Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Testpiece
2.2. Testing Method
3. Experimental Results
3.1. Microstructure
3.2. Nanoindentation
4. Discussion
4.1. Stress–Strain Analysis of the Localized Interfacial Region
4.2. Interfacial Structure
4.3. Formation and Evolution of Interfacial Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ban, H.; Mei, Y.; Shi, Y.J. Research advances of stainless-clad bimetallic steel structures. J. Eng. Mech. 2021, 38, 1–23. [Google Scholar] [CrossRef]
- Wang, S.; Chen, B.; Chen, C.X.; Feng, J.H.; Yin, F.X. Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios. J. Alloys Compd. 2018, 766, 517–526. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, C.; Liu, S.; Chang, X.; Tong, W. Vacuum diffusion bonding strengthening mechanical properties of 304 stainless steel/low carbon steel composites by in-situ eutectic reaction. Vacuum 2025, 238, 114279. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Fang, W.; Ma, J.; Yin, F.; He, J.; Feng, J.; Chen, C. Microstructure and mechanical properties of hot rolled stainless steel clad plate by heat treatment. Mater. Chem. Phys. 2018, 216, 460–467. [Google Scholar] [CrossRef]
- Ding, Y.; Cao, R.; Yan, Y. Effects of heat treatment on fracture mechanism of martensite/austenite MLS composite plates by hot roll bonding. Mater. Sci. Eng. A 2020, 773, 138727. [Google Scholar] [CrossRef]
- Ji, Q.; Li, Y.; Ye, P.; Fu, W.; Cao, G.; Han, Q.; Li, X.; Wu, H.; Fan, G. The effect of the interface structure on the interfacial bonding strength of Ti/Al clad plates. Prog. Nat. Sci. Mater. Int. 2025, 35, 568–577. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Zhang, B.; Zhang, Q. Microstructure characterization and mechanical properties of stainless steel clad plate. Materials 2019, 12, 509. [Google Scholar] [CrossRef]
- Wang, K.; Yu, H.; Tian, Y.; Zhu, Z.; Gao, J.; Li, Q. Tailoring of interface microstructure and bonding property in 1Cr17/8Cr13MoV/1Cr17 stainless steel clad plate with Ni interlayer. Mater. Sci. Eng. A 2022, 838, 142778. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Fang, W.; Yin, F.; Chen, C. Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate. Mater. Charact. 2019, 148, 17–25. [Google Scholar] [CrossRef]
- Jin, J.-C.; Cho, S.; Kim, K.; Sim, H.; Park, B.G.; Lee, Y.-K. Microstructures and intergranular corrosion resistances of hot-rolled austenitic stainless steel clad plates. J. Mater. Res. Technol. 2023, 26, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, S.; Li, R.; Zhang, B. Multiscale comparison study of void closure law and mechanism in the bimetal roll-bonding process. Metals 2019, 9, 343. [Google Scholar] [CrossRef]
- Zak, S.; Trost, C.O.W.; Kreiml, P.; Cordill, M.J. Accurate measurement of thin film mechanical properties using nanoindentation. J. Mater. Res. 2022, 37, 1373–1389. [Google Scholar] [CrossRef]
- Nayebi, B.; Parvin, N.; Asl, M.S.; Motallebzadeh, A.; Shokouhimehr, M. Nanostructural and nanoindentation characterization of ZrB2 ceramics toughened with in-situ synthesized ZrC. Int. J. Refract. Met. Hard Mater. 2021, 94, 105391. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Luo, S.; Lu, M.; Zhou, N.; Wang, D.; Zhang, G. Multiscale elastic anisotropy of a shale characterized by cross-scale big data nanoindentation. Int. J. Rock Mech. Min. Sci. 2020, 134, 104458. [Google Scholar] [CrossRef]
- Dao, M.; Chollacoop, N.; Van Vliet, K.J.; Venkatesh, T.A.; Suresh, S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001, 49, 3899–3918. [Google Scholar] [CrossRef]
- Cao, Y.P.; Lu, J. A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 2004, 52, 4023–4032. [Google Scholar] [CrossRef]
- Field, J.S.; Swain, M.V. A simple predictive model for spherical indentation. J. Mater. Res. 1993, 8, 297–306. [Google Scholar] [CrossRef]
- Herbert, E.G.; Pharr, G.M.; Oliver, W.C.; Lucas, B.N.; Hay, J. On the measurement of stress–strain curves by spherical indentation. Thin Solid Film. 2001, 398, 331–335. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Kalidindi, S.R.; Pathak, S. Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater. 2008, 56, 3523–3532. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, B.; Wei, W.; Cao, Y.; Li, Z. Effects of weathering bridge steel and cooling rate on the interfacial microstructure and mechanical properties of stainless steel clad plates. Ind. Constr. 2024, 54, 18–25. (In Chinese) [Google Scholar] [CrossRef]
- Park, S.J.; Heogh, W.; Yang, J.; Kang, S.; Jeong, W.; Lee, H.; Jang, T.-S.; Jung, H.-D.; Jahazi, M.; Han, S.C.; et al. Meta-structure of amorphous-inspired 65.1Co28.2Cr5.3Mo lattices augmented by artificial intelligence. Adv. Compos. Hybrid Mater. 2024, 7, 224. [Google Scholar] [CrossRef]
- GB/T 228.1-2021; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. National Standard of the People’s Republic of China: Beijing, China, 2021.
- Bodhankar, P.M.; Gurada, C.; Shinde, S.; Muthurajan, H.; Kumar, V. Nanoindentation based fatigue analysis of semiconductor bridge (SCB) for mechanical reliability. J. Mater. Sci. Surf. Eng. 2015, 3, 227–231. [Google Scholar]
- Zhang, Z.-N.; Li, Y.-L.; Wu, W.-P. Effects of loading rate and peak load on nanoindentation creep behavior of DD407Ni-base single crystal superalloy. Trans. Nonferrous Met. Soc. China 2022, 32, 206–216. [Google Scholar] [CrossRef]
- Long, X.; Li, Y.; Shen, Z.; Su, Y.; Gu, T.; Siow, K.S. Review of uniqueness challenge in inverse analysis of nanoindentation. J. Manuf. Process 2024, 131, 1897–1916. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, L.; Zhang, Y.; Sun, D.; Dong, Q. Rolling-induced enhancement of strength in Mg-3Al-3Nd-0.5Mn alloy. Mater. Lett. 2023, 349, 134818. [Google Scholar] [CrossRef]
- Liao, Y.; Song, Y.; Shu, N.; Niu, Y.; Zhang, H.; Sun, B.; Wang, Y.; Li, C.; Gu, J. Enhanced strength-ductility synergy in ferrous medium-entropy alloys via single-step hot rolling. Mater. Sci. Eng. A 2025, 926, 147920. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Z.; Huang, M. Strengthening contributions of dislocations and twins in warm-rolled TWIP steels. Int. J. Plast. 2022, 150, 103198. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, B.; Yu, W.; Zhang, B.; Ji, P.; Feng, J.; Yin, F. The evolution behavior and constitution characteristics of interfacial oxides in the hot-rolled stainless steel clad plate. Corros. Sci. 2022, 211, 110866. [Google Scholar] [CrossRef]
- Wang, X.; Embury, J.D.; Poole, W.J.; Esmaeili, S.; Lloyd, D.J. Precipitation strengthening of the aluminum alloy AA6111. Met. Mater. Trans. A 2003, 34, 2913–2924. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Li, M.; Wu, Z.; Liang, J.; Zhang, L. Comparison of high-strength low-alloy steels fabricated by wire arc additive manufacturing and conventional casting: Effect of quenching and tempering on microstructural evolution and mechanical properties. J. Alloys Compd. 2025, 1032, 181022. [Google Scholar] [CrossRef]
- Vaughan, M.; Gerstein, G.; Harris, R.; Gibbons, S.; Barber, R.; Maier, H.; Karaman, I. Effects of severe ausforming on hierarchical microstructural development and mechanical performance in a martensitic high-strength steel. Mater. Sci. Eng. A 2025, 939, 148337. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; An, Y.; Xie, J.; Zhang, X.; Cao, W. Excellent combination of strength and ductility in austenitic lightweight steel achieved by warm rolling process. Mater. Sci. Eng. A 2024, 913, 147066. [Google Scholar] [CrossRef]
- An, Y.; Chen, X.; Ren, P.; Cao, W. Ultrastrong and ductile austenitic lightweight steel via ultra-fine grains and heterogeneous B2 precipitates. Mater. Sci. Eng. A 2022, 860, 144330. [Google Scholar] [CrossRef]
- Meng, Y.; Gu, X.-F.; Zhang, W.-Z. A study of a new type of deviation from the Kurdjumov–Sachs orientation relationship in face-centered-cubic/body-centered-cubic transformation system. Acta Mater. 2010, 58, 2364–2375. [Google Scholar] [CrossRef]
- Tomida, T.; Wakita, M.; Yasuyama, M.; Sugaya, S.; Tomota, Y.; Vogel, S. Memory effects of transformation textures in steel and its prediction by the double Kurdjumov–Sachs relation. Acta Mater. 2013, 61, 2828–2839. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, B.; Hu, K. Effect of vacuum degree on interfacial microstructure and bonding property of 316L/Q420qENH clad plate. Iron Steel 2025, 4, 79–89. [Google Scholar]
Element | C | Si | Mn | Cu | Cr | Ni | Mo | Al | Ti | Nb | V |
---|---|---|---|---|---|---|---|---|---|---|---|
Q420qENH | 0.057 | 0.22 | 1.31 | 0.28 | 0.45 | 0.32 | 0.058 | 0.026 | 0.014 | 0.029 | 0.03 |
316L | 0.027 | 0.53 | 1.19 | / | 16.78 | 10.39 | 1.99 | / | / | / | / |
Distance, μm | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
---|---|---|---|---|---|---|---|
C, GPa | 99.2 | 91.8 | 98 | 161 | 154.1 | 142.7 | 130.8 |
, GPa | 211.36 | 198.6 | 205.8 | 231.8 | 224.36 | 218.38 | 206.33 |
E, GPa | 235.0 | 217.9 | 227.5 | 263.4 | 252.9 | 244.6 | 228.2 |
, MPa | 1268.71 | 1169.02 | 1259.85 | 2443.72 | 2326.34 | 2098.89 | 1894.36 |
n | 0.37 | 0.49 | 0.47 | 0.36 | 0.33 | 0.41 | 0.35 |
, MPa | 421.68 | 244.67 | 246.23 | 1132.3 | 1157.44 | 782.04 | 852.4 |
, % | 0.18 | 0.11 | 0.11 | 0.43 | 0.46 | 0.32 | 0.37 |
Rp0.2 | 593.26 | 439.27 | 455.91 | 1361.97 | 1382.72 | 1028.84 | 1037.52 |
HAGB, ×1012/m2 | LAGB, ×1012/m2 | Σ3, ×1012/m2 | Avg. GND, ×1014/m2 | |
---|---|---|---|---|
Weathering steel | 0.4117 | 0.124 | 0.02395 | 4.12 |
Interface | 1.15952 | 0.783 | 0.42 | 12.29 |
Stainless steel | 0.1869 | 0.28372 | 0.0177 | 7.28 |
Element | Cr | Ni | Mo | |||
---|---|---|---|---|---|---|
Distance, μm | k | Distance, μm | k | Distance, μm | k | |
R | 9 | 2.38 | 1.4 | 4.35 | 2.9 | 0.68 |
FC | 11.5 | 1.84 | 5.3 | 1.73 | 4.5 | 0.30 |
AC | 7 | 2.81 | 4.6 | 2.18 | 4.6 | 0.40 |
WC | 7.3 | 2.75 | 3.2 | 3.17 | 2.6 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, B.; Tian, Q.; Jiang, C.; Zhu, L.; Cao, Y.; Wei, W.; Li, Z. Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate. Materials 2025, 18, 3255. https://doi.org/10.3390/ma18143255
Wang Y, Gao B, Tian Q, Jiang C, Zhu L, Cao Y, Wei W, Li Z. Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate. Materials. 2025; 18(14):3255. https://doi.org/10.3390/ma18143255
Chicago/Turabian StyleWang, Yinpeng, Bo Gao, Qiqing Tian, Chunhui Jiang, Lu Zhu, Yanguang Cao, Wei Wei, and Zhaodong Li. 2025. "Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate" Materials 18, no. 14: 3255. https://doi.org/10.3390/ma18143255
APA StyleWang, Y., Gao, B., Tian, Q., Jiang, C., Zhu, L., Cao, Y., Wei, W., & Li, Z. (2025). Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate. Materials, 18(14), 3255. https://doi.org/10.3390/ma18143255