mater. Today Proc. 2021, 40, S117–S119. [Google Scholar] [CrossRef]
- Yang, G.; Han, H.; Du, C.; Luo, Z.; Wang, Y. Facile synthesis of melamine-based porous polymer networks and their application for removal of aqueous mercury ions. Polymer 2010, 51, 6193–6202. [Google Scholar] [CrossRef]
- Rong, M.; Yang, L.; Wang, L.; Yu, J.; Qu, H.; Liu, H. Fabrication of ultramicroporous triphenylamine-based polyaminal networks for low-pressure carbon dioxide capture. J. Colloid Interface Sci. 2019, 548, 265–274. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Y.; Wang, J.; Wang, Y.; Cao, Y.; Li, J.; Zhou, F.; Huang, J.; Liu, Y.-N. Melamine-functionalization of the carbonyl-rich polymers for iodine vapor and Hg2+ capture. Chem. Eng. J. 2023, 460, 141669. [Google Scholar] [CrossRef]
- Sobarzo, P.A.; Tundidor, A.; Sanz-Perez, E.S.; Terraza, C.A.; Maya, E.M. Effect of thiophene, furan moieties and zinc ions on melamine-based porous polyaminals properties and catalytic activity on CO2 cycloaddition reaction. Eur. Polym. J. 2022, 177, 111444. [Google Scholar] [CrossRef]
- Wang, L.; Guo, J.; Xiang, X.; Sang, Y.; Huang, J. Melamine-supported porous organic polymers for efficient CO2 capture and Hg2+ removal. Chem. Eng. J. 2020, 387, 124070. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Q.; Fan, M.; Xu, G.; Liu, X.; Gong, H.; Deng, J.-N.; Meng, S.; Wang, C.; Wang, Z.; et al. Green carboxylation of CO2 triggered by well-dispersed silver nanoparticles immobilized by melamine-based porous organic polymers. J. CO2 Util. 2022, 64, 102179. [Google Scholar] [CrossRef]
- Fang, H.; Chen, J.; Balogun, M.-S.; Tong, Y.-X.; Zhang, J. Covalently modified electrode with Pt nanoparticles encapsulated in porous organic polymer for efficient electrocatalysis. ACS Appl. Nano Mater. 2018, 1, 6477–6482. [Google Scholar] [CrossRef]
- Shunmughanathan, M.; Puthiaraj, P.; Pitchumani, K. Melamine-based microporous network polymer supported palladium nanoparticles: A stable and efficient catalyst for the sonogashira coupling reaction in water. ChemCatChem 2015, 7, 666–673. [Google Scholar] [CrossRef]
- Luo, H.; Huang, T.; Li, X.; Wang, J.; Lv, T.; Tan, W.; Gao, F.; Zhang, J.; Zhou, B. Synergistic antibacterial and wound-healing applications of an imidazole-based porous organic polymer encapsulated silver nanoparticles composite. Microporous Mesoporous Mater. 2022, 337, 111925. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, M.; Xu, D.; Zhao, H.; Zhu, Y.; Fan, M.; Zhang, F.; Dong, Z. Highly dispersed ultrafine palladium nanoparticles encapsulated in a triazinyl functionalized porous organic polymer as a highly efficient catalyst for transfer hydrogenation of aldehydes. J. Mater. Chem. A 2018, 6, 18242–18251. [Google Scholar] [CrossRef]
- Cao, L.-M.; Zhang, J.; Zhang, X.-F.; He, C.-T. Confinement synthesis in porous molecule-based materials: A new opportunity for ultrafine nanostructures. Chem. Sci. 2022, 13, 1569–1593. [Google Scholar] [CrossRef]
- Yuan, M.; Yang, R.; Wei, S.; Hu, X.; Xu, D.; Yang, J.; Dong, Z. Ultra-fine Pd nanoparticles confined in a porous organic polymer: A leaching-and-aggregation-resistant catalyst for the efficient reduction of nitroarenes by NaBH4. J. Colloid Interface Sci. 2019, 538, 720–730. [Google Scholar]
- Yang, X.; Sun, J.-K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal. 2018, 1, 214–220. [Google Scholar] [CrossRef]
- Alkayal, N.S.; Alotaibi, M.M.; Tashkandi, N.Y.; Alrayyani, M.A. Synthesis and Characterization of Bipyridine-Based Polyaminal Network for CO2 Capture. Polymers 2022, 14, 3746. [Google Scholar] [CrossRef]
- Alotaibi, M.M.; Almalki, B.; Tashkandi, N.; Basingab, F.; Abdullah, S.; Alkayal, N.S. Synthesis of silver nanoparticles embedded into melamine polyaminal networks as antibacterial and anticancer active agents. Sci. Rep. 2024, 14, 20008–200018. [Google Scholar] [CrossRef] [PubMed]
- Umoren, S.A.; Nzila, A.M.; Sankaran, S.; Solomon, M.M.; Umoren, P.S. Green synthesis, characterization and antibacterial activities of silver nanoparticles from strawberry fruit extract. Polish J. Chem. Technol. 2017, 19, 128–136. [Google Scholar]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Acc. Mater. Surf. Res 2018, 3, 34–50. [Google Scholar]
- Muthaiah, S.; Bhatia, A.; Kannan, M. Stability of Metal Complexes. In Stability and Applications of Coordination Compounds; IntechOpen: London, UK, 2020. [Google Scholar]
- Zhang, B.; Yan, J.; Li, G.; Wang, Z. Cost-effective preparation of microporous polymers from formamide derivatives and adsorption of CO2 under dry and humid conditions. Polym. Chem. 2019, 10, 3371–3379. [Google Scholar] [CrossRef]
- Rehman, A.; Park, S.-J. Highlighting the relative effects of surface characteristics and porosity on CO2 capture by adsorbents templated from melamine-based polyaminals. J. Solid State Chem. 2018, 258, 573–581. [Google Scholar] [CrossRef]
- Hu, J.-X.; Shang, H.; Wang, J.-G.; Luo, L.; Xiao, Q.; Zhong, Y.-J.; Zhu, W.-D. Highly enhanced selectivity and easy regeneration for the separation of CO2 over N2 on melamine-based microporous organic polymers. Ind. Eng. Chem. Res. 2014, 53, 11828–11837. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Qiu, Y.; Liu, X.; Huang, W.; Yan, N.; Qu, Z. Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic wastewater. J. Hazard. Mater. 2020, 389, 121824. [Google Scholar]
- Taskin, O.S.; Ersoy, N.; Aksu, A.; Kiskan, B.; Balkis, N.; Yagci, Y. Melamine-based microporous polymer for highly efficient removal of copper (II) from aqueous solution. Polym. Int. 2016, 65, 439–445. [Google Scholar] [CrossRef]
- Kumar, K.V.; Gadipelli, S.; Wood, B.; Ramisetty, K.A.; Stewart, A.A.; Howard, C.A.; Brett, D.J.L.; Rodriguez-Reinoso, F. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J. Mater. Chem. A 2019, 7, 10104–10137. [Google Scholar] [CrossRef]
- Liang, L.; Liu, L.; Jiang, F.; Liu, C.; Yuan, D.; Chen, Q.; Wu, D.; Jiang, H.-L.; Hong, M. Incorporation of In2S3 nanoparticles into a metal–organic framework for ultrafast removal of Hg from water. Inorg. Chem. 2018, 57, 4891–4897. [Google Scholar]
- Rezania, S.; Kamboh, M.A.; Arian, S.S.; Alrefaei, A.F.; Alkhamis, H.H.; Albeshr, M.F.; Cho, J.; Barghi, A.; Amiri, I.S. Nitrile-calixarene grafted magnetic graphene oxide for removal of arsenic from aqueous media: Isotherm, kinetic and thermodynamic studies. Chemosphere 2021, 268, 129348. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Wang, Y.; Zhao, Y.; Li, G.; Zhang, G. KCl-assisted activation of macadamia nutshell-derived carbon: Unveiling enhanced pore structure, adsorption and supercapacitor performance. Sep. Purif. Technol. 2024, 329, 125188. [Google Scholar]
- Li, S.; Dong, X.; Zhao, Y.; Mao, J.; Chen, W.; Chen, A.; Song, Y.; Li, G.; Jiang, Z.; Wei, W.; et al. Chloride Ion Adsorption Enables Ampere-Level CO2 Electroreduction over Silver Hollow Fiber. Angew. Chem. Int. Ed. 2022, 61, e202210432. [Google Scholar] [CrossRef]
- Huang, A.; Zhou, T.; Zhang, J.; Zhang, Y.; Wu, Y.; Wang, Y.; Luo, W. Competing CO and HCOOH Pathways in CO2 Electroreduction. ChemCatChem 2024, 16, e202400504. [Google Scholar] [CrossRef]
- Wei, R.; Alshahrani, T.; Chen, B.; Ibragimov, A.B.; Xu, H.; Gao, J. Advances in porous materials for efficient separation and purification of flue gas. Sep. Purif. Technol. 2025, 352, 128238. [Google Scholar] [CrossRef]
SBET (m2/g) | CO2 Uptake (mmol/g) | Reference | |
---|---|---|---|
273 K 1bar | |||
MPA-1 | 30 | 1.74 | [63] |
MPA-2 | 33.5 | 0.98 | [63] |
MBMOP-1 | 747 | 2.56 | [64] |
MBMOP-2 | 1082 | 2.81 | [64] |
Bipy-PAN | 161 | 1.02 | [58] |
Ag NPs@Bipy-PAN | 279 | 2.99 | This work |
Bipy-PAN | Ag NPs@Bipy-PAN | |||
---|---|---|---|---|
Metal Ion | qe (mg/g) | R% | qe (mg/g) | R% |
Cu (II) | 20.52 | 20.5 | 93.415 | 93.6 |
Pb (II) | 68.7 | 41.16 | 88.66 | 88.405 |
Cd (II) | 6.3 | 6.256 | 73.06 | 71.07 |
Ni (II) | 6.2 | 6.114 | 68.19 | 66.624 |
Ba (II) | 7.45 | 7.45 | 44 | 42.389 |
Adsorbent | pH | Dose (mg) | SBET (m2/g) | qe (mg/g) | Reference |
---|---|---|---|---|---|
SNW | 3.5 | 150 | 548 | 72.9 | [66] |
MA-Py | 5 | 50 | 424 | 5.44 | [43] |
MA-iPh | 5 | 50 | 192 | 1.20 | [43] |
MA-Th | 5 | 50 | 34 | 6.22 | [43] |
Bipy-PAN | 6 | 30 | 161 | 20.52 | This work |
Ag NPs@Bipy-PAN | 7 | 30 | 279 | 98.20 | This work |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
Adsorbent | B | N | ||||
Ag NPs@Bipy-PAN | 13.700 | 4.918 | 0.208 | 3.042 | 0.453 | 0.936 |
Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|
Adsorbent | qe (mg/g) | K1 ) | qe (mg/g) | K2 (g/mg min) | ||
Ag NPs@Bipy-PAN | 1.224 | 0.044 | 92.421 | 0.044 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalki, B.; Alrayyani, M.A.; Bahaidarah, E.A.; Alotaibi, M.M.; Taimur, S.; Alezi, D.; Alshareef, F.M.; Alkayal, N.S. Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles. Polymers 2025, 17, 2443. https://doi.org/10.3390/polym17182443
Almalki B, Alrayyani MA, Bahaidarah EA, Alotaibi MM, Taimur S, Alezi D, Alshareef FM, Alkayal NS. Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles. Polymers. 2025; 17(18):2443. https://doi.org/10.3390/polym17182443
Chicago/Turabian StyleAlmalki, Bedour, Maymounah A. Alrayyani, Effat A. Bahaidarah, Maha M. Alotaibi, Shaista Taimur, Dalal Alezi, Fatmah M. Alshareef, and Nazeeha S. Alkayal. 2025. "Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles" Polymers 17, no. 18: 2443. https://doi.org/10.3390/polym17182443
APA StyleAlmalki, B., Alrayyani, M. A., Bahaidarah, E. A., Alotaibi, M. M., Taimur, S., Alezi, D., Alshareef, F. M., & Alkayal, N. S. (2025). Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles. Polymers, 17(18), 2443. https://doi.org/10.3390/polym17182443