Effects of Residual Stresses on the Structures and Mechanical Behavior of ZrOxNy/V2O3 Nano-Multilayers
Abstract
1. Introduction
2. Experimental Details
2.1. Film Deposition
2.2. Characterization
2.3. Mechanics and Testing
3. Results and Discussion
3.1. Morphology and Structure
3.2. Lattice and Grain
3.3. Residual Stress
3.4. Hardness and Modulus
3.5. H/E and H3/E2
4. Conclusions
- (1)
- Microstructural evolution: Increasing N flow induced a transition from smooth, equiaxed grains to columnar growth, along with improved crystallinity and a pronounced (111) texture in the ZrO2 phase. Elemental analysis confirmed a gradual substitution of oxygen by N, forming Zr–O–N bonds and modifying the chemical environment.
- (2)
- Residual stress modulation: All multilayers exhibited compressive residual stress, which initially decreased and approached ~0 GPa at a 10:30 N:Ar ratio before increasing to −0.27 GPa at higher N2 content. This trend was closely correlated with lattice parameter shifts and grain size refinement, indicating strong stress–structure coupling.
- (3)
- Mechanical performance: The nanoindentation results revealed that optimal mechanical properties were achieved under near-0 residual stress. Specifically, the highest H/E (~0.077) and H3/E2 (~0.06 GPa) values were recorded at minimal internal stress, reflecting improved toughness, elastic strain tolerance, and resistance to plastic deformation.
- (4)
- Degradation at excessive stress: At high N2 flow ratios, excessive compressive stress and target poisoning effects led to grain coarsening, porosity, and degraded film integrity, which in turn reduced hardness (down to 8.6 GPa) and modulus (to 124.3 GPa).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zuo, Y.T.; Liu, H.J. Fractal approach to mechanical and electrical properties of graphene/sic composites. Facta Univ. Ser. Mech. Eng. 2021, 19, 271–284. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, L.; Peng, X.; Dai, S.; Ou, Y.; Pang, P.; Chen, L.; Jin, X.; Zhang, X.; Liao, B.; et al. Relationship between residual stress and tribocorrosion behavior of high quality DLC coatings prepared by FCVA with HVP technology. Ceram. Int. 2024, 51, 3062–3074. [Google Scholar] [CrossRef]
- Aissani, L.; Fellah, M.; Chadli, A.H.; Samad, M.A.; Cheriet, A.; Salhi, F.; Nouveau, C.; Weiß, S.; Obrosov, A.; Alhussein, A.; et al. Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R.F. magnetron sputtering. J. Mater. Sci. 2021, 56, 17319–17336. [Google Scholar] [CrossRef]
- He, C.H.; Liu, C. Fractal Dimensions of a Porous Concrete and Its Effect on the Concrete’s Strength. Facta Univ. Ser. Mech. Eng. 2023, 21, 137–150. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lin, C.C.; Chin, T.S.; Chang, J.Y.; Sung, C.K. Residual stress analysis of electrodeposited thick CoMnP monolayers and CoMnP/Cu multilayers. Surf. Coat. Technol. 2022, 434, 128169. [Google Scholar] [CrossRef]
- Lychev, S.; Digilov, A.; Demin, G.; Gusev, E.; Kushnarev, I.; Djuzhev, N.; Bespalov, V. Deformations of Single-Crystal Silicon Circular Plate: Theory and Experiment. Symmetry 2024, 16, 137. [Google Scholar] [CrossRef]
- Zhu, P.; Li, P.; Ge, F.; Huang, F. Effect of residual stress on the wear behavior of magnetron sputtered V–Al–N coatings deposited at the substrate temperature <200 °C. Mater. Chem. Phys. 2023, 296, 127218. [Google Scholar] [CrossRef]
- Liu, J.; Xu, B.; Wang, H.; Cui, X.; Zhu, L.; Jin, G. Effects of film thickness and icrostructures on residual stress. Surf. Eng. 2016, 32, 178–184. [Google Scholar] [CrossRef]
- Cheng, G.A.; Han, D.Y.; Liang, C.L.; Wu, X.L.; Zheng, R.T. Influence of residual stress on mechanical properties of TiAlN thin films. Surf. Coat. Technol. 2013, 228, 328–330. [Google Scholar] [CrossRef]
- McDonald, I.G.; Moehlenkamp, W.M.; Arola, D.; Wang, J. Residual Stresses in Cu/Ni Multilayer Thin Films Measured Using the Sin2ψ Method. Exp. Mech. 2019, 59, 111–120. [Google Scholar] [CrossRef]
- Bouaouina, B.; Besnard, A.; Abaidia, S.E.; Airoudj, A.; Bensouici, F. Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive R.F. magnetron discharge. Surf. Coat. Technol. 2018, 333, 32–38. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.Q.; Li, R.S.; Mei, H.J.; Zou, C.W.; Zhang, T.F.; Wang, Q.M.; Kim, K.H. Thermostability, oxidation, and high-temperature tribological properties of nano-multilayered AlCrSiN/VN coatings. Ceram. Int. 2022, 48, 11915–11923. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Tu, R.; Ando, K.; Gao, T. Improved hardness of semi-coherent TiN/CrN nano-multilayer coating through manipulation of structure evolution. Mater. Sci. Eng. A 2023, 886, 145728. [Google Scholar] [CrossRef]
- Xiao, B.J.; Zhang, T.F.; Guo, Z.; Li, Z.; Fan, B.; Chen, G.X.; Xiong, Z.; Wang, Q. Mechanical, oxidation, and cutting properties of AlCrN/AlTiSiN nano-multilayer coatings. Surf. Coat. Technol. 2022, 433, 128094. [Google Scholar] [CrossRef]
- Cheng, W.J.; Li, W.; Wang, J.J.; Liu, P.; Ma, X.; Zhang, K.; Ma, F.; Chen, X.; Liaw, P.K. Effects of N2/Ar flow ratio on the structures and mechanical behavior of ZrOxNy/V2O3 nano-multilayered films. Mater. Sci. Eng. A 2022, 849, 143419. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Yang, H.S.; Pang, X.L.; Gao, K.W.; Volinsky, A.A. Microstructure, residual stress, and fracture of sputtered TiN films. Surf. Coat. Technol. 2013, 224, 120–125. [Google Scholar] [CrossRef]
- Mikula, M.; Plašienka, D.; Sangiovanni, D.G.; Sahul, M.; Roch, T.; Truchlý, M.; Gregor, M.; Čaplovič, L.; Plecenik, A.; Kúš, P. Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings. Acta Mater. 2016, 121, 59–67. [Google Scholar] [CrossRef]
- Slim, M.F.; Alhussein, A.; Zgheib, E.; François, M. Determination of single-crystal elasticity constants of the beta phase in a multiphase tungsten thin film using impulse excitation technique, X-ray diffraction and micro-mechanical modeling. Acta Mater. 2019, 175, 348–360. [Google Scholar] [CrossRef]
- Akl, A.A.; El Radaf, I.M.; Hassanien, A.S. Intensive comparative study using X-ray diffraction for investigating microstructural parameters and crystal defects of the novel nanostructural ZnGa2S4 thin films. Superlattices Microstruct. 2020, 143, 106544. [Google Scholar] [CrossRef]
- Li, H.; Ma, D.Y.; Wang, H.B.; Yun, D.; Hao, Z.; Deng, J.K.; Zhang, R.; Li, Z. Microstructure and oxidation behavior of CrCN/TiSiCN nano-multilayer coatings on Zircaloy in high-temperature steam. Corros. Sci. 2023, 211, 110883. [Google Scholar] [CrossRef]
- Cui, P.; Li, W.; Liu, P.; Zhang, K.; Ma, F.; Chen, X.; Feng, R.; Liaw, P.K. Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films. J. Alloys Compd. 2020, 834, 155063. [Google Scholar] [CrossRef]
- Cheng, W.J.; Wang, J.J.; Liu, P.; Ma, X.; Zhang, K.; Ma, F.C.; Chen, X.; Li, W.; Liaw, P.K. Effects of Y addition on the microstructures and mechanical behavior of ZrOxNy/V2O3-Y nano-multilayered films. Mater. Sci. Eng. A 2023, 864, 144555. [Google Scholar] [CrossRef]
- Haw, W.H.; Jia, H.H.; Yu, G.P. Effect of oxygen on fracture toughness of Zr(N,O) hard coatings. Surf. Coat. Technol. 2016, 304, 330–339. [Google Scholar] [CrossRef]
- Ke, Y.E.; Chen, Y.I. Effects of Nitrogen Flow Ratio on Structures, Bonding Characteristics, and Mechanical Properties of ZrNx Films. Coatings 2020, 10, 476–488. [Google Scholar] [CrossRef]
- Shanmugan, S.; Mutharasu, D. Effect of Ar+ ion irradiation on structural and optical properties of e-beam evaporated cadmium telluride thin films. Mater. Sci. Semicond. Process 2010, 13, 298–302. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 145. [Google Scholar] [CrossRef] [PubMed]
- Pei, C.R.; Deng, L.J.; Xiang, C.J.; Zhang, S.; Sun, D. Effect of the varied nitrogen vacancy concentration on mechanical and electrical properties of ZrNx thin films. Thin Solid Films 2019, 683, 57–66. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, L.; Miao, L.; Wang, Z.; Lu, Y. Multilevel resistance state tuned by change in crystallization mode of superlattice-like Sb/Si3N4 films. Mater. Res. Bull. 2023, 161, 112152. [Google Scholar] [CrossRef]
- Fallqvist, A.; Ghafoor, N.; Fager, H. Self-organization during growth of ZrN/SiNx multilayers by epitaxial lateral overgrowth. J. Appl. Phys. 2013, 114, 224302. [Google Scholar] [CrossRef]
- Swygenhoven, H.V.; Spaczer, M.; Caro, A. Role of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics simulation study. Nanostructured Mater. 1998, 10, 819–828. [Google Scholar] [CrossRef]
- Meng, Q.N.; Wen, M.; Hu, C.Q.; Wang, S.M.; Zhang, K.; Lian, J.S.; Zheng, W.T. Influence of the residual stress on the nanoindentation-evaluated hardness for zirconiumnitride films. Surf. Coat. Technol. 2012, 206, 3250–3257. [Google Scholar] [CrossRef]
- Shtanski, D.V.; Kulinich, S.A.; Levashov, E.A.; Moore, J.J. Structure and physical-mechanical properties of nanostructured thin films. Phys. Solid. State 2003, 45, 1177–1184. [Google Scholar] [CrossRef]
- Kravchenko, Y.O.; Coy, E.; Peplińska, B.; Iatsunskyi, I.; Załęski, K.; Kempiǹski, M.; Beresnev, V.M.; Pshyk, A.V.; Pogrebnjak, A.D. Micro-mechanical investigation of (Al50Ti50)N coatings enhanced by ZrN layers in the nanolaminate architecture. Appl. Surf. Sci. 2020, 534, 147573. [Google Scholar] [CrossRef]
- Pshyk, A.V.; Coy, L.E.; Nowaczyk, G.; Kempiński, M.; Peplińska, B.; Pogrebnjak, A.D.; Beresnev, V.; Jurga, S. High temperature behavior of functional TiAlBSiN nanocomposite coatings. Surf. Coat. Technol. 2016, 305, 49–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Wang, L.; Li, Z. Effects of Residual Stresses on the Structures and Mechanical Behavior of ZrOxNy/V2O3 Nano-Multilayers. Symmetry 2025, 17, 1091. https://doi.org/10.3390/sym17071091
Cheng W, Wang L, Li Z. Effects of Residual Stresses on the Structures and Mechanical Behavior of ZrOxNy/V2O3 Nano-Multilayers. Symmetry. 2025; 17(7):1091. https://doi.org/10.3390/sym17071091
Chicago/Turabian StyleCheng, Wenjie, Lingran Wang, and Zhiming Li. 2025. "Effects of Residual Stresses on the Structures and Mechanical Behavior of ZrOxNy/V2O3 Nano-Multilayers" Symmetry 17, no. 7: 1091. https://doi.org/10.3390/sym17071091
APA StyleCheng, W., Wang, L., & Li, Z. (2025). Effects of Residual Stresses on the Structures and Mechanical Behavior of ZrOxNy/V2O3 Nano-Multilayers. Symmetry, 17(7), 1091. https://doi.org/10.3390/sym17071091