Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (940)

Search Parameters:
Keywords = mycelial growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 (registering DOI) - 5 Aug 2025
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

14 pages, 1981 KiB  
Article
Baseline Sensitivity of Leptosphaeria maculans to Succinate Dehydrogenase Inhibitor (SDHI) Fungicides and Development of Molecular Markers for Future Monitoring
by Alec J. McCallum, Alexander Idnurm and Angela P. Van de Wouw
Agriculture 2025, 15(15), 1591; https://doi.org/10.3390/agriculture15151591 - 24 Jul 2025
Viewed by 273
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used in Australia for the control of blackleg disease (caused by Leptosphaeria maculans, also called Plenodomus lingam). Populations of L. maculans are highly variable and therefore at risk of evolving fungicide resistance. The baseline [...] Read more.
Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used in Australia for the control of blackleg disease (caused by Leptosphaeria maculans, also called Plenodomus lingam). Populations of L. maculans are highly variable and therefore at risk of evolving fungicide resistance. The baseline sensitivities of L. maculans isolates towards the SDHI fungicides pydiflumetofen and bixafen were determined through in vitro mycelial growth assays, and the mean EC50s were found to be 4.89 and 2.71 ng mL−1, respectively. L. maculans populations were also screened against three commercial SDHI fungicides, Saltro®, ILeVO®, and Aviator®, using an in planta assay to reveal very low levels of resistance. Nineteen of these ascospore populations from 2022 were analysed in a deep amplicon sequencing (DAS) assay and showed no mutations in the genes likely to be associated with resistance to SDHI chemistries. This study establishes baseline sensitivities of L. maculans isolates towards commonly used SDHI fungicides, importantly before and during the introduction of these new chemistries for blackleg control, and outlines monitoring techniques to allow timely identification of resistance if it evolves. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

15 pages, 2168 KiB  
Article
Utilization of Giant Mimosa Stalk to Produce Effective Stick Spawn for Reducing Inoculum Costs in Economic Mushroom Farming Systems
by Orlavanh Xayyavong, Worawoot Aiduang, Kritsana Jatuwong and Saisamorn Lumyong
Agriculture 2025, 15(15), 1584; https://doi.org/10.3390/agriculture15151584 - 23 Jul 2025
Viewed by 256
Abstract
The high cost of mushroom spawn remains a critical constraint to economically viable mushroom cultivation, particularly for small-scale farmers. This study investigated four spawn types, including stick (giant mimosa stalks, GMS), sawdust, sorghum, and liquid culture as inoculum sources for 10 edible mushroom [...] Read more.
The high cost of mushroom spawn remains a critical constraint to economically viable mushroom cultivation, particularly for small-scale farmers. This study investigated four spawn types, including stick (giant mimosa stalks, GMS), sawdust, sorghum, and liquid culture as inoculum sources for 10 edible mushroom species. The results indicated that GMS stick spawn provides excellent conditions for the mycelial growth of seven species, outperforming other spawn types in terms of colonization rate and pinhead formation. Mushrooms grown on GMS substrate demonstrated rapid development, with full colonization occurring within 11 to 26 days and pinhead initiation between 18 and 47 days, depending on the species. Among the mushroom species tested, Schizophyllum commune exhibited the fastest growth, reaching full colonization in 11 days and forming pinheads after 18 days of inoculation. In comparison, Auricularia polytricha showed the slowest development. Economically, GMS spawn was the most cost-effective at 0.074 USD per unit, significantly lower than sawdust (0.24 USD), sorghum (0.29 USD), and potato dextrose broth (PDB; 2.80 USD). The conversion from PDB with GMS could reduce industrial inoculum costs from 35,000 USD to 600 USD annually. These findings demonstrate the potential of GMS as an effective, low-cost, and sustainable spawn option that can enhance mycelial growth and support eco-friendly farming practices. Full article
Show Figures

Figure 1

14 pages, 696 KiB  
Article
Modeling Temperature Requirements for Growth and Toxin Production of Alternaria spp. Associated with Tomato
by Irene Salotti, Paola Giorni, Chiara Dall’Asta and Paola Battilani
Toxins 2025, 17(8), 361; https://doi.org/10.3390/toxins17080361 - 23 Jul 2025
Viewed by 238
Abstract
Concerns about mycotoxin contamination by Alternaria spp. in tomato-based products emphasize the need for understanding the effect of the environment on their production. In the current study, we focused on three species frequently associated with tomato (A. alternata, A. solani, [...] Read more.
Concerns about mycotoxin contamination by Alternaria spp. in tomato-based products emphasize the need for understanding the effect of the environment on their production. In the current study, we focused on three species frequently associated with tomato (A. alternata, A. solani, and A. tenuissima) by evaluating the effects of different temperatures (5 to 40 °C) and substrata (PDA and V8) on mycelial growth and the production of mycotoxins (alternariol, alternariol monomethyl ether, and tenuazonic acid). Both biological processes were supported between 5 and 35 °C, with optimal temperatures between 20 and 30 °C, depending on the species. Temperature and its interaction with species significantly (p < 0.05) affected both processes. However, the species factor alone was not significant (p > 0.05), indicating that environmental conditions affect Alternaria spp. growth and mycotoxin production more than the species itself does. Mathematical equations were developed to describe the effect of temperature on mycelial growth, as well as on the production of AOH, AME, and TeA, for each Alternaria species. High concordance (CCC ≥ 0.807) between observed and predicted data and low levels of residual error (RMSE ≤ 0.147) indicated the high goodness of fit of the developed equations, which may be used for the development of models to predict Alternaria contamination both in field and during post-harvest storage. Full article
(This article belongs to the Special Issue Mycotoxins in Food Safety: Challenges and Biocontrol Strategies)
Show Figures

Figure 1

16 pages, 6389 KiB  
Article
Biocontrol Potential of Rhizosphere Bacteria Against Fusarium Root Rot in Cowpea: Suppression of Mycelial Growth and Conidial Germination
by Qinghua Zhu, Yixuan Ma, Tong Zhang, Weirong Liu, Songbai Zhang, Yue Chen, Di Peng and Xin Zhang
Biology 2025, 14(8), 921; https://doi.org/10.3390/biology14080921 - 23 Jul 2025
Viewed by 269
Abstract
The cultivation of cowpea (Vigna unguiculata), a vital vegetable crop, faces significant threats from Fusarium spp.-induced root rot. In this study, three fungal pathogens (Fusarium falciforme HKFf, Fusarium incarnatum HKFi, and Fusarium oxysporum HKFo) were isolated from symptomatic cowpea plants, [...] Read more.
The cultivation of cowpea (Vigna unguiculata), a vital vegetable crop, faces significant threats from Fusarium spp.-induced root rot. In this study, three fungal pathogens (Fusarium falciforme HKFf, Fusarium incarnatum HKFi, and Fusarium oxysporum HKFo) were isolated from symptomatic cowpea plants, and we screened 90 rhizobacteria from healthy rhizospheres using six culture media. Among these pathogens, Priestia megaterium TSA-10E showed a notable suppression of F. oxysporum HKFo (63.21%), F. incarnatum HKFi (55.16%), and F. falciforme HKFf (50.93%). In addition, Bacillus cereus KB-6 inhibited the mycelial growth of F. incarnatum HKFi and F. oxysporum HKFo by 42.39% and 47.93%, respectively. Critically, cell-free filtrates from P. megaterium TSA-10E and B. cereus KB-6 cultures reduced conidial germination in F. oxysporum HKFo and F. incarnatum HKFi, highlighting their role in disrupting the early infection stages. In greenhouse trials, TSA-10E and KB-6 reduced disease severity by 48.7% and 40.4%, respectively, with treated plants maintaining healthy growth while untreated controls succumbed to wilting. Broad-spectrum assays revealed that B. subtilis TSA-6E and P. megaterium TSA-10E were potent antagonists against both economic and grain crop pathogens. These findings underscore the potential of rhizobacteria as sustainable biocontrol agents for managing root rot disease caused by Fusarium spp. in cowpea cultivation. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants (2nd Edition))
Show Figures

Figure 1

17 pages, 1310 KiB  
Article
Assessment of Suppressive Effects of Negative Air Ions on Fungal Growth, Sporulation and Airborne Viral Load
by Stefan Mijatović, Andrea Radalj, Andjelija Ilić, Marko Janković, Jelena Trajković, Stefan Djoković, Borko Gobeljić, Aleksandar Sovtić, Gordana Petrović, Miloš Kuzmanović, Jelena Antić Stanković, Predrag Kolarž and Irena Arandjelović
Atmosphere 2025, 16(8), 896; https://doi.org/10.3390/atmos16080896 - 22 Jul 2025
Viewed by 345
Abstract
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting [...] Read more.
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting both healthy individuals and the immunosuppressed alike. This study investigated the abundance and diversity of airborne fungal spores in both hospital and residential environments, using custom designed air samplers with or without the presence of negative air ions (NAIs) inside the sampler. The main purpose of investigation was the assessment of biological effects of NAIs on fungal spore viability, deposition, mycelial growth, and sporulation, as well as airborne viral load. The precise assessment of mentioned biological effects is otherwise difficult to carry out due to low concentrations of studied specimens; therefore, specially devised and designed, ion-bioaerosol interaction air samplers were used for prolonged collection of specimens of interest. The total fungal spore concentrations were quantified, and fungal isolates were identified using cultural and microscopic methods, complemented by MALDI-TOF mass spectrometry. Results indicated no significant difference in overall spore concentration between environments or treatments; however, presence of NAIs induced a delay in the sporulation process of Cladosporium herbarum, Aspergillus flavus, and Aspergillus niger within 72 h. These effects of NAIs are for the first time demonstrated in this work; most likely, they are mediated by oxidative stress mechanisms. A parallel experiment demonstrated a substantially reduced concentration of aerosolized equine herpesvirus 1 (EHV-1) DNA within 10–30 min of exposure to NAIs, with more than 98% genomic load reduction beyond natural decay. These new results on the NAIs interaction with a virus, as well as new findings regarding the fungal sporulation, resulted in part from a novel interaction setup designed for experiments with the bioaerosols. Our findings highlight the potential of NAIs as a possible approach for controlling fungal sporulation and reducing airborne viral particle quantities in indoor environments. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

15 pages, 2083 KiB  
Article
Identifying Key Pathogens and Effective Control Agents for Astragalus membranaceus var. mongholicus Root Rot
by Bo Zhang, Bingyan Xia, Chunyan Wang, Ouli Xiao, Tielin Wang, Haoran Zhao, Xiaofeng Dai, Jieyin Chen, Yonggang Wang and Zhiqiang Kong
J. Fungi 2025, 11(7), 544; https://doi.org/10.3390/jof11070544 - 21 Jul 2025
Viewed by 420
Abstract
Root rot is one of the most serious diseases affecting Astragalus membranaceus, significantly reducing its yield and quality. This study focused on root rot in Astragalus membranaceus var. mongholicus. Pathogenic fungi were isolated and identified. The pathogenicity of seven strains of [...] Read more.
Root rot is one of the most serious diseases affecting Astragalus membranaceus, significantly reducing its yield and quality. This study focused on root rot in Astragalus membranaceus var. mongholicus. Pathogenic fungi were isolated and identified. The pathogenicity of seven strains of pathogenic fungi was verified according to Koch’s postulates. The inhibitory effects of eight classic fungicides and nine strains of biocontrol agents on the pathogenic fungi were determined using the mycelial growth rate method. Through morphological and ITS phylogenetic analyses, strains CDF5, CDF6, and CDF7 were identified as Fusarium oxysporum, while strains CDF1, CDF2, CDF3, and CDF4 were identified as Fusarium solani. Indoor virulence tests showed that, among the eight tested fungicides, carbendazim exhibited the strongest inhibitory effect on the mycelial growth of both F. oxysporum and F. solani, with a half-maximal effective concentration (EC50) value of (0.44 ± 0.24) mg/mL, making it a highly promising chemical agent for the control of A. membranaceus var. mongholicus root rot. Among the nine biocontrol agents, KRS006 showed the best inhibitory effect against the seven pathogenic strains, with an inhibition rate ranging from 42.57% to 55.51%, and it can be considered a candidate strain for biological control. This study identified the biocontrol strain KRS006 and the chemical fungicide carbendazim as promising core agents for the biological and chemical control of A. membranaceus var. mongholicus root rot, respectively, providing a theoretical foundation for establishing a dual biocontrol–chemical control strategy. Based on the excellent performance of the biocontrol bacteria and fungicides in the pathogen control tests, future research should focus on field trials to verify the synergistic effect of this integrated control strategy and clarify the interaction mechanism between the antibacterial metabolites produced by the biocontrol bacteria KRS006 and carbendazim. Additionally, continuous monitoring of the evolution of Fusarium spp. resistance to carbendazim is critical to ensure the long-term sustainability of the integrated control system. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

15 pages, 4647 KiB  
Article
Adaptability and Sensitivity of Trichoderma spp. Isolates to Environmental Factors and Fungicides
by Allinny Luzia Alves Cavalcante, Andréia Mitsa Paiva Negreiros, Naama Jéssica de Assis Melo, Fernanda Jéssica Queiroz Santos, Carla Sonale Azevêdo Soares Silva, Pedro Sidarque Lima Pinto, Sabir Khan, Inês Maria Mendes Sales and Rui Sales Júnior
Microorganisms 2025, 13(7), 1689; https://doi.org/10.3390/microorganisms13071689 - 18 Jul 2025
Viewed by 367
Abstract
Biological control employs beneficial microorganisms to suppress phytopathogens and mitigate the incidence of associated plant diseases. This study investigated the in vitro development and survival of Trichoderma spp. isolates derived from commercial formulations under different temperatures, pH levels, and sodium chloride (NaCl) concentrations [...] Read more.
Biological control employs beneficial microorganisms to suppress phytopathogens and mitigate the incidence of associated plant diseases. This study investigated the in vitro development and survival of Trichoderma spp. isolates derived from commercial formulations under different temperatures, pH levels, and sodium chloride (NaCl) concentrations and with synthetic fungicides with distinct modes of action. Three isolates were analyzed: URM-5911 and TRA-0048 (T. asperellum) and TRL-0102 (T. longibrachiatum). The results revealed substantial variability among the isolates, with the optimal mycelial growth temperatures ranging from 24.56 to 29.42 °C. All the isolates exhibited broad tolerance to the tested pH (5–9) and salinity levels (250–1000 mM), with TRL-0102 demonstrating the highest salt resistance. The fungicide treatments negatively affected mycelial growth across all the isolates, with Azoxystrobin + Difenoconazole and Boscalid causing growth reductions of up to 50%. Notably, Boscalid enhanced conidial production more compared to the control (126.0% for URM-5911, 13.7% for TRA-0048, and 148.5% for TRL-0102) and decreased the percentage of inactive conidia to less than 10% in all the isolates. These results provide strategic information for the application of Trichoderma spp. in agricultural systems, supporting the selection of more adapted and suitable isolates for integrated disease management programs. Full article
(This article belongs to the Special Issue Interaction Between Microorganisms and Environment)
Show Figures

Figure 1

13 pages, 1829 KiB  
Article
The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea
by Vytautas Bunevičius, Armina Morkeliūnė, Justina Griauzdaitė, Alma Valiuškaitė and Neringa Rasiukevičiūtė
Agronomy 2025, 15(7), 1728; https://doi.org/10.3390/agronomy15071728 - 17 Jul 2025
Viewed by 358
Abstract
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental [...] Read more.
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental pollution, and adverse effects on human health. Also, due to the goals of the European Green Deal and the decreasing use of chemical pesticides, it has become essential to look for safer alternatives. The aim of this study was to investigate the inhibitory effect of plant extracts of clove (Syzygium aromaticum L.) and rosemary (Rosmarinus officinalis L.) against Colletotrichum acutatum and Botrytis cinerea plant pathogens and to evaluate fungal pathogens recovery after the exposure to the extract. The plant extracts (PEs) were obtained by subcritical CO2 extraction. The inhibitory effect of PEs was investigated in vitro at concentrations of 1200, 1600, 2000, 2400, 2800, and 3000 μL/L. Petri dishes were incubated at 25 ± 2 °C, and the mycelial growth of fungal pathogens was evaluated at 2, 4, and 7 days after inoculation (DAI). Reinoculation was then performed. The research showed that both plant extracts had an antifungal effect. However, clove PE was more effective. This allows us to say that plant-based measures can inhibit plant pathogens, but it is essential to determine the optimal concentrations and test them with different pathogens. Full article
Show Figures

Figure 1

18 pages, 3361 KiB  
Article
Mechanism Underlying Ganoderma lucidum Polysaccharide Biosynthesis Regulation by the β-1,3-Glucosyltransferase Gene gl20535
by Jingyun Liu, Mengmeng Xu, Mengye Shen, Junxun Li, Lei Chen, Zhenghua Gu, Guiyang Shi and Zhongyang Ding
J. Fungi 2025, 11(7), 532; https://doi.org/10.3390/jof11070532 - 17 Jul 2025
Viewed by 488
Abstract
Ganoderma lucidum polysaccharides (GLPs) are natural compounds with a broad spectrum of biological activities. β-1,3-glucosyltransferase (GL20535) plays an important role in polysaccharide synthesis by catalyzing the transfer of UDP-glucose to extend sugar chains, but its underlying mechanism remains unclear. In this study, [...] Read more.
Ganoderma lucidum polysaccharides (GLPs) are natural compounds with a broad spectrum of biological activities. β-1,3-glucosyltransferase (GL20535) plays an important role in polysaccharide synthesis by catalyzing the transfer of UDP-glucose to extend sugar chains, but its underlying mechanism remains unclear. In this study, the regulatory mechanism of GL20535 in polysaccharide synthesis was elucidated by overexpressing and silencing gl20535 in G. lucidum. Overexpression of gl20535 resulted in maximum increases of 18.08%, 79.04%, and 18.01% in intracellular polysaccharide (IPS), extracellular polysaccharide (EPS), and β-1,3-glucan contents, respectively. In contrast, silencing gl20535 resulted in maximum reductions of 16.97%, 30.20%, and 23.56% in IPS, EPS, and β-1,3-glucan contents, respectively. These phenomena in the overexpression strains were attributed to gl20535-mediated promotion of UDP-glucose synthesis in the sugar donor pathway and upregulation of the expression of glycoside hydrolase genes. The opposite trend was observed in the silenced strains. In mycelial growth studies, neither overexpression nor silencing of gl20535 affected biomass and cell wall thickness. Furthermore, the GL20535 isozyme gene gl24465 remained unaffected in gl20535-overexpressed strains but was upregulated in gl20535-silenced strains, suggesting a compensatory regulatory relationship. These findings reveal the regulatory role of GL20535 on gene expression in the GLPs synthesis pathway and deepen our understanding of GL20535 function in the polysaccharide network of edible and medicinal fungi. Full article
(This article belongs to the Special Issue Molecular Biology of Mushroom)
Show Figures

Figure 1

19 pages, 12207 KiB  
Case Report
Dermatophytoses Caused by Trichophyton indotineae: The First Case Reports in Malaysia and the Global Epidemiology (2018–2025)
by Yi Xian Er, Kin Fon Leong, Henry Boon Bee Foong, Anis Amirah Abdul Halim, Jing Shun Kok, Nan Jiun Yap, Yuong Chin Tan, Sun Tee Tay and Yvonne Ai-Lian Lim
J. Fungi 2025, 11(7), 523; https://doi.org/10.3390/jof11070523 - 15 Jul 2025
Viewed by 602
Abstract
Trichophyton indotineae is emerging globally from its origin in India, presenting with a terbinafine resistance and causing significant clinical burden. We report herein the first four confirmed cases of T. indotineae dermatophytoses in Malaysia, which were diagnosed based on the microscopic examination of [...] Read more.
Trichophyton indotineae is emerging globally from its origin in India, presenting with a terbinafine resistance and causing significant clinical burden. We report herein the first four confirmed cases of T. indotineae dermatophytoses in Malaysia, which were diagnosed based on the microscopic examination of skin scrapings using potassium hydroxide (KOH) wet mount, followed by confirmation via culture and Internal Transcribed Spacer (ITS1) sequencing. In contrast to conventional Trichophyton infections, T. indotineae dermatophytoses demonstrate extensive cutaneous involvement and marked inflammation with erythematous lesions. All cases exhibited a chronic course lasting more than three months, with evidence of person-to-person transmission. Although one patient reported a travel to Singapore, three had no recent travel history, suggesting possible local transmission. The isolates produced characteristic white, cottony colonies with radial mycelial growth on Mycosel agar after incubation at 30 °C for four days. Three patients responded well to oral itraconazole (200 mg daily), with reduced inflammation and erythematous lesions observed two weeks after treatment initiation. The occurrence of T. indotineae particularly among patients without a travel history, suggests a potential endemic establishment. This fungal pathogen warrants consideration in cases of extensive or recalcitrant dermatophytoses. Further investigations into the diagnostic methods, antifungal susceptibility profiles, and epidemiological risk factors of Malaysian strains are warranted to enhance clinical management and inform public health interventions. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

13 pages, 3978 KiB  
Article
Agar–Agar Gels Carrying Curative and Preventive Agents Against Helminths: An In Vitro Compatibility Evaluation
by Izaro Zubiría, Inês Abreu, David Boso, Gustavo Pérez, Cristiana Cazapal, Rita Sánchez-Andrade, María Sol Arias, Adolfo Paz-Silva, José Ángel Hernández and Mercedes Camiña
Gels 2025, 11(7), 542; https://doi.org/10.3390/gels11070542 - 12 Jul 2025
Viewed by 262
Abstract
The global market size of animal parasiticides was valued at USD 12.9 billion in 2024. Animal deworming only results in temporary cures with little to no preventive effects; therefore, a strategy that combines animal deworming with prevention is essential in improving the control [...] Read more.
The global market size of animal parasiticides was valued at USD 12.9 billion in 2024. Animal deworming only results in temporary cures with little to no preventive effects; therefore, a strategy that combines animal deworming with prevention is essential in improving the control of helminths. The effectiveness of co-administrating curative and preventive agents and their compatibility were considered based on the parasitophagous fungus Mucor circinelloides, which was developed in edible agar–agar (red seaweed)-carrying dewormers. Accordingly, Petri dishes were prepared with either a biopolymer alone (control, G-C) or with the anthelmintic piperazine (550, 1102, 2210, and 5500 mg/plate) or levamisole (37.5, 75, 150, and 300 mg/plate) and were used to culture the fungus Mucor circinelloides. Strong fungal growth and high numbers of spores were observed in the presence of the anthelmintics. No differences were measured between the control plates and those containing parasiticide drugs. Similar mycelial growth patterns and sporogenesis rates were recorded for different amounts of each anthelmintic. In conclusion, this novel formulation based on biopolymers containing anthelmintics and enriched with the parasitophagous fungus represents a highly promising tool to consider for jointly deworming animals and minimizing the risks of helminth infection. Further studies are in progress to confirm these in vitro results. Full article
(This article belongs to the Special Issue Advances in Functional Hydrogels and Their Applications)
Show Figures

Figure 1

21 pages, 1434 KiB  
Article
Integrated Analysis of Olive Mill Wastewaters: Physicochemical Profiling, Antifungal Activity, and Biocontrol Potential Against Botryosphaeriaceae
by Elena Petrović, Karolina Vrandečić, Alen Albreht, Igor Gruntar, Nikola Major, Jasenka Ćosić, Zoran Užila, Smiljana Goreta Ban and Sara Godena
Horticulturae 2025, 11(7), 819; https://doi.org/10.3390/horticulturae11070819 - 10 Jul 2025
Viewed by 345
Abstract
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and [...] Read more.
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and Rosinjola) and assess its antifungal potential against phytopathogenic fungi from the Botryosphaeriaceae family. OMWW samples were analyzed for their physicochemical properties, phenolic composition via LC-MS/MS, and antifungal activity against Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not., Diplodia mutila (Fr.) Fr., D. seriata De Not., Dothiorella iberica A.J.L. Phillips, J. Luque & A. Alves, Do. sarmentorum (Fr.) A.J.L. Phillips, Alves & Luque, and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. Antifungal efficacy was tested at varying concentrations, alongside the phenolic compounds hydroxytyrosol and vanillic acid. Antifungal activity varied across fungal species and OMWW concentrations. Lower OMWW concentrations inhibited mycelial growth in some pathogens, while higher concentrations often had a stimulatory effect. Among the OMWW treatments, Leccino and Buža showed the most significant antifungal activity against species from the Botryosphaeriaceae family. The results demonstrated significant variability in OMWW composition, with Istarska bjelica exhibiting the highest concentrations of phenolic compounds, sugars, dry matter, and carbon and nitrogen content. The results also highlight the impact of acidification on the phenolic profile of OMWW. Treatment with HCl significantly altered the concentration of individual phenolic compounds, either enhancing their release or contributing to their degradation. Among the two compounds, vanillic acid showed greater efficacy than hydroxytyrosol. In addition, microorganisms isolated from OMWW, including Bacillus velezensis Ruiz-Garcia et al., Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison, Nakazawaea molendiniolei (N. Cadez, B. Turchetti & G. Peter) C. P. Kurtzman & C. J. Robnett, and Penicillium crustosum Thom, demonstrated antagonistic potential against fungal pathogens, with B. velezensis showing the strongest inhibitory effect. The greatest antagonistic effect against fungi was observed with the species Do. Iberica. The findings highlight the potential of OMWW as a sustainable alternative to chemical fungicides, simultaneously contributing to the management of waste and protection of plants through circular economy principles. Full article
(This article belongs to the Special Issue Driving Sustainable Agriculture Through Scientific Innovation)
Show Figures

Figure 1

16 pages, 3023 KiB  
Article
Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry
by Dheerawan Boonyawan, Hans Jørgen Lyngs Jørgensen and Salit Supakitthanakorn
Horticulturae 2025, 11(7), 818; https://doi.org/10.3390/horticulturae11070818 - 9 Jul 2025
Viewed by 327
Abstract
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge [...] Read more.
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge (DBD) for controlling R. stolonifer infection. Fungal mycelial discs were exposed to these plasmas for 10, 15 or 20 min, whereas conidial suspensions were treated for 1, 3, 5 or 7 min. Morphological alterations following non-thermal plasma exposure were studied using scanning electron microscopy (SEM). Exposure to GA and DBD plasmas for 20 min completely inhibited mycelial growth. SEM analysis revealed significant structural damage to the mycelium, sporangia and sporangiospores of treated samples compared to untreated controls. Complete inhibition of sporangiospore germination was achieved with treatments for at least 3 min for all NTPs. Pathogenicity assays on strawberry fruit showed that 15 min exposure to any of the tested NTPs completely prevented the development of soft rot disease. Importantly, NTP treatments did not adversely affect the external or internal characteristics of treated strawberries. These findings suggest that atmospheric non-thermal plasmas offer an effective approach for controlling R. stolonifer infection in strawberries, potentially providing a non-chemical alternative for post-harvest disease management. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Graphical abstract

18 pages, 2307 KiB  
Article
In Vitro Sensitivity of Isolates of Neopestalotiopsis rosae, Causal Agent of Strawberry Crown Rot, to Usnic Acid
by Laura Castro-Rosalez, Antonio Juárez-Maldonado, Adalberto Benavides-Mendoza, Susana González-Morales, Elizabeth García-León, Angel Rebollar-Alviter and Fabián Pérez-Labrada
Horticulturae 2025, 11(7), 812; https://doi.org/10.3390/horticulturae11070812 - 9 Jul 2025
Viewed by 353
Abstract
Root and crown rot in strawberries caused by Neopestalotiopsis rosae (N. rosae) results in yield losses of approximately 70%. The main method of control is based on the application of fungicides; however, the excessive use of these products can induce resistance [...] Read more.
Root and crown rot in strawberries caused by Neopestalotiopsis rosae (N. rosae) results in yield losses of approximately 70%. The main method of control is based on the application of fungicides; however, the excessive use of these products can induce resistance by pathogens to the active ingredients. The use of secondary metabolites is an alternative to disease management. Usnic acid (UA), a secondary metabolite produced by lichens, has shown antimicrobial and antifungal activities that could be useful for the management of phytopathogens, particularly the (+) enantiomer. To provide alternatives to fungicides, the potential of UA as an alternative for N. rosae management was evaluated under in vitro and in vivo conditions. Using the “poisoned medium” technique, concentrations of 0 (UA0), 100 (UA1), 200 (UA2), and 400 (UA4) µg/mL UA at a dose of 2.5 mL/L PDA were evaluated on N. rosae mycelial growth and the number of spores. The UA at 400 µg/mL exhibited a fungistatic effect, reducing the mycelial growth of isolates of N. rosae in 50–60%. In the in vivo assay, sprayed UA (400 µg/mL) reduced hydrogen peroxide (48.59%) and malonaldehyde (77.62%) contents in “Albion” strawberry seedlings inoculated with 466 and FREC2 strains, respectively. These findings suggest that UA could be a potential tool for N. rosae management and could help mitigate the oxidative stress induced by infection. However, field trials are required to evaluate and validate this response. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Graphical abstract

Back to TopTop