Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = naïve small extracellular vesicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4692 KiB  
Article
RNA-Binding Protein Motifs Predict microRNA Secretion and Cellular Retention in Hypothalamic and Other Cell Types
by Wenyuan He and Denise D. Belsham
Biomedicines 2024, 12(4), 857; https://doi.org/10.3390/biomedicines12040857 - 12 Apr 2024
Cited by 1 | Viewed by 2087
Abstract
Cellular microRNAs (miRNAs) can be selectively secreted or retained, adding another layer to their critical role in regulating human health and disease. To date, select RNA-binding proteins (RBPs) have been proposed to be a mechanism underlying miRNA localization, but the overall relevance of [...] Read more.
Cellular microRNAs (miRNAs) can be selectively secreted or retained, adding another layer to their critical role in regulating human health and disease. To date, select RNA-binding proteins (RBPs) have been proposed to be a mechanism underlying miRNA localization, but the overall relevance of RBPs in systematic miRNA sorting remains unclear. This study profiles intracellular and small extracellular vesicles’ (sEVs) miRNAs in NPY-expressing hypothalamic neurons. These findings were corroborated by the publicly available sEV and intracellular miRNA profiles of white and brown adipocytes, endothelium, liver, and muscle from various databases. Using experimentally determined binding motifs of 93 RBPs, our enrichment analysis revealed that sEV-originating miRNAs contained significantly different RBP motifs than those of intracellularly retained miRNAs. Multiple RBP motifs were shared across cell types; for instance, RBM4 and SAMD4 are significantly enriched in neurons, hepatocytes, skeletal muscle, and endothelial cells. Homologs of both proteins physically interact with Argonaute1/2 proteins, suggesting that they play a role in miRNA sorting. Machine learning modelling also demonstrates that significantly enriched RBP motifs could predict cell-specific preferential miRNA sorting. Non-optimized machine learning modeling of the motifs using Random Forest and Naive Bayes in all cell types except WAT achieved an area under the receiver operating characteristic (ROC) curve of 0.77–0.84, indicating a high predictive accuracy. Given that the RBP motifs have a significant predictive power, these results underscore the critical role that RBPs play in miRNA sorting within mammalian cells and reinforce the importance of miRNA sequencing in preferential localization. For the future development of small RNA therapeutics, considering these RBP-RNA interactions could be crucial to maximize delivery effectiveness and minimize off-target effects. Full article
(This article belongs to the Special Issue MicroRNA and Its Role in Human Health)
Show Figures

Figure 1

23 pages, 4531 KiB  
Article
Proteolytic Vesicles Derived from Salmonella enterica Serovar Typhimurium-Infected Macrophages: Enhancing MMP-9-Mediated Invasion and EV Accumulation
by Alon Nudelman, Anjana Shenoy, Hyla Allouche-Arnon, Michal Fisler, Irit Rosenhek-Goldian, Lior Dayan, Paula Abou Karam, Ziv Porat, Inna Solomonov, Neta Regev-Rudzki, Amnon Bar-Shir and Irit Sagi
Biomedicines 2024, 12(2), 434; https://doi.org/10.3390/biomedicines12020434 - 15 Feb 2024
Cited by 2 | Viewed by 2351
Abstract
Proteolysis of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a crucial role in the immune response to bacterial infections. Here we report the secretion of MMPs associated with proteolytic extracellular vesicles (EVs) released by macrophages in response to Salmonella enterica serovar [...] Read more.
Proteolysis of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a crucial role in the immune response to bacterial infections. Here we report the secretion of MMPs associated with proteolytic extracellular vesicles (EVs) released by macrophages in response to Salmonella enterica serovar Typhimurium infection. Specifically, we used global proteomics, in vitro, and in vivo approaches to investigate the composition and function of these proteolytic EVs. Using a model of S. Typhimurium infection in murine macrophages, we isolated and characterized a population of small EVs. Bulk proteomics analysis revealed significant changes in protein cargo of naïve and S. Typhimurium-infected macrophage-derived EVs, including the upregulation of MMP-9. The increased levels of MMP-9 observed in immune cells exposed to S. Typhimurium were found to be regulated by the toll-like receptor 4 (TLR-4)-mediated response to bacterial lipopolysaccharide. Macrophage-derived EV-associated MMP-9 enhanced the macrophage invasion through Matrigel as selective inhibition of MMP-9 reduced macrophage invasion. Systemic administration of fluorescently labeled EVs into immunocompromised mice demonstrated that EV-associated MMP activity facilitated increased accumulation of EVs in spleen and liver tissues. This study suggests that macrophages secrete proteolytic EVs to enhance invasion and ECM remodeling during bacterial infections, shedding light on an essential aspect of the immune response. Full article
(This article belongs to the Special Issue ECM Code in Physiological and Pathological Processes)
Show Figures

Figure 1

16 pages, 4212 KiB  
Article
Prognostic Role of Soluble and Extracellular Vesicle-Associated PD-L1, B7-H3 and B7-H4 in Non-Small Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors
by Carlo Genova, Roberta Tasso, Alessandra Rosa, Giovanni Rossi, Daniele Reverberi, Vincenzo Fontana, Silvia Marconi, Michela Croce, Maria Giovanna Dal Bello, Chiara Dellepiane, Marco Tagliamento, Maria Chiara Ciferri, Lodovica Zullo, Alessandro Fedeli, Angela Alama, Katia Cortese, Chiara Gentili, Eugenia Cella, Giorgia Anselmi, Marco Mora, Giulia Barletta, Erika Rijavec, Francesco Grossi, Paolo Pronzato and Simona Cocoadd Show full author list remove Hide full author list
Cells 2023, 12(6), 832; https://doi.org/10.3390/cells12060832 - 8 Mar 2023
Cited by 22 | Viewed by 4131
Abstract
The treatment of non-small cell lung cancer (NSCLC) has changed dramatically with the advent of immune checkpoint inhibitors (ICIs). Despite encouraging results, their efficacy remains limited to a subgroup of patients. Circulating immune checkpoints in soluble (s) form and associated with extracellular vesicles [...] Read more.
The treatment of non-small cell lung cancer (NSCLC) has changed dramatically with the advent of immune checkpoint inhibitors (ICIs). Despite encouraging results, their efficacy remains limited to a subgroup of patients. Circulating immune checkpoints in soluble (s) form and associated with extracellular vesicles (EVs) represent promising markers, especially in ICI-based therapeutic settings. We evaluated the prognostic role of PD-L1 and of two B7 family members (B7-H3, B7-H4), both soluble and EV-associated, in a cohort of advanced NSCLC patients treated with first- (n = 56) or second-line (n = 126) ICIs. In treatment-naïve patients, high baseline concentrations of sPD-L1 (>24.2 pg/mL) were linked to worse survival, whereas high levels of sB7-H3 (>0.5 ng/mL) and sB7-H4 (>63.9 pg/mL) were associated with better outcomes. EV characterization confirmed the presence of EVs positive for PD-L1 and B7-H3, while only a small portion of EVs expressed B7-H4. The comparison between biomarker levels at the baseline and in the first radiological assessment under ICI-based treatment showed a significant decrease in EV-PD-L1 and an increase in EV-B7H3 in patients in the disease response to ICIs. Our study shows that sPD-L1, sB7-H3 and sB7-H4 levels are emerging prognostic markers in patients with advanced NSCLC treated with ICIs and suggests potential EV involvement in the disease response to ICIs. Full article
(This article belongs to the Special Issue Immune Biomarkers of Chronic Lung Diseases and Lung Cancer)
Show Figures

Figure 1

28 pages, 4094 KiB  
Article
SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128
by Steven Kopcho, Marina McDew-White, Wasifa Naushad, Mahesh Mohan and Chioma M. Okeoma
Viruses 2023, 15(3), 622; https://doi.org/10.3390/v15030622 - 24 Feb 2023
Cited by 7 | Viewed by 4737
Abstract
Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles [...] Read more.
Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles (EVs) and extracellular condensates (ECs) in the setting of untreated HIV/SIV infection. The goals of the study presented in this Manuscript 1 are to (i) assess the abundance and compartmentalization of exmiRNAs in EVs versus ECs in the healthy uninfected state, and (ii) evaluate how SIV infection may affect exmiRNA abundance and compartmentalization in these particles. Considerable effort has been devoted to studying the epigenetic control of viral infection, particularly in understanding the role of exmiRNAs as key regulators of viral pathogenesis. MicroRNA (miRNAs) are small (~20–22 nts) non-coding RNAs that regulate cellular processes through targeted mRNA degradation and/or repression of protein translation. Originally associated with the cellular microenvironment, circulating miRNAs are now known to be present in various extracellular environments, including blood serum and plasma. While in circulation, miRNAs are protected from degradation by ribonucleases through their association with lipid and protein carriers, such as lipoproteins and other extracellular particles—EVs and ECs. Functionally, miRNAs play important roles in diverse biological processes and diseases (cell proliferation, differentiation, apoptosis, stress responses, inflammation, cardiovascular diseases, cancer, aging, neurological diseases, and HIV/SIV pathogenesis). While lipoproteins and EV-associated exmiRNAs have been characterized and linked to various disease processes, the association of exmiRNAs with ECs is yet to be made. Likewise, the effect of SIV infection on the abundance and compartmentalization of exmiRNAs within extracellular particles is unclear. Literature in the EV field has suggested that most circulating miRNAs may not be associated with EVs. However, a systematic analysis of the carriers of exmiRNAs has not been conducted due to the inefficient separation of EVs from other extracellular particles, including ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of SIV-uninfected male Indian rhesus macaques (RMs, n = 15). Additionally, paired EVs and ECs were isolated from EDTA blood plasma of combination anti-retroviral therapy (cART) naïve SIV-infected (SIV+, n = 3) RMs at two time points (1- and 5-months post infection, 1 MPI and 5 MPI). Separation of EVs and ECs was achieved with PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high-resolution separation and retrieval of preparative quantities of sub-populations of extracellular particles. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNAs was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We showed that exmiRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid-based carriers—EVs and non-lipid-based carriers—ECs, with a significant (~30%) proportion of the exmiRNAs being associated with ECs. In the blood plasma of uninfected RMs, a total of 315 miRNAs were associated with EVs, while 410 miRNAs were associated with ECs. A comparison of detectable miRNAs within paired EVs and ECs revealed 19 and 114 common miRNAs, respectively, detected in all 15 RMs. Let-7a-5p, Let-7c-5p, miR-26a-5p, miR-191-5p, and let-7f-5p were among the top 5 detectable miRNAs associated with EVs in that order. In ECs, miR-16-5p, miR-451, miR-191-5p, miR-27a-3p, and miR-27b-3p, in that order, were the top detectable miRNAs in ECs. miRNA-target enrichment analysis of the top 10 detected common EV and EC miRNAs identified MYC and TNPO1 as top target genes, respectively. Functional enrichment analysis of top EV- and EC-associated miRNAs identified common and distinct gene-network signatures associated with various biological and disease processes. Top EV-associated miRNAs were implicated in cytokine–cytokine receptor interactions, Th17 cell differentiation, IL-17 signaling, inflammatory bowel disease, and glioma. On the other hand, top EC-associated miRNAs were implicated in lipid and atherosclerosis, Th1 and Th2 cell differentiation, Th17 cell differentiation, and glioma. Interestingly, infection of RMs with SIV revealed that the brain-enriched miR-128-3p was longitudinally and significantly downregulated in EVs, but not ECs. This SIV-mediated decrease in miR-128-3p counts was validated by specific TaqMan microRNA stem-loop RT-qPCR assay. Remarkably, the observed SIV-mediated decrease in miR-128-3p levels in EVs from RMs agrees with publicly available EV miRNAome data by Kaddour et al., 2021, which showed that miR-128-3p levels were significantly lower in semen-derived EVs from HIV-infected men who used or did not use cocaine compared to HIV-uninfected individuals. These findings confirmed our previously reported finding and suggested that miR-128 may be a target of HIV/SIV. Conclusions: In the present study, we used sRNA sequencing to provide a holistic understanding of the repertoire of circulating exmiRNAs and their association with extracellular particles, such as EVs and ECs. Our data also showed that SIV infection altered the profile of the miRNAome of EVs and revealed that miR-128-3p may be a potential target of HIV/SIV. The significant decrease in miR-128-3p in HIV-infected humans and in SIV-infected RMs may indicate disease progression. Our study has important implications for the development of biomarker approaches for various types of cancer, cardiovascular diseases, organ injury, and HIV based on the capture and analysis of circulating exmiRNAs. Full article
(This article belongs to the Special Issue Viruses and Extracellular Vesicles 2023)
Show Figures

Graphical abstract

25 pages, 664 KiB  
Review
Small Extracellular Vesicles as a New Class of Medicines
by Inkyu Lee, Yoonjeong Choi, Dong-U Shin, Minjeong Kwon, Seohyun Kim, Hanul Jung, Gi-Hoon Nam and Minsu Kwon
Pharmaceutics 2023, 15(2), 325; https://doi.org/10.3390/pharmaceutics15020325 - 18 Jan 2023
Cited by 21 | Viewed by 3328
Abstract
Extracellular vesicles (EVs) are nanovesicles that are naturally released from cells in a lipid bilayer-bound form. A subset population with a size of 200 nm, small EVs (sEVs), is enticing in many ways. Initially perceived as mere waste receptacles, sEVs have revealed other [...] Read more.
Extracellular vesicles (EVs) are nanovesicles that are naturally released from cells in a lipid bilayer-bound form. A subset population with a size of 200 nm, small EVs (sEVs), is enticing in many ways. Initially perceived as mere waste receptacles, sEVs have revealed other biological functions, such as cell-to-cell signal transduction and communication. Besides their notable biological functions, sEVs have profound advantages as future drug modalities: (i) excellent biocompatibility, (ii) high stability, and (iii) the potential to carry undruggable macromolecules as cargo. Indeed, many biopharmaceutical companies are utilizing sEVs, not only as diagnostic biomarkers but as therapeutic drugs. However, as all inchoate fields are challenging, there are limitations and hindrances in the clinical translation of sEV therapeutics. In this review, we summarize different types of sEV therapeutics, future improvements, and current strategies in large-scale production. Full article
(This article belongs to the Special Issue Exosome-Based Drug Delivery: Translation from Bench to Clinic)
Show Figures

Figure 1

18 pages, 3282 KiB  
Article
HIV Replication Increases the Mitochondrial DNA Content of Plasma Extracellular Vesicles
by Wilfried Wenceslas Bazié, Julien Boucher, Benjamin Goyer, Dramane Kania, Isidore Tiandiogo Traoré, Diane Yirgnur Somé, Michel Alary and Caroline Gilbert
Int. J. Mol. Sci. 2023, 24(3), 1924; https://doi.org/10.3390/ijms24031924 - 18 Jan 2023
Cited by 8 | Viewed by 2933
Abstract
Extracellular vesicles (EVs) and their cargo have been studied intensively as potential sources of biomarkers in HIV infection; however, their DNA content, particularly the mitochondrial portion (mtDNA), remains largely unexplored. It is well known that human immunodeficiency virus (HIV) infection and prolonged antiretroviral [...] Read more.
Extracellular vesicles (EVs) and their cargo have been studied intensively as potential sources of biomarkers in HIV infection; however, their DNA content, particularly the mitochondrial portion (mtDNA), remains largely unexplored. It is well known that human immunodeficiency virus (HIV) infection and prolonged antiretroviral therapy (ART) lead to mitochondrial dysfunction and reduced mtDNA copy in cells and tissues. Moreover, mtDNA is a well-known damage-associated molecular pattern molecule that could potentially contribute to increased immune activation, oxidative stress, and inflammatory response. We investigated the mtDNA content of large and small plasma EVs in persons living with HIV (PLWH) and its implications for viral replication, ART use, and immune status. Venous blood was collected from 196 PLWH, ART-treated or ART-naïve (66 with ongoing viral replication, ≥20 copies/mL), and from 53 HIV-negative persons, all recruited at five HIV testing or treatment centers in Burkina Faso. Large and small plasma EVs were purified and counted, and mtDNA level was measured by RT-qPCR. Regardless of HIV status, mtDNA was more abundant in large than small EVs. It was more abundant in EVs of viremic than aviremic and control participants and tended to be more abundant in participants treated with Tenofovir compared with Zidovudine. When ART treatment was longer than six months and viremia was undetectable, no variation in EV mtDNA content versus CD4 and CD8 count or CD4/CD8 ratio was observed. However, mtDNA in large and small EVs decreased with years of HIV infection and ART. Our results highlight the impact of viral replication and ART on large and small EVs’ mtDNA content. The mechanisms underlying the differential incorporation of mtDNA into EVs and their effects on the surrounding cells warrant further investigation. Full article
(This article belongs to the Special Issue Mitochondria in Human Health and Disease)
Show Figures

Figure 1

18 pages, 3219 KiB  
Article
Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer
by Chang Liu, Jinying Chen, Jiatao Liao, Yuchen Li, Hui Yu, Xinmin Zhao, Si Sun, Zhihuang Hu, Yao Zhang, Zhengfei Zhu, Min Fan, Shenglin Huang and Jialei Wang
Cancers 2022, 14(22), 5493; https://doi.org/10.3390/cancers14225493 - 9 Nov 2022
Cited by 9 | Viewed by 2254
Abstract
(1) Introduction: The aim of this study was to identify the plasma extracellular vesicle (EV)-specific transcriptional profile in small-cell lung cancer (SCLC) and to explore the application value of plasma EV long RNA (exLR) in SCLC treatment prediction and diagnosis. (2) Methods: Plasma [...] Read more.
(1) Introduction: The aim of this study was to identify the plasma extracellular vesicle (EV)-specific transcriptional profile in small-cell lung cancer (SCLC) and to explore the application value of plasma EV long RNA (exLR) in SCLC treatment prediction and diagnosis. (2) Methods: Plasma samples were collected from 57 SCLC treatment-naive patients, 104 non-small-cell lung cancer (NSCLC) patients and 59 healthy participants. The SCLC patients were divided into chemo-sensitive and chemo-refractory groups based on the therapeutic effects. The exLR profiles of the plasma samples were analyzed by high-throughput sequencing. Bioinformatics approaches were used to investigate the differentially expressed exLRs and their biofunctions. Finally, a t-signature was constructed using logistic regression for SCLC treatment prediction and diagnosis. (3) Results: We obtained 220 plasma exLRs profiles in all the participants. Totals of 5787 and 1207 differentially expressed exLRs were identified between SCLC/healthy controls, between the chemo-sensitive/chemo-refractory groups, respectively. Furthermore, we constructed a t-signature that comprised ten exLRs, including EPCAM, CCNE2, CDC6, KRT8, LAMB1, CALB2, STMN1, UCHL1, HOXB7 and CDCA7, for SCLC treatment prediction and diagnosis. The exLR t-score effectively distinguished the chemo-sensitive from the chemo-refractory group (p = 9.268 × 10−9) with an area under the receiver operating characteristic curve (AUC) of 0.9091 (95% CI: 0.837 to 0.9811) and distinguished SCLC from healthy controls (AUC: 0.9643; 95% CI: 0.9256–1) and NSCLC (AUC: 0.721; 95% CI: 0.6384–0.8036). (4) Conclusions: This study firstly characterized the plasma exLR profiles of SCLC patients and verified the feasibility and value of identifying biomarkers based on exLR profiles in SCLC diagnosis and treatment prediction. Full article
Show Figures

Figure 1

18 pages, 3492 KiB  
Article
Human Cytomegalovirus Modifies Placental Small Extracellular Vesicle Composition to Enhance Infection of Fetal Neural Cells In Vitro
by Mathilde Bergamelli, Hélène Martin, Yann Aubert, Jean-Michel Mansuy, Marlène Marcellin, Odile Burlet-Schiltz, Ilse Hurbain, Graça Raposo, Jacques Izopet, Thierry Fournier, Alexandra Benchoua, Mélinda Bénard, Marion Groussolles, Géraldine Cartron, Yann Tanguy Le Gac, Nathalie Moinard, Gisela D’Angelo and Cécile E. Malnou
Viruses 2022, 14(9), 2030; https://doi.org/10.3390/v14092030 - 13 Sep 2022
Cited by 5 | Viewed by 4299
Abstract
Although placental small extracellular vesicles (sEVs) are extensively studied in the context of pregnancy, little is known about their role during viral congenital infection, especially at the beginning of pregnancy. In this study, we examined the consequences of human cytomegalovirus (hCMV) infection on [...] Read more.
Although placental small extracellular vesicles (sEVs) are extensively studied in the context of pregnancy, little is known about their role during viral congenital infection, especially at the beginning of pregnancy. In this study, we examined the consequences of human cytomegalovirus (hCMV) infection on sEVs production, composition, and function using an immortalized human cytotrophoblast cell line derived from first trimester placenta. By combining complementary approaches of biochemistry, electron microscopy, and quantitative proteomic analysis, we showed that hCMV infection increases the yield of sEVs produced by cytotrophoblasts and modifies their protein content towards a potential proviral phenotype. We further demonstrate that sEVs secreted by hCMV-infected cytotrophoblasts potentiate infection in naive recipient cells of fetal origin, including human neural stem cells. Importantly, these functional consequences are also observed with sEVs prepared from an ex vivo model of infected histocultures from early placenta. Based on these findings, we propose that placental sEVs could be important actors favoring viral dissemination to the fetal brain during hCMV congenital infection. Full article
(This article belongs to the Special Issue Herpesvirus Manipulation of Cellular Processes 2.0)
Show Figures

Figure 1

17 pages, 4283 KiB  
Article
Physiactisome: A New Nanovesicle Drug Containing Heat Shock Protein 60 for Treating Muscle Wasting and Cachexia
by Valentina Di Felice, Rosario Barone, Eleonora Trovato, Daniela D’Amico, Filippo Macaluso, Claudia Campanella, Antonella Marino Gammazza, Vera Muccilli, Vincenzo Cunsolo, Patrizia Cancemi, Gabriele Multhoff, Dario Coletti, Sergio Adamo, Felicia Farina and Francesco Cappello
Cells 2022, 11(9), 1406; https://doi.org/10.3390/cells11091406 - 21 Apr 2022
Cited by 9 | Viewed by 3388
Abstract
Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome—a conditioned medium released by heat shock protein 60 (Hsp60)—overexpressing C2C12 cell lines enriched [...] Read more.
Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome—a conditioned medium released by heat shock protein 60 (Hsp60)—overexpressing C2C12 cell lines enriched with small and large extracellular vesicles. We also present evidence supporting its use in the treatment of cachexia. Briefly, we obtain a nanovesicle-based secretion by genetically modifying C2C12 cell lines with an Hsp60-overexpressing plasmid. The secretion is used to treat naïve C2C12 cell lines. Physiactisome activates the expression of PGC-1α isoform 1, which is directly involved in mitochondrial biogenesis and muscle atrophy suppression, in naïve C2C12 cell lines. Proteomic analyses show Hsp60 localisation inside isolated nanovesicles and the localisation of several apocrine and merocrine molecules, with potential benefits for severe forms of muscle atrophy. Considering that Physiactisome can be easily obtained following tissue biopsy and can be applied to autologous muscle stem cells, we propose a potential nanovesicle-based anti-cachexia drug that could mimic the beneficial effects of exercise. Thus, Physiactisome may improve patient survival and quality of life. Furthermore, the method used to add Hsp60 into nanovesicles can be used to deliver other drugs or active proteins to vesicles. Full article
Show Figures

Graphical abstract

18 pages, 3897 KiB  
Article
Methamphetamine Induces the Release of Proadhesive Extracellular Vesicles and Promotes Syncytia Formation: A Potential Role in HIV-1 Neuropathogenesis
by Subhash Chand, Catherine DeMarino, Austin Gowen, Maria Cowen, Sarah Al-Sharif, Fatah Kashanchi and Sowmya V. Yelamanchili
Viruses 2022, 14(3), 550; https://doi.org/10.3390/v14030550 - 7 Mar 2022
Cited by 8 | Viewed by 4268
Abstract
Despite the success of combinational antiretroviral therapy (cART), the high pervasiveness of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) poses a significant challenge for society. Methamphetamine (meth) and related amphetamine compounds, which are potent psychostimulants, are among the most commonly used illicit drugs. [...] Read more.
Despite the success of combinational antiretroviral therapy (cART), the high pervasiveness of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) poses a significant challenge for society. Methamphetamine (meth) and related amphetamine compounds, which are potent psychostimulants, are among the most commonly used illicit drugs. Intriguingly, HIV-infected individuals who are meth users have a comparatively higher rate of neuropsychological impairment and exhibit a higher viral load in the brain than infected individuals who do not abuse meth. Effectively, all cell types secrete nano-sized lipid membrane vesicles, referred to as extracellular vesicles (EVs) that can function as intercellular communication to modulate the physiology and pathology of the cells. This study shows that meth treatments on chronically HIV-infected promonocytic U1 cells induce the release of EVs that promote cellular clustering and syncytia formation, a phenomenon that facilitates HIV pathogenesis. Our analysis also revealed that meth exposure increased intercellular adhesion molecule-1 (ICAM-1) and HIV-Nef protein expression in both large (10 K) and small (100 K) EVs. Further, when meth EVs are applied to uninfected naïve monocyte-derived macrophages (MDMs), we saw a significant increase in cell clustering and syncytia formation. Furthermore, treatment of MDMs with antibodies against ICAM-1 and its receptor, lymphocyte function-associated antigen 1 (LFA1), substantially blocked syncytia formation, and consequently reduced the number of multinucleated cells. In summary, our findings reveal that meth exacerbates HIV pathogenesis in the brain through release of proadhesive EVs, promoting syncytia formation and thereby aiding in the progression of HIV infection in uninfected cells. Full article
(This article belongs to the Special Issue Viruses and Extracellular Vesicles 2.0)
Show Figures

Figure 1

18 pages, 3717 KiB  
Article
Vesicular MicroRNA as Potential Biomarkers of Viral Rebound
by Wilfried Wenceslas Bazié, Julien Boucher, Isidore Tiandiogo Traoré, Dramane Kania, Diane Yirgnur Somé, Michel Alary and Caroline Gilbert
Cells 2022, 11(5), 859; https://doi.org/10.3390/cells11050859 - 2 Mar 2022
Cited by 12 | Viewed by 2761
Abstract
Changes in the cellular microRNA (miRNA) expression profile in response to HIV infection, replication or latency have been reported. Nevertheless, little is known concerning the abundance of miRNA in extracellular vesicles (EVs). In the search for a reliable predictor of viral rebound, we [...] Read more.
Changes in the cellular microRNA (miRNA) expression profile in response to HIV infection, replication or latency have been reported. Nevertheless, little is known concerning the abundance of miRNA in extracellular vesicles (EVs). In the search for a reliable predictor of viral rebound, we quantified the amount of miR-29a, miR-146a, and miR-155 in two types of plasma extracellular vesicles. Venous blood was collected from 235 ART-treated and ART-naive persons living with HIV (85 with ongoing viral replication, ≥20 copies/mL) and 60 HIV-negative participants at five HIV testing or treatment centers in Burkina Faso. Large and small plasma EVs were purified and counted, and mature miRNA miR-29a, miR-146a, and miR-155 were measured by RT-qPCR. Diagnostic performance of miRNA levels in large and small EVs was evaluated by a receiver operating characteristic curve analysis. The median duration of HIV infection was 36 months (IQR 14–117). The median duration of ART was 34 months (IQR 13–85). The virus was undetectable in 63.8% of these persons. In the others, viral load ranged from 108 to 33,978 copies/mL (median = 30,032). Large EVs were more abundant in viremic participants than aviremic. All three miRNAs were significantly more abundant in small EVs in persons with detectable HIV RNA, and their expression levels in copies per vesicle were a more reliable indicator of viral replication in ART-treated patients with low viremia (20–1000 copies/mL). HIV replication increased the production of large EVs more than small EVs. Combined with viral load measurement, quantifying EV-associated miRNA abundance relative to the number of vesicles provides a more reliable marker of the viral status. The expression level as copies per small vesicle could predict the viral rebound in ART-treated patients with undetectable viral loads. Full article
(This article belongs to the Special Issue Extracellular Vesicle Subpopulations in Inflammation)
Show Figures

Figure 1

18 pages, 3575 KiB  
Article
Surface Marker Expression in Small and Medium/Large Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Naive or Apoptotic Condition Using Orthogonal Techniques
by Renata Skovronova, Cristina Grange, Veronica Dimuccio, Maria Chiara Deregibus, Giovanni Camussi and Benedetta Bussolati
Cells 2021, 10(11), 2948; https://doi.org/10.3390/cells10112948 - 29 Oct 2021
Cited by 37 | Viewed by 7347
Abstract
Extracellular vesicles released by mesenchymal stromal cells (MSC-EVs) are a promising resource for regenerative medicine. Small MSC-EVs represent the active EV fraction. A bulk analysis was applied to characterise MSC-EVs’ identity and purity, with the assessment of single EV morphology, size and integrity [...] Read more.
Extracellular vesicles released by mesenchymal stromal cells (MSC-EVs) are a promising resource for regenerative medicine. Small MSC-EVs represent the active EV fraction. A bulk analysis was applied to characterise MSC-EVs’ identity and purity, with the assessment of single EV morphology, size and integrity using electron microscopy. We applied different methods to quantitatively analyse the size and surface marker expression in medium/large and small fractions, namely 10k and 100k fractions, of MSC-EVs obtained using sequential ultracentrifugation. Bone marrow, adipose tissue and umbilical cord MSC-EVs were compared in naive and apoptotic conditions. As detected by electron microscopy, the 100k EV size < 100 nm was confirmed by super-resolution microscopy and ExoView. Single-vesicle imaging using super-resolution microscopy revealed heterogeneous patterns of tetraspanins. ExoView allowed a comparative screening of single MSC-EV tetraspanin and mesenchymal markers. A semiquantitative bead-based cytofluorimetric analysis showed the segregation of immunological and pro-coagulative markers on the 10k MSC-EVs. Apoptotic MSC-EVs were released in higher numbers, without significant differences in the naive fractions in surface marker expression. These results show a consistent profile of MSC-EV fractions among the different sources and a safer profile of the 100k MSC-EV population for clinical application. Our study identified suitable applications for EV analytical techniques. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cell-Derived Extracellular Vesicles)
Show Figures

Figure 1

18 pages, 3158 KiB  
Article
Endothelial-Derived Extracellular Vesicles Induce Cerebrovascular Dysfunction in Inflammation
by David Roig-Carles, Eduard Willms, Ruud D. Fontijn, Sarai Martinez-Pacheco, Imre Mäger, Helga E. de Vries, Mark Hirst, Basil Sharrack, David K. Male, Cheryl A. Hawkes and Ignacio A. Romero
Pharmaceutics 2021, 13(9), 1525; https://doi.org/10.3390/pharmaceutics13091525 - 21 Sep 2021
Cited by 25 | Viewed by 4764
Abstract
Blood–brain barrier (BBB) dysfunction is a key hallmark in the pathology of many neuroinflammatory disorders. Extracellular vesicles (EVs) are lipid membrane-enclosed carriers of molecular cargo that are involved in cell-to-cell communication. Circulating endothelial EVs are increased in the plasma of patients with neurological [...] Read more.
Blood–brain barrier (BBB) dysfunction is a key hallmark in the pathology of many neuroinflammatory disorders. Extracellular vesicles (EVs) are lipid membrane-enclosed carriers of molecular cargo that are involved in cell-to-cell communication. Circulating endothelial EVs are increased in the plasma of patients with neurological disorders, and immune cell-derived EVs are known to modulate cerebrovascular functions. However, little is known about whether brain endothelial cell (BEC)-derived EVs themselves contribute to BBB dysfunction. Human cerebral microvascular cells (hCMEC/D3) were treated with TNFα and IFNy, and the EVs were isolated and characterised. The effect of EVs on BBB transendothelial resistance (TEER) and leukocyte adhesion in hCMEC/D3 cells was measured by electric substrate cell-substrate impedance sensing and the flow-based T-cell adhesion assay. EV-induced molecular changes in recipient hCMEC/D3 cells were analysed by RT-qPCR and Western blotting. A stimulation of naïve hCMEC/D3 cells with small EVs (sEVs) reduced the TEER and increased the shear-resistant T-cell adhesion. The levels of microRNA-155, VCAM1 and ICAM1 were increased in sEV-treated hCMEC/D3 cells. Blocking the expression of VCAM1, but not of ICAM1, prevented sEV-mediated T-cell adhesion to brain endothelia. These results suggest that sEVs derived from inflamed BECs promote cerebrovascular dysfunction. These findings may provide new insights into the mechanisms involving neuroinflammatory disorders. Full article
(This article belongs to the Special Issue Biological Barriers in Health and Disease)
Show Figures

Figure 1

14 pages, 1813 KiB  
Article
Immunomodulatory Properties of Umbilical Cord Blood-Derived Small Extracellular Vesicles and Their Therapeutic Potential for Inflammatory Skin Disorders
by Sílvia C. Rodrigues, Renato M. S. Cardoso, Patricia C. Freire, Cláudia F. Gomes, Filipe V. Duarte, Ricardo Pires das Neves and Joana Simões-Correia
Int. J. Mol. Sci. 2021, 22(18), 9797; https://doi.org/10.3390/ijms22189797 - 10 Sep 2021
Cited by 28 | Viewed by 4231
Abstract
Umbilical cord blood (UCB) has long been seen as a rich source of naïve cells with strong regenerative potential, likely mediated by paracrine signals. More recently, small extracellular vesicles (sEV), such as exosomes, have been shown to play essential roles in cell-to-cell communication, [...] Read more.
Umbilical cord blood (UCB) has long been seen as a rich source of naïve cells with strong regenerative potential, likely mediated by paracrine signals. More recently, small extracellular vesicles (sEV), such as exosomes, have been shown to play essential roles in cell-to-cell communication, via the transport of numerous molecules, including small RNAs. Often explored for their potential as biomarkers, sEV are now known to have regenerative and immunomodulating characteristics, particularly if isolated from stem cell-rich tissues. In this study, we aim to characterize the immunomodulating properties of umbilical cord blood mononuclear cell-derived sEV (UCB-MNC-sEV) and explore their therapeutic potential for inflammatory skin diseases. UCB-MNC-sEV were shown to shift macrophages toward an anti-inflammatory phenotype, which in turn exert paracrine effects on fibroblasts, despite previous inflammatory stimuli. Additionally, the incubation of PBMC with UCB-MNC-sEV resulted in a reduction of total CD4+ and CD8+ T-cell proliferation and cytokine release, while specifically supporting the development of regulatory T-cells (Treg), by influencing FOXP3 expression. In a 3D model of psoriatic skin, UCB-MNC-sEV reduced the expression of inflammatory and psoriatic markers IL6, IL8, CXCL10, COX2, S100A7, and DEFB4. In vivo, UCB-MNC-sEV significantly prevented or reversed acanthosis in imiquimod-induced psoriasis, and tendentially increased the number of Treg in skin, without having an overall impact on disease burden. This work provides evidence for the anti-inflammatory and tolerogenic effect of UCB-MNC-sEV, which may be harnessed for the treatment of Th17-driven inflammatory skin diseases, such as psoriasis. Full article
(This article belongs to the Special Issue Stem Cell Activation in Adult Organism 2.0)
Show Figures

Figure 1

16 pages, 1814 KiB  
Article
Small Extracellular Vesicles in Pre-Therapy Plasma Predict Clinical Outcome in Non-Small-Cell Lung Cancer Patients
by Eleni-Kyriaki Vetsika, Priyanka Sharma, Ioannis Samaras, Alexandra Markou, Vassilis Georgoulias, Theresa L. Whiteside and Athanasios Kotsakis
Cancers 2021, 13(9), 2041; https://doi.org/10.3390/cancers13092041 - 23 Apr 2021
Cited by 14 | Viewed by 3296
Abstract
The potential use of plasma-derived small extracellular vesicles (sEV) as predictors of response to therapy and clinical outcome in chemotherapy-naïve patients with non-small-cell lung cancer (NSCLC) was explored. sEV were isolated by size-exclusion chromatography from the plasma of 79 chemotherapy-naïve NSCLC patients and [...] Read more.
The potential use of plasma-derived small extracellular vesicles (sEV) as predictors of response to therapy and clinical outcome in chemotherapy-naïve patients with non-small-cell lung cancer (NSCLC) was explored. sEV were isolated by size-exclusion chromatography from the plasma of 79 chemotherapy-naïve NSCLC patients and 12 healthy donors (HD). sEV were characterized with regard to protein content, particle size, counts by qNano, morphology by transmission electron microscopy, and molecular profiles by Western blots. PD-1 and PD-L1 expression on circulating immune cells was analysed by flow cytometry. Pre-treatment levels of total sEV protein (TEP) were correlated with overall (OS) and progression-free survival (PFS). The sEV numbers and protein levels were significantly elevated in the plasma of NSCLC patients compared to HD (p = 0.009 and 0.0001, respectively). Baseline TEP levels were higher in patients who developed progressive disease compared to patients with stable disease (p = 0.007 and 0.001, stage III and IV, respectively). Patient-derived sEV were enriched in immunosuppressive proteins as compared to proteins carried by sEV from HD. TEP levels were positively correlated with CD8+PD-1+ and CD8+PD-L1+ circulating T cell percentages and were independently associated with poorer PFS (p < 0.00001) and OS (p < 0.00001). Pre-therapy sEV could be useful as non-invasive biomarkers of response to therapy and clinical outcome in NSCLC. Full article
Show Figures

Figure 1

Back to TopTop