Nanoencapsulation of Organic Phase Change Materials in Poly(3,4-Ethylenedioxythiophene) for Energy Storage and Conversion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEDOT/PCM Nanoparticles
2.3. Preparation of PEDOT/PCM Films on Supporting Substrates
2.4. Characterization Techniques
3. Results and Discussion
3.1. PEDOT Nanoparticles without and with PCMs
3.2. PEDOT/PCM Coatings on Supporting Substrates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Doraghi, Q.; Ahmad, L.; Norman, L.; Axcell, B.; Wrobel, L.; Dai, S. Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids 2021, 9, 100063. [Google Scholar] [CrossRef]
- Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A Review on Thermoelectric Generators: Progress and Applications. Energies 2020, 13, 3606. [Google Scholar] [CrossRef]
- Tohidi, F.; Ghazanfari Holagh, S.; Chitsaz, A. Thermoelectric Generators: A comprehensive review of characteristics and applications. Appl. Therm. Eng. 2022, 201, 117793. [Google Scholar] [CrossRef]
- Boccardi, S.; Ciampa, F.; Meo, M. Design and development of a heatsink for thermo-electric power harvesting in aerospace applications. Smart Mater. Struct. 2019, 28, 105057. [Google Scholar] [CrossRef]
- Karni, J. The thermoelectric alternative. Nat. Mater. 2011, 10, 481–482. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Yang, S.; Xiao, H.; Ou, Q. A dynamic model for thermoelectric generator applied in waste heat recovery. Energy 2013, 52, 201–209. [Google Scholar] [CrossRef]
- Yuan, Z.; Tang, X.; Xu, Z.; Li, J.; Chen, W.; Liu, K.; Liu, Y.; Zhang, Z. Screen-printed radial structure micro radioisotope thermoelectric generator. Appl. Energy 2018, 225, 746–754. [Google Scholar] [CrossRef]
- Addanki, S.; Nedumaran, D. Simulation and fabrication of thermoelectric generators for hand held electronic gadgets. J. Mater. Sci. Eng. B 2019, 251, 114453. [Google Scholar] [CrossRef]
- Aljaghtham, M.; Celik, E. Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines. Energy 2020, 200, 117547. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; Wang, S.; Yang, Y. Ocean thermal energy harvesting with phase change material for underwater glider. Appl. Energy 2016, 178, 557–566. [Google Scholar] [CrossRef]
- Hasan, M.N.; Wahid, H.; Nayan, N.; Mohamed Ali, M.S. Inorganic thermoelectric materials: A review. Int. J. Energy Res. 2020, 44, 6170–6222. [Google Scholar] [CrossRef]
- Culebras, M.; Gómez, C.M.; Cantarero, A. Review on Polymers for Thermoelectric Applications. Materials 2014, 7, 6701–6732. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2022, 92, 106774. [Google Scholar] [CrossRef]
- Nguyen Huu, T.; Nguyen Van, T.; Takahito, O. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl. Energy 2018, 210, 467–476. [Google Scholar] [CrossRef]
- Culebras, M.; Choi, K.; Cho, C. Recent Progress in Flexible Organic Thermoelectrics. Micromachines 2018, 9, 638. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Sellan, D.P.; Pettes, M.T.; Kong, X.; Ji, J.; Shi, L.; Ruoff, R.S. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 2014, 7, 1185–1192. [Google Scholar] [CrossRef]
- Aftab, W.; Huang, X.; Wu, W.; Liang, Z.; Mahmood, A.; Zou, R. Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 2018, 11, 1392–1424. [Google Scholar] [CrossRef]
- Ishibe, T.; Kaneko, T.; Uematsu, Y.; Sato-Akaba, H.; Komura, M.; Iyoda, T.; Nakamura, Y. Tunable Thermal Switch via Order-Order Transition in Liquid Crystalline Block Copolymer. Nano Lett. 2022, 22, 6105–6111. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. J. Energy Storage 2021, 33, 101913. [Google Scholar] [CrossRef]
- Wu, J.; Hu, R.; Zeng, S.; Xi, W.; Huang, S.; Deng, J.; Tao, G. Flexible and Robust Biomaterial Microstructured Colored Textiles for Personal Thermoregulation. ACS Appl. Mater. Interfaces 2020, 12, 19015–19022. [Google Scholar] [CrossRef]
- Ahn, C.; Fong, S.W.; Kim, Y.; Lee, S.; Sood, A.; Neumann, C.M.; Asheghi, M.; Goodson, K.E.; Pop, E.; Wong, H.S. Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier. Nano Lett. 2015, 15, 6809–6814. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gaikwad, K.K.; Lee, Y.S. Phase change materials for advanced cooling packaging. Environ. Chem. Lett. 2018, 16, 845–859. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, H.; Chen, X.; Zhang, Y.; Li, A.; Wang, G. Advanced multifunctional composite phase change materials based on photo-responsive materials. Nano Energy 2021, 80, 105454. [Google Scholar] [CrossRef]
- Ye, Q.; Tao, P.; Chang, C.; Zhou, L.; Zeng, X.; Song, C.; Shang, W.; Wu, J.; Deng, T. Form-Stable Solar Thermal Heat Packs Prepared by Impregnating Phase-Changing Materials within Carbon-Coated Copper Foams. ACS Appl. Mater. Interfaces 2019, 11, 3417–3427. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Thapa, P.; Kumar, V.; Zhu, Y.; Wang, N.; Bystrzejewski, M.; Tiwari, S.K. Updates in phase change materials for thermoelectric devices: Status and challenges. Materialia 2022, 21, 101357. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, A.; Wang, J.; Zhou, Y.; Bao, C.; Xie, H.; Wu, Z.; Wang, Y. Optimized output electricity of thermoelectric generators by matching phase change material and thermoelectric material for intermittent heat sources. Energy 2021, 233, 121113. [Google Scholar] [CrossRef]
- Hyun, D.C.; Levinson, N.S.; Jeong, U.; Xia, Y. Emerging applications of phase-change materials (PCMs): Teaching an old dog new tricks. Angew. Chem. Int. Ed. Engl. 2014, 53, 3780–3795. [Google Scholar] [CrossRef]
- Khadiran, T.; Hussein, M.Z.; Zainal, Z.; Rusli, R. Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Sol. Energy Mater. Sol. Cells 2015, 143, 78–98. [Google Scholar] [CrossRef]
- Shchukina, E.M.; Graham, M.; Zheng, Z.; Shchukin, D.G. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem. Soc. Rev. 2018, 47, 4156–4175. [Google Scholar] [CrossRef]
- Peng, G.; Dou, G.; Hu, Y.; Sun, Y.; Chen, Z. Phase Change Material (PCM) Microcapsules for Thermal Energy Storage. Adv. Polym. 2020, 2020, 9490873. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Ali, H.M.; Khushnood, S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. Int. J. Heat Mass Transf. 2018, 127, 838–856. [Google Scholar] [CrossRef]
- Li, H.; Jiang, M.; Li, Q.; Li, D.; Huang, J.; Hu, W.; Dong, L.; Xie, H.; Xiong, C. Facile preparation and thermal performances of hexadecanol/crosslinked polystyrene core/shell nanocapsules as phase change material. Polym. Compos. 2014, 35, 2154–2158. [Google Scholar] [CrossRef]
- Schoth, A.; Landfester, K.; Muñoz-Espí, R. Surfactant-free polyurethane nanocapsules via inverse Pickering miniemulsion. Langmuir 2015, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Bermúdez, O.; Adam-Cervera, I.; Aguado-Hernándiz, A.; Landfester, K.; Muñoz-Espí, R. Magnetic Polyurethane Microcarriers from Nanoparticle-Stabilized Emulsions for Thermal Energy Storage. ACS Sustain. Chem. Eng. 2020, 8, 17956–17966. [Google Scholar] [CrossRef]
- Culebras, M.; Serrano-Claumarchirant, J.F.; Sanchis, M.J.; Landfester, K.; Cantarero, A.; Gómez, C.M.; Muñoz-Espí, R. Conducting PEDOT Nanoparticles: Controlling Colloidal Stability and Electrical Properties. J. Phys. Chem. C 2018, 122, 19197–19203. [Google Scholar] [CrossRef]
- Culebras, M.; Uriol, B.; Gómez, C.M.; Cantarero, A. Controlling the thermoelectric properties of polymers: Application to PEDOT and polypyrrole. Phys. Chem. Chem. Phys. 2015, 17, 15140–15145. [Google Scholar] [CrossRef] [PubMed]
- Borhani, S.M.; Hosseini, M.J.; Pakrouh, R.; Ranjbar, A.A.; Nourian, A. Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite. Renew. Energy 2021, 168, 1122–1140. [Google Scholar] [CrossRef]
- He, D.; Ou, D.; Gao, H.; Jiao, F. Performance evaluation of a thermoelectric generator-coupled composite phase change material for intermittent aerodynamic heat sources. Int. J. Energy Res. 2022, 46, 2698–2708. [Google Scholar] [CrossRef]
- Karthick, K.; Suresh, S. Effect of adding alumina nanoparticle in D-Mannitol for reversible solar thermoelectric power generation: An experimental study. Sol. Energy Mater. Sol. Cells 2021, 219, 110781. [Google Scholar] [CrossRef]
- Klein Altstedde, M.; Rinderknecht, F.; Friedrich, H. Integrating Phase-Change Materials into Automotive Thermoelectric Generators. J. Electron. Mater. 2014, 43, 2134–2140. [Google Scholar] [CrossRef]
- Lee, G.; Kim, C.S.; Kim, S.; Kim, Y.J.; Choi, H.; Cho, B.J. Flexible heatsink based on a phase-change material for a wearable thermoelectric generator. Energy 2019, 179, 12–18. [Google Scholar] [CrossRef]
- Montero, F.J.; Lamba, R.; Ortega, A.; Jahn, W.; Guzmán, A.M. A novel 24-h day-night operational solar thermoelectric generator using phase change materials. J. Clean. Prod. 2021, 296, 126553. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Osorio, F.J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Peng, H.; Guo, W.; Feng, S.; Shen, Y. A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application. Appl. Energy 2022, 322, 119548. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Mahmud, S.; Heyst, B.V. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J. Power Sources 2018, 401, 224–237. [Google Scholar] [CrossRef]
- Tu, Y.; Zhu, W.; Lu, T.; Deng, Y. A novel thermoelectric harvester based on high-performance phase change material for space application. Appl. Energy 2017, 206, 1194–1202. [Google Scholar] [CrossRef]
- Yousefi, E.; Nejad, A.A.; Rezania, A. Higher power output in thermoelectric generator integrated with phase change material and metal foams under transient boundary condition. Energy 2022, 256, 124644. [Google Scholar] [CrossRef]
Sample | Encapsulated PCM | Tm/°C | ΔHm/J·g−1 | Encapsulation Efficiency/% |
---|---|---|---|---|
EDOT–hexadecane 2:1 | Hexadecane | 18. 0 | 5.9 | 67.1 |
EDOT–hexadecane 4:3 | Hexadecane | 17.1 | 6.4 | 49.7 |
EDOT–octadecane 2:1 | Octadecane | 27.8 | 6.5 | 67.7 |
EDOT–octadecane 4:3 | Octadecane | 26.3 | 6.8 | 48.5 |
Sample | Conductivity σ/S·cm−1 | Seebeck Coefficient/mV·K−1 | PF/µW·K−2 ·m−1 |
---|---|---|---|
Only PEDOT | (1.7 ± 0.2) × 10−1 | 0.022 ± 0.002 | (8.2 ± 1.4) × 10−3 |
EDOT–octadecane 2:1 | (7.4 ± 0.4) × 10−4 | 0.28 ± 0.05 | (5.9 ± 1.5) × 10−3 |
EDOT–hexadecane 2:1 | (1.9 ± 0.6) × 10−2 | 0.105 ± 0.007 | (2.1 ± 0.2) × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam-Cervera, I.; Huerta-Recasens, J.; Gómez, C.M.; Culebras, M.; Muñoz-Espí, R. Nanoencapsulation of Organic Phase Change Materials in Poly(3,4-Ethylenedioxythiophene) for Energy Storage and Conversion. Polymers 2024, 16, 100. https://doi.org/10.3390/polym16010100
Adam-Cervera I, Huerta-Recasens J, Gómez CM, Culebras M, Muñoz-Espí R. Nanoencapsulation of Organic Phase Change Materials in Poly(3,4-Ethylenedioxythiophene) for Energy Storage and Conversion. Polymers. 2024; 16(1):100. https://doi.org/10.3390/polym16010100
Chicago/Turabian StyleAdam-Cervera, Inés, Jose Huerta-Recasens, Clara M. Gómez, Mario Culebras, and Rafael Muñoz-Espí. 2024. "Nanoencapsulation of Organic Phase Change Materials in Poly(3,4-Ethylenedioxythiophene) for Energy Storage and Conversion" Polymers 16, no. 1: 100. https://doi.org/10.3390/polym16010100
APA StyleAdam-Cervera, I., Huerta-Recasens, J., Gómez, C. M., Culebras, M., & Muñoz-Espí, R. (2024). Nanoencapsulation of Organic Phase Change Materials in Poly(3,4-Ethylenedioxythiophene) for Energy Storage and Conversion. Polymers, 16(1), 100. https://doi.org/10.3390/polym16010100