Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = nano-encapsulated phase change material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9747 KB  
Article
Advancing Thermal Energy Storage: Synthesis and Thermal Performance of Silica-Encapsulated Paraffin PCMs
by Raihana Jannat Adnin and Han-Seung Lee
Molecules 2025, 30(8), 1698; https://doi.org/10.3390/molecules30081698 - 10 Apr 2025
Cited by 2 | Viewed by 1227
Abstract
This study successfully synthesizes SiO2-encapsulated nano-phase change materials (NPCMs) via a sol–gel method, using paraffin as the thermal storage medium. The encapsulation process is validated through FTIR, XRD, and XPS analyses, confirming the formation of an amorphous SiO2 shell without [...] Read more.
This study successfully synthesizes SiO2-encapsulated nano-phase change materials (NPCMs) via a sol–gel method, using paraffin as the thermal storage medium. The encapsulation process is validated through FTIR, XRD, and XPS analyses, confirming the formation of an amorphous SiO2 shell without any chemical interaction between the core and shell. SEM imaging reveals a well-defined core–shell structure with uniform spherical geometry, with the smallest particle size (190 nm) observed in the sample with a 4:1 paraffin/SiO2 ratio (PARSI-4). TGA results demonstrate enhanced thermal stability, with thicker SiO2 shells effectively protecting against thermal degradation. The DSC analysis indicates that an increased core–shell ratio improves thermal performance, with PARSI-4 exhibiting the highest melting (160.86 J/g) and solidifying (153.93 J/g) enthalpies. The encapsulation ratio (ER) and encapsulation efficiency (EE) have been accomplished at 87.83% and 87.04%, respectively, in the PARSI-4 sample. Thermal cycling tests confirm the material’s long-term stability, with 98.16% enthalpy retention even after 100 cycles. Additionally, leakage resistance tests validate the structural integrity of the encapsulated paraffin, preventing spillage at elevated temperatures. These findings demonstrate the potential of SiO2-encapsulated NPCMs for efficient thermal energy storage (TES), making them promising candidates for sustainable and energy-efficient applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 1929 KB  
Article
Experimental Studies on the Critical Reynolds Number in the Flow of a Microencapsulated Phase Change Material Slurry
by Krzysztof Dutkowski and Marcin Kruzel
Energies 2025, 18(6), 1520; https://doi.org/10.3390/en18061520 - 19 Mar 2025
Viewed by 502
Abstract
The disadvantage of phase change materials (PCMs) that store thermal energy is their low thermal conductivity. The macro-, micro-, and nanoencapsulation of PCMs are some of the ways to eliminate this drawback. Liquids with micro- and nanometer-sized capsules containing PCMs have become innovative [...] Read more.
The disadvantage of phase change materials (PCMs) that store thermal energy is their low thermal conductivity. The macro-, micro-, and nanoencapsulation of PCMs are some of the ways to eliminate this drawback. Liquids with micro- and nanometer-sized capsules containing PCMs have become innovative working fluids for heat transfer—a slurry of encapsulated PCMs. This paper shows the results of in-depth studies on the nature of fluid movement (slurry of microencapsulated PCMs) in pipe channels. The slurry flowed inside a tube with a diameter of 4 mm in the range of Re = 350–11,000. The PCM microcapsule (mPCM) concentration ranged from 4.30% to 17.2%. A pressure loss measurement was carried out on a section of 400 mm. The temperature of the flowing slurry was selected so that the PCMs in the microcapsules were in a liquid state and were solid during subsequent measurement series after undergoing a phase transformation. It was found that the boundary of the transition from laminar to turbulent flow is influenced by both the mPCM concentration in the slurry and the state of matter of the PCMs in the microcapsules. The influence of the slurry concentration and the state of matter of the PCMs in the microcapsules on changes such as fluid movement is presented (in terms of the critical Reynolds number). Full article
Show Figures

Figure 1

18 pages, 3040 KB  
Article
Bioconvective Flow Characteristics of NEPCM–Water Nanofluid over an Inclined Cylinder in Porous Medium: An Extended Darcy Model Approach
by Bikash Das, Sahin Ahmed and Joaquín Zueco
Mathematics 2024, 12(24), 4012; https://doi.org/10.3390/math12244012 - 20 Dec 2024
Cited by 1 | Viewed by 1056
Abstract
Bioconvection phenomena play a pivotal role in diverse applications, including the synthesis of biological polymers and advancements in renewable energy technologies. This study develops a comprehensive mathematical model to examine the effects of key parameters, such as the Lewis number (Lb), Peclet number [...] Read more.
Bioconvection phenomena play a pivotal role in diverse applications, including the synthesis of biological polymers and advancements in renewable energy technologies. This study develops a comprehensive mathematical model to examine the effects of key parameters, such as the Lewis number (Lb), Peclet number (Pe), volume fraction (φ), and angle of inclination (α), on the flow and heat transfer characteristics of a nanofluid over an inclined cylinder embedded in a non-Darcy porous medium. The investigated nanofluid comprises nano-encapsulated phase-change materials (NEPCMs) dispersed in water, offering enhanced thermal performance. The governing non-linear partial differential equations are transformed into dimensionless ordinary differential equations using similarity transformations and solved numerically via the Network Simulation Method (NSM) and an implicit Runge–Kutta method implemented through the bvp4c routine in MATLAB R2021a. Validation against the existing literature confirms the accuracy and reliability of the numerical approach, with strong convergence observed. Quantitative analysis reveals that an increase in the Peclet number reduces the shear stress at the cylinder wall by up to 18% while simultaneously enhancing heat transfer by approximately 12%. Similarly, the angle of inclination (α) significantly boosts heat transmission rates. Additionally, higher Peclet and Lewis numbers, along with greater nanoparticle volume fractions, amplify the density gradient of microorganisms, intensifying the bioconvection process by nearly 15%. These findings underscore the critical interplay between bioconvection and transport phenomena, providing a framework for optimizing bioconvection-driven heat and mass transfer systems. The insights from this investigation hold substantial implications for industrial processes and renewable energy technologies, paving the way for improved efficiency in applications such as thermal energy storage and advanced cooling systems. Full article
Show Figures

Figure 1

13 pages, 2016 KB  
Article
Transition Boundary from Laminar to Turbulent Flow of Microencapsulated Phase Change Material Slurry—Experimental Results
by Krzysztof Dutkowski, Marcin Kruzel and Martyna Kochanowska
Materials 2024, 17(24), 6041; https://doi.org/10.3390/ma17246041 - 10 Dec 2024
Cited by 1 | Viewed by 828
Abstract
An ice slurry or an emulsion of a phase change material (PCM) is a multiphase working fluid from the so-called Latent Functional Thermal Fluid (LFTF) group. LFTF is a fluid that uses, in addition to specific heat, the specific enthalpy of the phase [...] Read more.
An ice slurry or an emulsion of a phase change material (PCM) is a multiphase working fluid from the so-called Latent Functional Thermal Fluid (LFTF) group. LFTF is a fluid that uses, in addition to specific heat, the specific enthalpy of the phase change of its components to transfer heat. Another fluid type has joined the LFTF group: a slurry of encapsulated phase change material (PCM). Technological progress has made it possible for the phase change material to be enclosed in a capsule of the size of the order of micrometers (microencapsulated PCM—mPCM) or nanometers (nanoencapsulated PCM—nPCM). This paper describes a method for determining the Reynolds number (Re) at which the nature of the flow of the mPCM slurry inside a straight pipe changes. In addition, the study results of the effect of the concentration of mPCM in the slurry and the state of the PCM inside the microcapsule on the value of the critical Reynolds number (Recr) are presented. The aqueous slurry of mPCM with a concentration from 4.30% to 17.20% wt. flowed through a channel with an internal diameter of d = 4 mm with a flow rate of up to 110 kg/h (Re = 11,250). The main peak melting temperature of the microencapsulated paraffin wax used in the experiments was around 24 °C. The slurry temperature during the tests was maintained at a constant level. It was 7 °C, 24 °C and 44 °C (the PCM in the microcapsule was, respectively, a solid, underwent a phase change and was a liquid). The experimental studies clearly show that the concentration of microcapsules in the slurry and the state of the PCM in the microcapsule affect the critical Reynolds number. The higher the concentration of microcapsules in the slurry, the more difficult it was to maintain laminar fluid flow inside the channel. Furthermore, the laminar flow of the slurry terminated at a lower critical Reynolds number when the PCM in the microcapsule was solid. Caution is advised when choosing the relationship to calculate the flow resistance or heat transfer coefficients, because assuming that the flow motion changes at Re = 2300, as in the case of pure liquids, may be an incorrect assumption. Full article
(This article belongs to the Special Issue Smart Materials and Devices in Heat and Mass Transfer)
Show Figures

Figure 1

22 pages, 4326 KB  
Article
Numerical Study of Heat Transfer Enhancement Using Nano-Encapsulated Phase Change (NPC) Slurries in Wavy Microchannels
by Myo Min Zaw, Liang Zhu and Ronghui Ma
Fluids 2024, 9(10), 236; https://doi.org/10.3390/fluids9100236 - 9 Oct 2024
Cited by 2 | Viewed by 1374
Abstract
Researchers have attempted to improve heat transfer in mini/microchannel heat sinks by dispersing nano-encapsulated phase change (NPC) materials in base coolants. While NPC slurries have demonstrated improved heat transfer performance, their applications are limited by decreasing enhancement at increased flow rates. To address [...] Read more.
Researchers have attempted to improve heat transfer in mini/microchannel heat sinks by dispersing nano-encapsulated phase change (NPC) materials in base coolants. While NPC slurries have demonstrated improved heat transfer performance, their applications are limited by decreasing enhancement at increased flow rates. To address this challenge, the present study numerically investigates the effects of wavy channels on the performance of NPC slurries. Simulation results reveal that a wavy channel induces Dean vortices that intensify the mixing of the working fluid and enlarge the melting fractions of the NPC material, thus offering a significantly higher heat transfer efficiency than a straight channel. Moreover, heat transfer enhancement by NPC slurries varies with the imposed heat flux and flow rate. Interestingly, the maximum heat transfer enhancement obtained with the wavy channel not only exceeds the straight one, but also occurs at a higher heat flux and faster flow rate. This finding demonstrates the advantage of wavy channels in management of intensive heat fluxes with NPC slurries. The study also investigates wavy channels with varying amplitude and wavelength. Increasing the wave aspect ratio from 0.2 to 0.588 strengthens Dean vortices and consequently increases the Nusselt number, optimal heat flux, and overall thermal performance factor. Full article
(This article belongs to the Special Issue Physics and Applications of Microfluidics)
Show Figures

Figure 1

27 pages, 18654 KB  
Review
Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes
by Kai Jiao, Lin Lu, Liang Zhao and Gang Wang
Sustainability 2024, 16(15), 6482; https://doi.org/10.3390/su16156482 - 29 Jul 2024
Cited by 17 | Viewed by 6710
Abstract
The building envelope serves as a barrier against climatic conditions and as insulation to prevent energy waste within buildings. As global energy shortages become more pressing, the requirements for building envelopes are becoming increasingly stringent. Among the available technologies, phase change materials (PCMs) [...] Read more.
The building envelope serves as a barrier against climatic conditions and as insulation to prevent energy waste within buildings. As global energy shortages become more pressing, the requirements for building envelopes are becoming increasingly stringent. Among the available technologies, phase change materials (PCMs) stand out for their high latent thermal energy storage and temperature stabilization capabilities. This paper reviews the recent advancements in PCM technology for building envelopes, starting with an overview of organic, inorganic, and eutectic PCMs, along with their respective advantages and disadvantages. The paper explores various incorporation methods such as shape stabilization, macroencapsulation, micro/nanoencapsulation, and solid–solid transition techniques. The integration of PCMs enhances thermal inertia, reduces thermal fluctuations, and delays heat peaks, presenting several multifunctional benefits. However, challenges such as fire hazards, potential toxicity, pollution, reduced mechanical performance, and higher initial costs persist. In light of these challenges, criteria for PCM integration in building applications are introduced. Additionally, the paper reviews recent hybrid technologies that combine PCMs with other novel technologies for building envelopes, including radiant temperature regulation systems, thermochromic windows, passive radiative cooling coatings, and others. It is shown that these PCM-integrated hybrid technologies significantly improve energy savings and indoor comfort. PCMs offer substantial potential for modern green building strategies and have further applications in other building contexts. Finally, the paper provides future prospects for studies in this field, aiming towards a green and energy-saving future. Full article
Show Figures

Figure 1

15 pages, 6243 KB  
Article
Thermal Energy Storage in Concrete by Encapsulation of a Nano-Additivated Phase Change Material in Lightweight Aggregates
by Iván Carrillo-Berdugo, Juan Jesús Gallardo, Nazaret Ruiz-Marín, Violeta Guillén-Domínguez, Rodrigo Alcántara, Javier Navas and Juan Antonio Poce-Fatou
Nanomaterials 2024, 14(14), 1180; https://doi.org/10.3390/nano14141180 - 11 Jul 2024
Cited by 2 | Viewed by 2579
Abstract
This work discusses the applicability of lightweight aggregate-encapsulated n-octadecane with 1.0 wt.% of Cu nanoparticles, for enhanced thermal comfort in buildings by providing thermal energy storage functionality to no-fines concrete. A straightforward two-step procedure (impregnation and occlusion) for the encapsulation of the [...] Read more.
This work discusses the applicability of lightweight aggregate-encapsulated n-octadecane with 1.0 wt.% of Cu nanoparticles, for enhanced thermal comfort in buildings by providing thermal energy storage functionality to no-fines concrete. A straightforward two-step procedure (impregnation and occlusion) for the encapsulation of the nano-additivated phase change material in lightweight aggregates is presented. Encapsulation efficiencies of 30–40% are achieved. Phase change behavior is consistent across cycles. Cu nanoparticles provide nucleation points for phase change and increase the rate of progression of phase change fronts due to the enhancement in the effective thermal conductivity of n-octadecane. The effective thermal conductivity of the composites remains like that of regular lightweight aggregates and can still fulfil thermal insulation requirements. The thermal response of no-fines concrete blocks prepared with these new aggregates is also studied. Under artificial sunlight, with a standard 1000 W·m−2 irradiance and AM1.5G filter, concrete samples with the epoxy-coated aggregate-encapsulated n-octadecane-based dispersion of Cu nanoparticles (with a phase change material content below 8% of the total concrete mass) can effectively maintain a significant 5 °C difference between irradiated and non-irradiated sides of the block for ca. 30 min. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Graphical abstract

22 pages, 5766 KB  
Article
Studying the Improvement of Solar Collector Mechanism with Phase Change Materials
by Maha Rahman Rahi, Saba Ostadi, Amin Rahmani, Mahdieh Dibaj and Mohammad Akrami
Energies 2024, 17(6), 1432; https://doi.org/10.3390/en17061432 - 16 Mar 2024
Cited by 11 | Viewed by 2799
Abstract
This study delves into the integration of phase change materials (PCM) in solar thermal collector systems to address this challenge. By incorporating nano encapsulated PCMs, researchers have mitigated concerns surrounding PCM leakage, revolutionizing the potential of solar collector systems to elevate energy efficiency, [...] Read more.
This study delves into the integration of phase change materials (PCM) in solar thermal collector systems to address this challenge. By incorporating nano encapsulated PCMs, researchers have mitigated concerns surrounding PCM leakage, revolutionizing the potential of solar collector systems to elevate energy efficiency, diminish carbon emissions, and yield manifold benefits. This article comprehensively investigates the design and utilization of solar phase change energy storage devices and examines the transformative impact of employing nano-coated phase change materials (Nano capsules) to augment solar collector performance. The integration of paraffin-based PCM and the insulation of the collector system have been crucial in optimizing heat retention and operational efficacy. The composition of the PCM involves a balanced blend of octadecane phase-change particles and water as the base fluid, designed to maximize thermal performance. Analysis of the experimental findings demonstrates the dynamic thermal behavior of the nano encapsulated phase change material, revealing distinctive temperature profiles about fluid dynamics and absorbent characteristics. Notably, the study emphasizes the nuanced trade-offs associated with the conductivity and melting temperature of the Nano encapsulated PCM, yielding valuable insights into energy storage capacity limitations and thermal performance variations throughout diurnal cycles. Central to the investigation, the optimal nanoparticle proportion is elucidated, shedding light on its pivotal role in modulating PCM performance. Furthermore, findings underscore the complex interplay between nanoparticle volume fraction and thermal fluid temperature, providing critical perspectives on optimizing PCM-enhanced solar collector systems. Full article
Show Figures

Figure 1

51 pages, 16149 KB  
Review
Review on Thermal Properties with Influence Factors of Solid–Liquid Organic Phase-Change Micro/Nanocapsules
by Huanmei Yuan, Sitong Liu, Tonghe Li, Liyun Yang, Dehong Li, Hao Bai and Xiaodong Wang
Energies 2024, 17(3), 604; https://doi.org/10.3390/en17030604 - 26 Jan 2024
Cited by 8 | Viewed by 1702
Abstract
Solid–liquid organic phase-change micro/nanocapsules are potential candidates for energy storage. Recently, significant progress has been made regarding phase-change micro/nanocapsules in terms of their synthesis, properties, and applications. Extensive research has been conducted to enhance their thermal properties, such as thermal storage capacity, thermal [...] Read more.
Solid–liquid organic phase-change micro/nanocapsules are potential candidates for energy storage. Recently, significant progress has been made regarding phase-change micro/nanocapsules in terms of their synthesis, properties, and applications. Extensive research has been conducted to enhance their thermal properties, such as thermal storage capacity, thermal conductivity, and thermal reliability. However, factors that influence the thermal properties of micro/nanocapsules have received little attention. This study presents a comprehensive review of phase-change micro/nanocapsules focusing on their thermal properties and their influencing factors. In addition, the thermal properties of the major solid–liquid organic pure phase-change materials are summarized. Furthermore, common micro/nanoencapsulation methods and their influence on the thermal properties were analyzed. Finally, the potential applications of these phase-change micro/nanocapsules were also investigated. This study was devoted to enhancing the thermal properties of micro/nanocapsules, which play a crucial role in their practical applications. Full article
(This article belongs to the Special Issue Modeling Multiphase Flow and Reactive Transport in Porous Media 2024)
Show Figures

Figure 1

16 pages, 5165 KB  
Article
Experimental Study and Mechanism Analysis of Paraffin/Sisal Composite Phase Change Energy Storage Fiber Prepared by Vacuum Adsorption Method
by Chun Chen, Qi Fu, Ruilin Cao, Zhenzhong Chen, Zedi Zhang, Kailun Xia, Nanqiao You, Yifan Jiang and Yamei Zhang
Materials 2024, 17(2), 467; https://doi.org/10.3390/ma17020467 - 18 Jan 2024
Cited by 2 | Viewed by 1751
Abstract
Sisal fiber exhibits a fibrous and porous structure with significant surface roughness, making it highly suitable for storing phase change materials (PCMs). Its intricate morphology further aids in mitigating the risk of PCM leakage. This research successfully employs vacuum adsorption to encapsulate paraffin [...] Read more.
Sisal fiber exhibits a fibrous and porous structure with significant surface roughness, making it highly suitable for storing phase change materials (PCMs). Its intricate morphology further aids in mitigating the risk of PCM leakage. This research successfully employs vacuum adsorption to encapsulate paraffin within sisal fiber, yielding a potentially cost-effective, durable, and environmentally friendly phase change energy storage medium. A systematic investigation was carried out to evaluate the effects of sisal-to-paraffin mass ratio, fiber length, vacuum level, and negative pressure duration on the loading rate of paraffin. The experimental results demonstrate that a paraffin loading rate of 8 wt% can be achieved by subjecting a 3 mm sisal fiber to vacuum adsorption with 16 wt% paraffin for 1 h at −0.1 MPa. Through the utilization of nano-CT imaging enhancement technology, along with petrographic microscopy, this study elucidates the mechanism underlying paraffin storage within sisal fiber during vacuum adsorption. The observations reveal that a substantial portion of paraffin is primarily stored within the pores of the fiber, while a smaller quantity is firmly adsorbed onto its surface, thus yielding a durable phase change energy storage medium. The research findings contribute to both the theoretical foundations and the available practical guidance for the fabrication and implementation of paraffin/sisal fiber composite phase change energy storage mediums. Full article
Show Figures

Figure 1

12 pages, 3421 KB  
Article
Nanoencapsulation of Organic Phase Change Materials in Poly(3,4-Ethylenedioxythiophene) for Energy Storage and Conversion
by Inés Adam-Cervera, Jose Huerta-Recasens, Clara M. Gómez, Mario Culebras and Rafael Muñoz-Espí
Polymers 2024, 16(1), 100; https://doi.org/10.3390/polym16010100 - 28 Dec 2023
Cited by 6 | Viewed by 1855
Abstract
This work focuses on the encapsulation of two organic phase change materials (PCMs), hexadecane and octadecane, through the formation of nanocapsules of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) obtained by oxidative polymerization in miniemulsion. The energy storage capacity of nanoparticles is studied by preparing [...] Read more.
This work focuses on the encapsulation of two organic phase change materials (PCMs), hexadecane and octadecane, through the formation of nanocapsules of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) obtained by oxidative polymerization in miniemulsion. The energy storage capacity of nanoparticles is studied by preparing polymer films on supporting substrates. The results indicate that the prepared systems can store and later release thermal energy in the form of latent heat efficiently, which is of vital importance to increase the efficiency of future thermoelectric devices. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

25 pages, 40635 KB  
Review
Recent Advances in Nanoencapsulated and Nano-Enhanced Phase-Change Materials for Thermal Energy Storage: A Review
by Faïçal Khlissa, Mohsen Mhadhbi, Walid Aich, Ahmed Kadhim Hussein, Muapper Alhadri, Fatih Selimefendigil, Hakan F. Öztop and Lioua Kolsi
Processes 2023, 11(11), 3219; https://doi.org/10.3390/pr11113219 - 13 Nov 2023
Cited by 19 | Viewed by 5370
Abstract
Phase-change materials (PCMs) are becoming more widely acknowledged as essential elements in thermal energy storage, greatly aiding the pursuit of lower building energy consumption and the achievement of net-zero energy goals. PCMs are frequently constrained by their subpar heat conductivity, despite their expanding [...] Read more.
Phase-change materials (PCMs) are becoming more widely acknowledged as essential elements in thermal energy storage, greatly aiding the pursuit of lower building energy consumption and the achievement of net-zero energy goals. PCMs are frequently constrained by their subpar heat conductivity, despite their expanding importance. This in-depth research includes a thorough categorization and close examination of PCM features. The most current developments in nanoencapsulated PCM (NEPCMs) techniques are also highlighted, along with recent developments in thermal energy storage technology. The assessment also emphasizes how diligently researchers have worked to advance the subject of PCMs, including the creation of devices with improved thermal performance using nano-enhanced PCMs (NEnPCMs). This review intends to highlight the progress made in improving the efficiency and efficacy of PCMs by providing a critical overview of these improvements. The paper concludes by discussing current challenges and proposing future directions for the continued advancement of PCMs and their diverse applications. Full article
(This article belongs to the Special Issue State-of-the-Art Thermal Energy Storage Systems)
Show Figures

Figure 1

14 pages, 3464 KB  
Article
Experimental Studies of the Pressure Drop in the Flow of a Microencapsulated Phase-Change Material Slurry in the Range of the Critical Reynolds Number
by Krzysztof Dutkowski, Marcin Kruzel and Martyna Kochanowska
Energies 2023, 16(19), 6926; https://doi.org/10.3390/en16196926 - 2 Oct 2023
Cited by 4 | Viewed by 1611
Abstract
Phase-change materials (PCMs) are attractive materials for storing thermal energy thanks to the energy supplied/returned during the change in matter state. The encapsulation of PCMs prevent them from connecting into large clusters, prevents the chemical interaction of the PCM with the walls of [...] Read more.
Phase-change materials (PCMs) are attractive materials for storing thermal energy thanks to the energy supplied/returned during the change in matter state. The encapsulation of PCMs prevent them from connecting into large clusters, prevents the chemical interaction of the PCM with the walls of the tank and the exchanger material, and allows the phase change to be initiated in parallel in each capsule. The microencapsulation of PCMs (mPCMs) and the nanoencapsulation of PCMs (nPCMs) entail that these particles added to the base liquid can act as a slurry used in heat exchange systems. PCM micro-/nanocapsules or mPCM (nPCM) slurry are subjected to numerous physical, mechanical, and rheological tests. However, flow tests of mPCM (nPCM) slurries are significantly limited. This paper describes the results of detailed adiabatic flow tests of mPCM slurry in a tube with an internal diameter of d = 4 mm and a length of L = 400 mm. The tests were conducted during laminar, transient, and turbulent flows (Re < 11,250) of mPCM aqueous slurries with concentrations of 4.30%, 6.45%, 8.60%, 10.75%, 12.90%, 15.05%, and 17.20%. The mPCM slurry had a temperature of T = 7 °C (the microcapsule PCM was a solid), T = 24 °C (the microcapsule PCM was undergoing a phase change), and T = 44 °C (the microcapsule PCM was a liquid). This work aims to fill the research gap on the effect of the mPCM slurry concentration on the critical Reynolds number. It was found that the concentration of the mPCM has a significant effect on the critical Reynolds number, and the higher the concentration of mPCM in the base liquid, the more difficult it was to keep the laminar flow. Additionally, it was observed that, as yet unknown in the literature, the temperature of the slurry (and perhaps the physical state of the PCM in the microcapsule) may affect the critical Reynolds number. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

16 pages, 5413 KB  
Article
Preparation and Characterization of n-Octadecane@SiO2/GO and n-Octadecane@SiO2/Ag Nanoencapsulated Phase Change Material for Immersion Cooling of Li-Ion Battery
by Jianhao Gu, Jiajie Du, Yuxin Li, Jinpei Li, Longfei Chen, Yan Chai and Yongli Li
Energies 2023, 16(3), 1498; https://doi.org/10.3390/en16031498 - 2 Feb 2023
Cited by 10 | Viewed by 2777
Abstract
Nanoencapsulated phase change materials (NePCMs) are promising thermal energy storage (TES) and heat transfer materials that show great potential in battery thermal management systems (BTMSs). In this work, nanocapsules with a paraffin core and silica shell were prepared using an optimized sol-gel method. [...] Read more.
Nanoencapsulated phase change materials (NePCMs) are promising thermal energy storage (TES) and heat transfer materials that show great potential in battery thermal management systems (BTMSs). In this work, nanocapsules with a paraffin core and silica shell were prepared using an optimized sol-gel method. The samples were characterized by different methods regarding chemical composition, thermal properties, etc. Then, the nanocapsules were used as the coolant by mixing with insulation oil in the immersion cooling of a simulative battery. The sample doped with Ag on the shell with a core-to-shell ratio of 1:1 showed the best performance. Compared to the sample without doping material, the thermal conductivity increased by 49%, while the supercooling degree was reduced by 35.6%. The average temperature of the simulative battery cooled by nanocapsule slurries decreased by up to 3.95 °C compared to the test performed with pure insulation oil as the coolant. These novel nanocapsules show great potential in the immersion cooling of a battery. Full article
(This article belongs to the Special Issue Heat and Cold Storage for a Net-Zero Future)
Show Figures

Graphical abstract

14 pages, 3887 KB  
Article
Synthesis and Characterization of Titania–MXene-Based Phase Change Material for Sustainable Thermal Energy Storage
by Ajiv Alam Khan, Syed Mohd Yahya and Masood Ashraf Ali
Sustainability 2023, 15(1), 516; https://doi.org/10.3390/su15010516 - 28 Dec 2022
Cited by 13 | Viewed by 2907
Abstract
PLUCISE A82 (PW82) is considered one of the best phase change materials as it is economical, commercially viable, and eco-friendly. Unless there is a great need to optimize the number of parameters to investigate encapsulated PCMs with good performance, for the effective and [...] Read more.
PLUCISE A82 (PW82) is considered one of the best phase change materials as it is economical, commercially viable, and eco-friendly. Unless there is a great need to optimize the number of parameters to investigate encapsulated PCMs with good performance, for the effective and practical applications of organic phase change materials, it is required to enhance their thermal conductivity. In this study, efforts were made to increase the thermal properties of phase change materials by seeding different nanoparticles. The direct synthesis method, in which the mixing of nanoparticles in paraffin wax (PW82) takes place, is used for the production of NEPCM. Differential scanning calorimeter and heat conduction experiments were used to evaluate the effect of variable concentration of nano-encapsulation on thermal storage and heat conduction characteristics of nano-enhanced PCM. The thermal storage feasibility was also determined. In this study, titania (TiO2), Ti3C2/MXene was mixed in PW82 in 0.1, 0.2, and 0.3 wt.%. The investigation was also carried out for hybrid nano-enhanced PCM in a hybrid combination of (TiO2), and Ti3C2 (MXene) in PW82, used in wt.% concentration of 0.1, 0.2, and 0.3. Doping of titania and MXene improves the specific heat capacity of PCM. For doping of 0.3 wt.% of TiO2–Ti3C2 in PCM, the specific heat is improved to 41.3%. A maximum increment in thermal conductivity of 15.6% is found for doping of TiO2–Ti3C2 0.3 wt.%. The dissociation temperature of this prepared nano-enhanced PCM increases by ~6% for 0.3 wt.% weight fraction. Therefore, this study demonstrates that the doping of TiO2 and Ti3C2 with PW82 to form a new class of NEPCMs has significant scope to enhance the thermal storage capacity of organic paraffin. Full article
(This article belongs to the Special Issue Sustainable Developments and Innovations in Manufacturing)
Show Figures

Figure 1

Back to TopTop