Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,468)

Search Parameters:
Keywords = nanoindenter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1487 KiB  
Article
On the Interplay Between Roughness and Elastic Modulus at the Nanoscale: A Methodology Study with Bone as Model Material
by Alessandro Gambardella, Gregorio Marchiori, Melania Maglio, Marco Boi, Matteo Montesissa, Jessika Bertacchini, Stefano Biressi, Nicola Baldini, Gianluca Giavaresi and Marco Bontempi
J. Funct. Biomater. 2025, 16(8), 276; https://doi.org/10.3390/jfb16080276 - 29 Jul 2025
Viewed by 194
Abstract
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the [...] Read more.
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the nanoscale is still poorly understood. This study re-examines the interpretation of roughness from a more rigorous perspective and validates an experimental methodology to extract roughness at each nanoindentation site—i.e., the local roughness γs—with which the corresponding E value can be accurately correlated. Cortical regions of a murine tibia cross-section, characterized by complex nanoscale morphology, were selected as a testbed. Eighty non-overlapping nanoindentations were performed using two different AFM tips, maintaining a maximum penetration depth of 10 nm for each measurement. Our results show a slight decreasing trend of E versus γs (Spearman’s rank correlation coefficient ρ = −0.27187). A total of 90% of the E values are reliable when γs < 10 nm (coefficient of determination R2 > 0.90), although low γs values are associated with significant dispersion around E (γs = 0) = E0 = 1.18 GPa, with variations exceeding 50%. These findings are consistent with a qualitative tip-to-sample contact model that accounts for the pronounced roughness heterogeneity typical of bone topography at the nanoscale. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

21 pages, 3652 KiB  
Article
Mechanical Loading of Barite Rocks: A Nanoscale Perspective
by Hassan Abubakar Adamu, Seun Isaiah Olajuyi, Abdulhakeem Bello, Peter Azikiwe Onwualu, Olumide Samuel Oluwaseun Ogunmodimu and David Oluwasegun Afolayan
Minerals 2025, 15(8), 779; https://doi.org/10.3390/min15080779 (registering DOI) - 24 Jul 2025
Viewed by 381
Abstract
Barite, a mineral composed of barium sulphate, holds global significance due to its wide range of industrial applications. It plays a crucial role as a weighting agent in drilling fluids for the oil and gas industry, in radiation shielding, and as a filler [...] Read more.
Barite, a mineral composed of barium sulphate, holds global significance due to its wide range of industrial applications. It plays a crucial role as a weighting agent in drilling fluids for the oil and gas industry, in radiation shielding, and as a filler in paints and plastics. Although there are significant deposits of the mineral in commercial quantities in Nigeria, the use of barite of Nigerian origin has been low in the industry due to challenges that require further research and development. This research employed nanoindentation experiments using a model Ti950 Tribo indenter instrument equipped with a diamond Berkovich tip. Using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), we gained information about the structure and elements in the samples. The load–displacement curves were examined to determine the hardness and reduced elastic modulus of the barite samples. The SEM images showed that barite grains have a typical grainy shape, with clear splitting lines and sizes. XRD and EDX analysis confirmed that the main components are chlorite, albite, barium, and oxygen, along with small impurities like silicon and calcium from quartz and calcite. The average hardness of the IB3 and IB4 samples was 1.88 GPa and 1.18 GPa, respectively, meaning that the IB3 sample will need more energy to crush because its hardness is within the usual barite hardness range of 1.7 GPa to 2.0 GPa. The findings suggest further beneficiation processes to enhance the material’s suitability for drilling and other applications. Full article
Show Figures

Figure 1

15 pages, 3095 KiB  
Article
Effect of Silver/Reduced Graphene Oxide@Titanium Dioxide (Ag/rGO@TiO2) Nanocomposites on the Mechanical Characteristics and Biocompatibility of Poly(Styrene-co-Methyl Methacrylate)-Based Bone Cement
by Mohan Raj Krishnan, Reem M. Alshabib and Edreese H. Alsharaeh
Polymers 2025, 17(14), 1970; https://doi.org/10.3390/polym17141970 - 18 Jul 2025
Viewed by 296
Abstract
This study reports the impact of a silver nanoparticles/reduced graphene oxide@titanium dioxide nanocomposite (Ag/rGO@TiO2) on the mechanical and biocompatibility properties of poly(styrene-co-methylmethacrylate)/poly methyl methacrylate (PS-PMMA/PMMA)-based bone cement. The chemical, structural, mechanical, and thermal characteristics of Ag/rGO@TiO2 nanocomposite-reinforced PS-PMMA bone cement [...] Read more.
This study reports the impact of a silver nanoparticles/reduced graphene oxide@titanium dioxide nanocomposite (Ag/rGO@TiO2) on the mechanical and biocompatibility properties of poly(styrene-co-methylmethacrylate)/poly methyl methacrylate (PS-PMMA/PMMA)-based bone cement. The chemical, structural, mechanical, and thermal characteristics of Ag/rGO@TiO2 nanocomposite-reinforced PS-PMMA bone cement ((Ag/rGO@TiO2)/(PS-PMMA)/PMMA) were evaluated using Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nano-indentation, and electron microscopy. FT-IR, XRD, and transmission electron microscopy results confirmed the successful synthesis of the nanocomposite and the nanocomposite-incorporated bone cement. The elastic modulus (E) and hardness (H) of the ((Ag/rGO@TiO2)/(PS-PMMA)/PMMA) bone cement were measured to be 5.09 GPa and 0.202 GPa, respectively, compared to the commercial counterparts, which exhibited E and H values of 1.7 GPa to 3.7 GPa and 0.174 GPa, respectively. Incorporating Ag/rGO@TiO2 nanocomposites significantly enhanced the thermal properties of the bone cement. Additionally, in vitro studies demonstrated that the bone cement was non-toxic to the MG63 cell line. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Figure 1

11 pages, 4974 KiB  
Article
Effect of Modulation Period on the Microstructure and Tribological Properties of AlCrTiVNbN/TiSiN Nano Multilayer Films
by Hongjuan Yan, Haoran Wang, Xiaona Li, Zhaoliang Dou and Fengbin Liu
Coatings 2025, 15(7), 839; https://doi.org/10.3390/coatings15070839 - 17 Jul 2025
Viewed by 259
Abstract
The impact of modulation periods on the microstructure, as well as the tribological and mechanical characteristics of the AlCrTiVNbN/TiSiN nano multilayer films, was investigated. The films were prepared with modulation periods ranging from 4 nm to 7 nm, and their properties were explored [...] Read more.
The impact of modulation periods on the microstructure, as well as the tribological and mechanical characteristics of the AlCrTiVNbN/TiSiN nano multilayer films, was investigated. The films were prepared with modulation periods ranging from 4 nm to 7 nm, and their properties were explored using X-ray diffraction (XRD), scanning electron microscope (SEM), nanoindentation, and a tribological tester. All nano multilayer films revealed a face-centered cubic (FCC) structure with a preferred planar direction of (200). As the modulation period increased, the XRD peak moved to higher angles, and the interplanar distance decreased. Also, the mechanical properties deteriorated, and the COF rose monotonically as a result. The nano multilayer film with a modulation period equal to 4 nm exhibited a smooth surface with minimal small particles, the highest hardness of 15.51 ± 0.16 GPa and elastic modulus of 182.89 ± 2.38 GPa, the highest values for the ratios of H/E and H3/E2, the lowest average friction coefficient of 0.73, and a wear rate equal to (8.2 9 ± 0.18) × 10−8 mm3·N−1·m−1. The improvement in the properties of the film was ascribed to the coherent growth and alternating stress field between the AlCrTiVNbN and TiSiN layers. Full article
(This article belongs to the Special Issue Surface Protection for Metal Materials)
Show Figures

Figure 1

17 pages, 3443 KiB  
Article
Influence of Dissipated Energy on the Bonding Strength of Cold-Sprayed Titanium Coatings on Selected Metallic Substrates
by Medard Makrenek
Materials 2025, 18(14), 3355; https://doi.org/10.3390/ma18143355 - 17 Jul 2025
Viewed by 240
Abstract
Modern nanoindentation equipment allows for highly precise measurements of mechanical properties such as hardness and elastic modulus, generating detailed load–unload curves using advanced techniques and specialised software. In this study, titanium coatings were deposited on various metallic substrates using cold gas spraying. Before [...] Read more.
Modern nanoindentation equipment allows for highly precise measurements of mechanical properties such as hardness and elastic modulus, generating detailed load–unload curves using advanced techniques and specialised software. In this study, titanium coatings were deposited on various metallic substrates using cold gas spraying. Before deposition, the spraying parameters (temperature, pressure, velocity, and distance) were statistically optimised using the Taguchi method, reducing the number of experiments required from 81 to 9. This approach allowed the identification of optimal spray conditions (T = 731.0 °C, p = 33.0 bar, V = 343.6 mm/s, d = 35.5 mm), which were then applied to substrates including brass, steel, titanium, Al7075, copper, magnesium, and Al2024. Mechanical characterisation included hardness (H), reduced modulus (E), coating adhesion, and dissipated energy, calculated from the area of the load–unload hysteresis loop. Each coating–substrate combination underwent 36 nanoindentation tests, and adhesion was evaluated by pull-off tests. The initial results showed a poor correlation between adhesion and conventional mechanical properties (χ2 of 17.1 for hardness and 16.2 for modulus, both with R2 < 0.24). In contrast, the dissipated energy showed an excellent correlation with adhesion (χ2 = 0.52, R2 = 0.92), suggesting that dynamic deformation mechanisms better describe bonding. This introduces a new perspective to predict and optimise cold-spray adhesion in industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 4068 KiB  
Article
Mechanical Properties and Tribological Behavior of Al2O3–ZrO2 Ceramic Composites Reinforced with Carbides
by Jana Andrejovská, Dávid Medveď, Marek Vojtko, Richard Sedlák, Piotr Klimczyk and Ján Dusza
Lubricants 2025, 13(7), 310; https://doi.org/10.3390/lubricants13070310 - 17 Jul 2025
Viewed by 340
Abstract
To elucidate the key material parameters governing the tribological performance of ceramic composites under dry sliding against steel, this study presents a comprehensive comparative assessment of the microstructural characteristics, mechanical performance, and tribological behavior of two alumina–zirconia (Al2O3–ZrO2 [...] Read more.
To elucidate the key material parameters governing the tribological performance of ceramic composites under dry sliding against steel, this study presents a comprehensive comparative assessment of the microstructural characteristics, mechanical performance, and tribological behavior of two alumina–zirconia (Al2O3–ZrO2) ceramic composites, each reinforced with a 42 vol.% carbide phase: zirconium carbide (ZrC) and tungsten carbide (WC). Specifically, tungsten carbide (WC) was selected for its exceptional bulk mechanical properties, while zirconium carbide (ZrC) was chosen to contrast its potentially different interfacial reactivity against a steel counterface. ZrC and WC were selected as reinforcing phases due to their high hardness and distinct chemical and interfacial properties, which were expected to critically affect the wear and friction behavior of the composites under demanding conditions. Specimens were consolidated via spark plasma sintering (SPS). The investigation encompassed macro- and nanoscale hardness measurements (Vickers hardness HV1, HV10; nanoindentation hardness H), elastic modulus (E), fracture toughness (KIC), coefficient of friction (COF), and specific wear rate (Ws) under unlubricated reciprocating sliding against 100Cr6 steel at normal loads of 10 N and 25 N. The Al2O3–ZrO2–WC composite exhibited an ultrafine-grained microstructure and markedly enhanced mechanical properties (HV10 ≈ 20.9 GPa; H ≈ 33.6 GPa; KIC ≈ 4.7 MPa·m½) relative to the coarse-grained Al2O3–ZrO2–ZrC counterpart (HV10 ≈ 16.6 GPa; H ≈ 27.0 GPa; KIC ≈ 3.2 MPa·m½). Paradoxically, the ZrC-reinforced composite demonstrated superior tribological performance, with a low and load-independent specific wear rate (Ws ≈ 1.2 × 10−9 mm3/Nm) and a stable steady-state COF of approximately 0.46. Conversely, the WC-reinforced system exhibited significantly elevated wear volumes—particularly under the 25 N regime—and a higher, more fluctuating COF. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM–EDX) of the wear tracks revealed the formation of a continuous, iron-enriched tribofilm on the ZrC composite, derived from counterface material transfer, whereas the WC composite surface displayed only sparse tribofilm development. These findings underscore that, in steel-paired tribological applications of Al2O3–ZrO2–based composites, the efficacy of interfacial tribolayer generation can supersede intrinsic bulk mechanical attributes as the dominant factor governing wear resistance. Full article
Show Figures

Figure 1

19 pages, 4958 KiB  
Article
Understanding the Nanoindentation Edge Effect of Single-Crystal Silicon Using Molecular Dynamics Simulations
by Chao Long, Ruihan Li, Pengyue Zhao, Ziteng Li, Shuhao Kang, Duo Li and Huan Liu
Micromachines 2025, 16(7), 814; https://doi.org/10.3390/mi16070814 - 16 Jul 2025
Viewed by 261
Abstract
The edge effect refers to what occurs when an object undergoes elastic contact with the edge of a material. This is common in practical applications, but the understanding of this phenomenon is not yet mature enough, and understanding the microscopic characteristics of the [...] Read more.
The edge effect refers to what occurs when an object undergoes elastic contact with the edge of a material. This is common in practical applications, but the understanding of this phenomenon is not yet mature enough, and understanding the microscopic characteristics of the material regarding this phenomenon is necessary. This article investigates the edge effects of single-crystal silicon at different indentation positions through molecular dynamics simulations. The results indicate that the edge effect of the indentation is influenced by the indentation position and depth. The closer the indentation head is to the edge of the workpiece, the more particles are extruded from the side of the workpiece and the wider the collapse range of the indentation surface. At the same time, the indentation position also affects the distribution of the von Mises stress and phase transition area. When the edge effect occurs, the von Mises stress and phase transition region tend to be concentrated near the workpiece edge. This study demonstrates the atomic-scale deformation mechanism of single-crystal silicon under varying indentation positions. Full article
(This article belongs to the Special Issue Recent Advances in Nanoindentation Techniques)
Show Figures

Figure 1

24 pages, 8373 KiB  
Article
Simple Strain Gradient–Divergence Method for Analysis of the Nanoindentation Load–Displacement Curves Measured on Nanostructured Nitride/Carbonitride Coatings
by Uldis Kanders, Karlis Kanders, Artis Kromanis, Irina Boiko, Ernests Jansons and Janis Lungevics
Coatings 2025, 15(7), 824; https://doi.org/10.3390/coatings15070824 - 15 Jul 2025
Viewed by 526
Abstract
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up [...] Read more.
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up to ~415 GPa. A novel empirical method was applied to extract stress–strain field (SSF) gradient and divergence profiles from nanoindentation load–displacement data. These profiles revealed complex, depth-dependent oscillations attributed to alternating strain-hardening and strain-softening mechanisms. Fourier analysis identified dominant spatial wavelengths, DWL, ranging from 4.3 to 42.7 nm. Characteristic wavelengths WL1 and WL2, representing fine and coarse oscillatory modes, were 8.2–9.2 nm and 16.8–22.1 nm, respectively, aligning with the superlattice period and grain-scale features. The hyperfine structure exhibited non-stationary behavior, with dominant wavelengths decreasing from ~5 nm to ~1.5 nm as the indentation depth increased. We attribute the SSF gradient and divergence spatial oscillations to alternating strain-hardening and strain-softening deformation mechanisms within the near-surface layer during progressive loading. This cyclic hardening–softening behavior was consistently observed across all NSC samples, suggesting it represents a general phenomenon in thin film/substrate systems under incremental nanoindentation loading. The proposed SSF gradient–divergence framework enhances nanoindentation analytical capabilities, offering a tool for characterizing thin-film coatings and guiding advanced tribological material design. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Graphical abstract

22 pages, 3129 KiB  
Article
Characterizing the Impact of Fabrication Methods on Mechanically Tunable Gelatin Hydrogels for Cardiac Fibrosis Studies
by Jordyn Folh, Phan Linh Dan Tran and Renita E. Horton
Bioengineering 2025, 12(7), 759; https://doi.org/10.3390/bioengineering12070759 - 13 Jul 2025
Viewed by 402
Abstract
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase [...] Read more.
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase (mTG) hydrogels for modeling cardiovascular diseases. Gelatin hydrogels were fabricated via direct mixing or immersion crosslinking methods. Hydrogel formulations were assessed using the Piuma nanoindenter and Instron systems. This study investigates the effects of fabrication methods, UV ozone (UVO) sterilization, crosslinking methods, and incubation media on hydrogel stiffness. Further, this study examined the response of murine cardiac fibroblasts to hydrogel stiffness. The hydrogels exhibited modulus ranges relevant to both healthy and fibrotic cardiac tissues. UVO exposure led to slight decreases in hydrogel modulus, while the fabrication method had a significant impact on the modulus. Hydrogels incubated in phosphate buffered saline (PBS) were stiffer than those incubated in Medium 199 (M199), which correlated with lower pH in PBS. Fibroblasts cultured on stiffer hydrogels display enhanced smooth muscle actin (SMA) expression, suggesting sensitivity to material stiffness. These findings highlight how fabrication parameters influence the modulus of gelatin-mTG hydrogels for cardiac tissue models. Full article
Show Figures

Graphical abstract

16 pages, 3915 KiB  
Article
Corrosion Resistance of Ti/Cr Gradient Modulation Period Nanomultilayer Coatings Prepared by Magnetron Sputtering on 7050 Aluminum Alloy
by Kang Chen, Tao He, Xiangyang Du, Alexey Vereschaka, Catherine Sotova, Yang Ding and Jian Li
Inorganics 2025, 13(7), 242; https://doi.org/10.3390/inorganics13070242 - 13 Jul 2025
Viewed by 295
Abstract
Nanostructured multilayer anticorrosion coatings offer an effective strategy to mitigate the poor corrosion resistance of aluminum alloys and extend their service life. In this study, four types of Ti/Cr multilayer coatings with varied modulation periods along the growth direction were deposited on 7050 [...] Read more.
Nanostructured multilayer anticorrosion coatings offer an effective strategy to mitigate the poor corrosion resistance of aluminum alloys and extend their service life. In this study, four types of Ti/Cr multilayer coatings with varied modulation periods along the growth direction were deposited on 7050 aluminum alloy substrates using direct current magnetron sputtering. The cross-sectional microstructure of the coatings was characterized by scanning electron microscopy (SEM), while their mechanical and corrosion properties were systematically evaluated through nanoindentation and electrochemical measurements. The influence of modulation period distribution on the corrosion resistance of Ti/Cr multilayers was thoroughly investigated. The results show that the average thickness of the Ti/Cr multilayer coatings is 680 nm, the structure is dense, and the coarse columnar crystals are not seen. All Ti/Cr multilayer coatings significantly reduced the corrosion current density of 7050 aluminum alloy by about 10 times compared with that of the substrate, showing good protective effect. Modulation period along the coating growth direction decreases the Ti/Cr multilayer coating surface heterogeneous interface density increases, inhibits the formation of corrosion channels, hindering the penetration of corrosive media, and the other three coatings and aluminum alloy compared to its corrosion surface did not see obvious pore corrosion, showing the most excellent corrosion resistance. Full article
Show Figures

Figure 1

20 pages, 3348 KiB  
Article
Influence of the Processing Method on the Nano-Mechanical Properties and Porosity of Dental Acrylic Resins Fabricated by Heat-Curing, 3D Printing and Milling Techniques
by Marina Imre, Veaceslav Șaramet, Lucian Toma Ciocan, Vlad-Gabriel Vasilescu, Elena Iuliana Biru, Jana Ghitman, Mihaela Pantea, Alexandra Ripszky, Adriana Lucia Celebidache and Horia Iovu
Dent. J. 2025, 13(7), 311; https://doi.org/10.3390/dj13070311 - 10 Jul 2025
Viewed by 314
Abstract
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, [...] Read more.
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, despite their extensive use, a limited number of comparative studies exist that investigate how different processing methods—such as traditional techniques, 3D printing, and CAD/CAM milling—impact the nano-mechanical behavior and internal porosity of these materials, which are critical for their long-term clinical performance. Objectives: The purpose of this study is to evaluate the nanomechanical properties (hardness, elasticity, and stiffness) and micro-porosity of acrylic resin-based materials indicated for temporary prosthodontic appliances manufactured by new technologies (milling, 3D printing) compared to traditional methods. Methods: The hardness, elasticity, and stiffness measurements were performed by the nano-metric indentation method (nanoindentation), and the quantitative morphological characterization of the porosity of the acrylic resin samples obtained by 3D printing and CAD/CAM milling was performed by micro-computed tomography. Results: According to nanomechanical investigations, CAD/CAM milling restorative specimens exhibited the greatest mechanical performances (E~5.233 GPa and H~0.315 GPa), followed by 3D printed samples, while the lowest mechanical properties were registered for the specimen fabricated by the traditional method (E~3.552 GPa, H~0.142 GPa). At the same time, the results of porosity studies (micro-CT) suggested that 3D printed specimens demonstrated a superior degree of porosity (temporary crown—22.93% and splints—8.94%) compared to CAD/CAM milling restorative samples (5.73%). Conclusions: The comparative analysis of these results allows for the optimal selection of the processing method in order to ensure the specific requirements of the various clinical applications. Full article
Show Figures

Figure 1

20 pages, 13326 KiB  
Article
Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate
by Yinpeng Wang, Bo Gao, Qiqing Tian, Chunhui Jiang, Lu Zhu, Yanguang Cao, Wei Wei and Zhaodong Li
Materials 2025, 18(14), 3255; https://doi.org/10.3390/ma18143255 - 10 Jul 2025
Viewed by 318
Abstract
By applying different heat treatment processes (furnace cooling, air cooling, and water cooling), the stress–strain behavior of the localized interfacial region in weathering steel–stainless steel clad plates was investigated using nanoindentation, along with an analysis of interfacial microstructure formation and strengthening mechanisms. The [...] Read more.
By applying different heat treatment processes (furnace cooling, air cooling, and water cooling), the stress–strain behavior of the localized interfacial region in weathering steel–stainless steel clad plates was investigated using nanoindentation, along with an analysis of interfacial microstructure formation and strengthening mechanisms. The results show that samples in the as-rolled (R), furnace-cooled (FC), air-cooled (AC), and water-cooled (WC) conditions exhibit distinct interfacial morphologies and local mechanical properties. A well-defined interfacial layer forms between the base and cladding materials, where a high density of dislocations, grain boundaries, precipitates, and nanoscale oxides significantly enhances interfacial strength, resulting in a yield strength (Rp0.2) much higher than that of either adjacent metal. Across the transition from weathering steel to stainless steel, the interfacial region consists of ferrite—interfacial layer—“new austenite”—stainless steel austenite. Its formation is predominantly governed by element diffusion, which is strongly influenced by the applied heat treatment. Variations in diffusion behavior significantly affect the microstructural evolution of the dual-phase transition zone at the interface, thereby altering the local mechanical response. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 9556 KiB  
Article
DP600 Steel Stampability Analysis Through Microstructural Characterization by Electron Backscatter Diffraction and Nanoindentation
by Rafael Guetter Bohatch, Alex Raimundo de Oliveira, Chetan P. Nikhare, Ravilson Antonio Chemin Filho and Paulo Victor Prestes Marcondes
J. Manuf. Mater. Process. 2025, 9(7), 234; https://doi.org/10.3390/jmmp9070234 - 8 Jul 2025
Viewed by 386
Abstract
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry [...] Read more.
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry has developed more efficient metal alloys. To combine vehicle mass reduction with improved performance in deformations in cases of impact, a new family of advanced steels is present, AHSS (Advanced High-Strength Steels). However, this family of steels has lower formability and greater springback compared to conventional steels; if it is not properly controlled, it will directly affect the accuracy of the product and its quality. Different regions of a stamped component, such as the flange, the body wall, and the punch pole, are subjected to different states of stress and deformation, determined by numerous process variables, such as friction/lubrication and tool geometry, in addition to blank holder force and drawbead geometry, which induce the material to different deformation modes. Thus, it is understood that the degree of work hardening in each of these regions can be evaluated by grain morphology and material hardening, defining critical regions of embrittlement that, consequently, will affect the material’s stampability. This work aims to study the formability of the cold-formed DP600 steel sheets in the die radius region using a Modified Nakazima test, varying drawbead geometry, followed by a nanohardness evaluation and material characterization through the electron backscatter diffraction (EBSD). The main objective is to analyze the work hardening in the critical blank regions by applying these techniques. The nanoindentation evaluations were consistent in die radius and demonstrated the hardening influence, proving that the circular drawbead presented the most uniform hardness variation along the profile of the stamped blank and presented lower hardness values in relation to the other geometries, concluding that the drawbead attenuates this variation, contributing to better sheet formability, which corroborates the Forming Limit Curve results. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

12 pages, 1601 KiB  
Article
Effects of Residual Stresses on the Structures and Mechanical Behavior of ZrOxNy/V2O3 Nano-Multilayers
by Wenjie Cheng, Lingran Wang and Zhiming Li
Symmetry 2025, 17(7), 1091; https://doi.org/10.3390/sym17071091 - 8 Jul 2025
Viewed by 271
Abstract
Residual stress plays a crucial role in determining the structural reliability and mechanical performance of nano-multilayers. In the present study, nano-multilayers composed of ZrOxNy and V2O3 were deposited via magnetron sputtering, with the N:Ar flow ratio systematically [...] Read more.
Residual stress plays a crucial role in determining the structural reliability and mechanical performance of nano-multilayers. In the present study, nano-multilayers composed of ZrOxNy and V2O3 were deposited via magnetron sputtering, with the N:Ar flow ratio systematically varied during the process. Through the precise control of the deposition conditions, the compressive residual stress within the films was effectively reduced to approximately 0 GPa, thereby improving their mechanical robustness. It was observed that the optimization of the stress distribution was strongly influenced by the structural symmetry of the multilayer configuration. This symmetrical design not only mitigated stress accumulation but also ensured uniform mechanical response throughout the multilayer structure. The results from nanoindentation testing revealed a steady hardness value near 10.6 GPa. Furthermore, the maximum H3/E2 and H/E ratios recorded were 0.054 GPa and 0.073, respectively, suggesting enhanced resistance to both plastic deformation and cracking. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 6331 KiB  
Article
Comprehensive Study of the Mechanical and Tribological Properties of NiCr-Al Detonation Coatings
by Zhuldyz Sagdoldina, Bauyrzhan Rakhadilov, Meruyert Maulet, Laila Sulyubayeva, Cezary Drenda and Sanzhar Bolatov
Appl. Sci. 2025, 15(13), 7513; https://doi.org/10.3390/app15137513 - 4 Jul 2025
Viewed by 267
Abstract
This article presents a comprehensive study of the mechanical and tribological properties of detonation coatings in the NiCr-Al system. Using the detonation spraying technology, NiCr-Al homogeneous (HC) and gradient coatings (GCs) were produced, and their characteristics were determined. Modern analytical instruments were used [...] Read more.
This article presents a comprehensive study of the mechanical and tribological properties of detonation coatings in the NiCr-Al system. Using the detonation spraying technology, NiCr-Al homogeneous (HC) and gradient coatings (GCs) were produced, and their characteristics were determined. Modern analytical instruments were used in the course of the study. The results showed that the microhardness of the NiCr-Al GC was approximately 30% higher compared to the NiCr-Al HC. According to nanoindentation results, the elasticity modulus and nanohardness of the NiCr-Al GC were twice as high as those of the NiCr-Al homogeneous coating. Tribological tests conducted using the rotational ball-on-disk contact geometry showed that the wear rate of the NiCr-Al GC was significantly lower, while the friction coefficients of both coatings were approximately similar. According to the adhesion strength tests, the strength of the NiCr-Al GC was recorded at 38.7 ± 6.9 MPa, while that of the NiCr-Al HC was approximately 25.4 ± 3.1 MPa. High-temperature tribological tests revealed that the wear resistance of the NiCr-Al GC was 2.5 times higher than that of the NiCr-Al HC. The conducted studies demonstrated that the coating structure, particularly the distribution of elements, has a significant influence on its mechanical and tribological properties. Overall, the NiCr-Al GC exhibited superior mechanical and tribological performance. Full article
(This article belongs to the Special Issue Corrosion and Protection with Hard Coatings)
Show Figures

Figure 1

Back to TopTop