Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (305)

Search Parameters:
Keywords = musculoskeletal load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1391 KiB  
Article
Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls
by Xiaoyu Jian, Dong Sun, Yufan Xu, Chengyuan Zhu, Xuanzhen Cen, Yang Song, Gusztáv Fekete, Danica Janicijevic, Monèm Jemni and Yaodong Gu
Sensors 2025, 25(15), 4814; https://doi.org/10.3390/s25154814 - 5 Aug 2025
Abstract
Genu valgum (GV) is a common lower limb deformity that may increase the risk of anterior cruciate ligament (ACL) injury. This study used OpenSim musculoskeletal modeling and kinematic analysis to investigate the mechanical responses of the ACL under fatigue in females with GV. [...] Read more.
Genu valgum (GV) is a common lower limb deformity that may increase the risk of anterior cruciate ligament (ACL) injury. This study used OpenSim musculoskeletal modeling and kinematic analysis to investigate the mechanical responses of the ACL under fatigue in females with GV. Eight females with GV and eight healthy controls completed a running-induced fatigue protocol. Lower limb kinematic and kinetic data were collected and used to simulate stress and strain in the anteromedial ACL (A–ACL) and posterolateral ACL (P–ACL) bundles, as well as peak joint angles and knee joint stiffness. The results showed a significant interaction effect between group and fatigue condition on A–ACL stress. In the GV group, A–ACL stress was significantly higher than in the healthy group both before and after fatigue (p < 0.001) and further increased following fatigue (p < 0.001). In the pre-fatigued state, A–ACL strain was significantly higher during the late stance phase in the GV group (p = 0.036), while P–ACL strain significantly decreased post-fatigue (p = 0.005). Additionally, post-fatigue peak hip extension and knee flexion angles, as well as pre-fatigue knee abduction angles, showed significant differences between groups. Fatigue also led to substantial changes in knee flexion, adduction, abduction, and hip/knee external rotation angles within the GV group. Notably, knee joint stiffness in this group was significantly lower than in controls and decreased further post-fatigue. These findings suggest that the structural characteristics of GV, combined with exercise-induced fatigue, exacerbate A–ACL loading and compromise knee joint stability, indicating a higher risk of ACL injury in fatigued females with GV. Full article
(This article belongs to the Special Issue Sensors for Human Posture and Movement)
Show Figures

Figure 1

18 pages, 2976 KiB  
Article
Biomechanical Modeling and Simulation of the Knee Joint: Integration of AnyBody and Abaqus
by Catarina Rocha, João Lobo, Marco Parente and Dulce Oliveira
Biomechanics 2025, 5(3), 57; https://doi.org/10.3390/biomechanics5030057 - 2 Aug 2025
Viewed by 196
Abstract
Background: The knee joint performs a vital function in human movement, supporting significant loads and ensuring stability during daily activities. Methods: The objective of this study was to develop and validate a subject-specific framework to model knee flexion–extension by integrating 3D gait data [...] Read more.
Background: The knee joint performs a vital function in human movement, supporting significant loads and ensuring stability during daily activities. Methods: The objective of this study was to develop and validate a subject-specific framework to model knee flexion–extension by integrating 3D gait data with individualized musculoskeletal (MS) and finite element (FE) models. In this proof of concept, gait data were collected from a 52-year-old woman using Xsens inertial sensors. The MS model was based on the same subject to define realistic loading, while the 3D knee FE model, built from another individual’s MRI, included all major anatomical structures, as subject-specific morphing was not possible due to unavailable scans. Results: The FE simulation showed principal stresses from –28.67 to +44.95 MPa, with compressive stresses between 2 and 8 MPa predominating in the tibial plateaus, consistent with normal gait. In the ACL, peak stress of 1.45 MPa occurred near the femoral insertion, decreasing non-uniformly with a compressive dip around –3.0 MPa. Displacement reached 0.99 mm in the distal tibia and decreased proximally. ACL displacement ranged from 0.45 to 0.80 mm, following a non-linear pattern likely due to ligament geometry and local constraints. Conclusions: These results support the model’s ability to replicate realistic, patient-specific joint mechanics. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

12 pages, 548 KiB  
Article
The Role of Postural Assessment, Therapeutic Exercise and Foot Orthoses in Haemophilic Arthropathy: A Pilot Study
by Dalila Scaturro, Sofia Tomasello, Vincenzo Caruso, Isabella Picone, Antonio Ammendolia, Alessandro de Sire and Giulia Letizia Mauro
Life 2025, 15(8), 1217; https://doi.org/10.3390/life15081217 - 1 Aug 2025
Viewed by 241
Abstract
Haemophilic arthropathy is caused by repeated joint bleeding episodes, primarily affecting knees, ankles and elbows. Conservative options should be considered prior to surgery, as well as postural evaluation, since any functional overload promotes the development of new bleeding. The aim of this study [...] Read more.
Haemophilic arthropathy is caused by repeated joint bleeding episodes, primarily affecting knees, ankles and elbows. Conservative options should be considered prior to surgery, as well as postural evaluation, since any functional overload promotes the development of new bleeding. The aim of this study is to verify the use of foot orthoses in combination with postural rehabilitation, assessing the incidence of spontaneous haemarthroses and haematomas. In total, 15 patients were enrolled and randomly divided into two groups: 8 in group A, composed of patients who were prescribed foot orthoses and a 20-session rehabilitation program, and 7 in group B, composed of patients who were instructed to use foot orthoses only. All patients were evaluated at baseline (T0), at 3 months (T1—end of the rehabilitation program), and at 12 months (T2), using the following scales: Functional Independence Score in Haemophilia (FISH), Haemophilia Joint Health Score (HJHS) and Numerical Rating Scale (NRS). During the 12 months between the first and the last assessment, no patient in group A developed hemarthroses or hematomas, while one case of hemarthrosis was recorded in group B. The HJHS improved significantly (≤0.05) in group A at both T1 and T2, while in group B it improved significantly only in T2. As for FISH, it showed significant improvements in both groups at T1 and T2. NRS showed a significant reduction only at T2 in both groups (p-value T0–T1 0.3 in group A e 0.8 in group B). No patient reported any adverse effects from the use of orthotic insoles. The combination of postural rehabilitation, the use of foot orthoses and pharmacological prophylaxis could improve functioning and joint status in patients affected by haemophilic arthopathy, delaying or preventing new hemarthroses by improving the distribution of joint loads and the modification of musculoskeletal system’s characteristics. Full article
(This article belongs to the Special Issue Novel Therapeutics for Musculoskeletal Disorders)
Show Figures

Figure 1

14 pages, 596 KiB  
Article
The Impact of Parafunctional Habits on Temporomandibular Disorders in Medical Students
by Michał Zemowski, Yana Yushchenko and Aneta Wieczorek
J. Clin. Med. 2025, 14(15), 5301; https://doi.org/10.3390/jcm14155301 - 27 Jul 2025
Viewed by 322
Abstract
Background: Temporomandibular disorders (TMD) are common musculoskeletal conditions affecting the temporomandibular joints, masticatory muscles, and associated structures. Their etiology is complex and multifactorial, involving anatomical, behavioral, and psychosocial contributors. Parafunctional habits such as clenching, grinding, and abnormal jaw positioning have been proposed as [...] Read more.
Background: Temporomandibular disorders (TMD) are common musculoskeletal conditions affecting the temporomandibular joints, masticatory muscles, and associated structures. Their etiology is complex and multifactorial, involving anatomical, behavioral, and psychosocial contributors. Parafunctional habits such as clenching, grinding, and abnormal jaw positioning have been proposed as contributing factors, yet their individual and cumulative contributions remain unclear. This exploratory cross-sectional study aimed to evaluate the prevalence and severity of parafunctional habits and their association with TMD in medical students—a group exposed to elevated stress levels. Subjects were examined in Krakow, Poland, using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) protocol. Methods: Participants completed a 21-item Oral Behavior Checklist (OBC) assessing the frequency of oral behaviors on a 0–4 scale. A self-reported total parafunction load was calculated by summing individual item scores (range: 0–84). Logistic regression was used to evaluate associations between individual and total parafunction severity scores and TMD presence. Results: The study included 66 individuals aged 19–30. TMD was diagnosed in 55 participants (83.3%). The most commonly reported habits were resting the chin on the hand (90.9%) and sleeping in a jaw-compressing position (86.4%). Notably, jaw tension (OR = 14.5; p = 0.002) and daytime clenching (OR = 4.7; p = 0.027) showed significant associations with TMD in the tested population. Each additional point in the total parafunction score increased TMD odds by 13.6% (p = 0.004). Conclusions: These findings suggest that parafunctional behaviors—especially those involving chronic muscle tension or abnormal mandibular positioning—may meaningfully contribute to the risk of TMD in high-stress student populations. Moreover, the cumulative burden of multiple low-intensity habits was also significantly associated with increased TMD risk. Early screening for these behaviors may support prevention strategies, particularly among young adults exposed to elevated levels of stress. Full article
Show Figures

Figure 1

17 pages, 1909 KiB  
Article
Ergonomics Study of Musculoskeletal Disorders Among Tram Drivers
by Jasna Leder Horina, Jasna Blašković Zavada, Marko Slavulj and Damir Budimir
Appl. Sci. 2025, 15(15), 8348; https://doi.org/10.3390/app15158348 - 27 Jul 2025
Viewed by 336
Abstract
Work-related musculoskeletal disorders (WMSDs) are among the most prevalent occupational health issues, particularly affecting public transport drivers due to prolonged sitting, constrained postures, and poorly adaptable cabins. This study addresses the ergonomic risks associated with tram driving, aiming to evaluate biomechanical load and [...] Read more.
Work-related musculoskeletal disorders (WMSDs) are among the most prevalent occupational health issues, particularly affecting public transport drivers due to prolonged sitting, constrained postures, and poorly adaptable cabins. This study addresses the ergonomic risks associated with tram driving, aiming to evaluate biomechanical load and postural stress in relation to drivers’ anthropometric characteristics. A combined methodological approach was applied, integrating two standardized observational tools—RULA and REBA—with anthropometric modeling based on three representatives European morphotypes (SmallW, MidM, and TallM). ErgoFellow 3.0 software was used for digital posture evaluation, and lumbar moments at the L4/L5 vertebral level were calculated to estimate lumbar loading. The analysis was simulation-based, using digital human models, and no real subjects were involved. The results revealed uniform REBA (Rapid Entire Body Assessment) and RULA (Rapid Upper Limb Assessment) scores of 6 across all morphotypes, indicating moderate to high risk and a need for ergonomic intervention. Lumbar moments ranged from 51.35 Nm (SmallW) to 101.67 Nm (TallM), with the tallest model slightly exceeding the recommended ergonomic thresholds. These findings highlight a systemic mismatch between cabin design and user variability. In conclusion, ergonomic improvements such as adjustable seating, better control layout, and driver education are essential to reduce the risk of WMSDs. The study proposes a replicable methodology combining anthropometric, observational, and biomechanical tools for evaluating and improving transport workstation design. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

16 pages, 1817 KiB  
Article
Is Brazilian Jiu-Jitsu a Traumatic Sport? Survey on Italian Athletes’ Rehabilitation and Return to Sport
by Fabio Santacaterina, Christian Tamantini, Giuseppe Camarro, Sandra Miccinilli, Federica Bressi, Loredana Zollo, Silvia Sterzi and Marco Bravi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 286; https://doi.org/10.3390/jfmk10030286 - 25 Jul 2025
Viewed by 384
Abstract
Background: Brazilian Jiu-Jitsu (BJJ) is a physically demanding sport associated with a notable risk of musculoskeletal injuries. Understanding injury patterns, rehabilitation approaches, and psychological readiness to return to sport (RTS) is essential for prevention and management strategies. This study aimed to investigate injury [...] Read more.
Background: Brazilian Jiu-Jitsu (BJJ) is a physically demanding sport associated with a notable risk of musculoskeletal injuries. Understanding injury patterns, rehabilitation approaches, and psychological readiness to return to sport (RTS) is essential for prevention and management strategies. This study aimed to investigate injury characteristics among Italian BJJ athletes, assess their rehabilitation processes and psychological recovery, and identify key risk factors such as belt level, body mass index (BMI), and training load. Methods: A cross-sectional survey was conducted among members of the Italian BJJ community, including amateur and competitive athletes. A total of 360 participants completed a 36-item online questionnaire. Data collected included injury history, rehabilitation strategies, RTS timelines, and responses to the Injury-Psychological Readiness to Return to Sport (I-PRRS) scale. A Random Forest machine learning algorithm was used to identify and rank potential injury risk factors. Results: Of the 360 respondents, 331 (92%) reported at least one injury, predominantly occurring during training sessions. The knee was the most frequently injured joint, and the action “attempting to pass guard” was the most reported mechanism. Most athletes (65%) returned to training within one month. BMI and age emerged as the most significant predictors of injury risk. Psychological readiness scores indicated moderate confidence, with the lowest levels associated with playing without pain. Conclusions: Injuries in BJJ are common, particularly affecting the knee. Psychological readiness, especially confidence in training without pain, plays a critical role in RTS outcomes. Machine learning models may aid in identifying individual risk factors and guiding injury prevention strategies. Full article
(This article belongs to the Special Issue Understanding Sports-Related Health Issues, 2nd Edition)
Show Figures

Figure 1

24 pages, 4283 KiB  
Review
Review on Upper-Limb Exoskeletons
by André Pires, Filipe Neves dos Santos and Vítor Tinoco
Machines 2025, 13(8), 642; https://doi.org/10.3390/machines13080642 - 23 Jul 2025
Viewed by 297
Abstract
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the [...] Read more.
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the use of tools or heavy equipment. Such activities increase the probability of developing muscle fatigue or injuries due to overuse or improper posture. Over time, this can result in the development of chronic conditions, which may impair the individual’s ability to perform tasks effectively and potentially lead to long-term physical impairment. Exoskeletons play a transformative role by reducing the perceived load on the muscles and providing mechanical support, mitigating the risk of injuries and alleviating the physical burden associated with strenuous activities. In addition to injury prevention, these devices also promise to facilitate the rehabilitation of individuals who have sustained musculoskeletal injuries. This document examines the various types of exoskeletons, investigating their design, functionality, and applications. The objective of this study is to present a comprehensive understanding of the current state of these devices, highlighting advancements in the field and evaluating their real-world impact. Furthermore, it analyzes the crucial insights obtained by other researchers, and by summarizing these findings, this work aims to contribute to the ongoing efforts to enhance exoskeleton performance and expand their accessibility across different sectors, including agriculture, healthcare, industrial work, and beyond. Full article
(This article belongs to the Special Issue Design and Control of Assistive Robots)
Show Figures

Figure 1

27 pages, 1506 KiB  
Review
Parathyroid Hormone as a Modulator of Skeletal Muscle: Insights into Bone–Muscle and Nerve–Muscle Interactions
by Vinh-Lac Nguyen, Kwang-Bok Lee and Young Jae Moon
Int. J. Mol. Sci. 2025, 26(15), 7060; https://doi.org/10.3390/ijms26157060 - 22 Jul 2025
Viewed by 464
Abstract
Parathyroid hormone (PTH) has been studied to determine its broader role in musculoskeletal health, particularly its effects on skeletal muscle. Bone and muscle are inextricably linked via mechanical loading and biochemical signaling, with both processes playing important roles in muscular metabolism and function. [...] Read more.
Parathyroid hormone (PTH) has been studied to determine its broader role in musculoskeletal health, particularly its effects on skeletal muscle. Bone and muscle are inextricably linked via mechanical loading and biochemical signaling, with both processes playing important roles in muscular metabolism and function. Furthermore, the nervous system must maintain muscle mass and function, as neuromuscular transmission controls muscle contraction, protein synthesis, and energy metabolism. As a systemic endocrine regulator, PTH influences the physiology of skeletal muscle—both directly and through interactions with bone and the nervous system, modulating myokines, osteokines, and neuromuscular activity. The intricate relationships between PTH, muscle, bone, and nerves continue to be investigated due to their implications for aging, metabolic pathologies, and musculoskeletal disorders. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 1443 KiB  
Article
The Influence of School Backpack Load on Dynamic Gait Parameters in 7-Year-Old Boys and Girls
by Paulina Tomal, Anna Fryzowicz, Jarosław Kabaciński, Dominika Witt, Przemysław Lisiński and Lechosław B. Dworak
Sensors 2025, 25(13), 4219; https://doi.org/10.3390/s25134219 - 6 Jul 2025
Viewed by 489
Abstract
School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate [...] Read more.
School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate the impact of different backpack loads (10%, 15%, and 20% of body weight) on dynamic gait parameters in 7-year-old girls and boys. Twenty-six children (13 girls, 13 boys) participated in the study. Gait analysis was performed using the Footscan® system (RSscan International, Olen, Belgium; 2 m × 0.4 m × 0.02 m, 16,384 sensors) equipped with Footscan software version 7 (Gait 2nd generation), examining peak force (FMAX), peak pressure (PMAX), contact area (CA), and time to peak force (Time to FMAX) across five anatomical foot zones. The study revealed significant changes in all parameters, particularly at loads of 15% and 20% of body weight. Increases in plantar pressure, contact area, and asymmetry were observed, along with delays in time to peak force. These findings support the recommendation that children’s backpack loads should not exceed 10% of their body weight to prevent potential adverse effects on postural and musculoskeletal development. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

12 pages, 452 KiB  
Article
Analysis of Internal Training Load and Sports Injuries Incidence in Gymnasts of Different Exposure Levels
by Nicole Iasmim Minante da Silva, Zadriane Gasparetto, Sarita Mendonça Bacciotti, Rodolfo André Dellagrana, Gianfranco Sganzerla, Paula Felippe Martinez and Silvio Assis de Oliveira-Junior
Healthcare 2025, 13(13), 1536; https://doi.org/10.3390/healthcare13131536 - 27 Jun 2025
Viewed by 316
Abstract
Background/Objectives: Internal training load has been widely used to monitor training intensity and to prevent injuries in different sports. This study aimed to analyze the association between internal training parameters and sports injury incidence in gymnasts based on different training week exposure levels [...] Read more.
Background/Objectives: Internal training load has been widely used to monitor training intensity and to prevent injuries in different sports. This study aimed to analyze the association between internal training parameters and sports injury incidence in gymnasts based on different training week exposure levels during a sequential sports season. Methods: The participants consisted of 27 gymnasts, aged 8 to 17 years old, recruited into two gymnastics training centers. The subjects were allocated into two groups: medium exposure (ME) and low exposure (LE) athletes. The monitoring period totaled 28 weeks. A survey was conducted to monitor sports injury incidence. The Perceived Effort Scale and the Total Quality of Recovery were applied to monitor training load and recovery, respectively. Results: A total of 28 injury cases were reported, with a higher incidence (24) in the ME group than in the LE group. Furthermore, the ME group demonstrated a significant increase in the average weekly load, as well as higher values of monotony and strain compared to the LE group (p < 0.001). The acute: chronic workload ratio (ACWR) was lower in the ME than in the LE group in all training periods. The total quality recovery (TQR) exhibited a peak during the competitive training period in the ME group, whereas strain showed a direct effect on this result. Conclusions: Increased training load values were linked to the incidence of musculoskeletal injuries in gymnasts submitted to different training week exposure levels. Likewise, the high values of internal training load were shown to be related to impaired recovery during a competitive period within a 28-week follow-up. Full article
Show Figures

Figure 1

18 pages, 1615 KiB  
Article
Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements
by Benjamin A. Clegg, Samuel Perry, Enrico De Pieri, Anthony C. Redmond, Stephen J. Ferguson, David E. Lunn, Richard M. Hall, Michael G. Bryant, Nazanin Emami and Andrew R. Beadling
Bioengineering 2025, 12(6), 663; https://doi.org/10.3390/bioengineering12060663 - 16 Jun 2025
Viewed by 649
Abstract
The current pre-clinical testing standards for total hip replacements (THRs), ISO standards, use simplified loading waveforms that do not fully replicate real-world biomechanics. These standards provide a benchmark of data that may not accurately predict in vivo wear, necessitating the evaluation of physiologically [...] Read more.
The current pre-clinical testing standards for total hip replacements (THRs), ISO standards, use simplified loading waveforms that do not fully replicate real-world biomechanics. These standards provide a benchmark of data that may not accurately predict in vivo wear, necessitating the evaluation of physiologically relevant loading conditions. Previous studies have incorporated activities of daily living (ADLs) such as walking, jogging and stair negotiation into wear simulations. However, these studies primarily used simplified adaptations that increased axial forces and applied accelerated sinusoidal waveforms, rather than fully replicating the complex kinematics experienced by THR patients. To address this gap, this study applied patient-derived ADL profiles—jogging and stair negotiation—using a three-station hip simulator, obtained through 3D motion analysis of total hip arthroplasty patients, processed via a musculoskeletal multibody modelling approach to derive realistic hip contact forces (HCFs). The results indicate that jogging significantly increased wear rates compared to the ISO walking gait waveform, with wear increasing from 15.24 ± 0.55 to 28.68 ± 0.87 mm3/Mc. Additionally, wear was highly sensitive to changes in lubricant protein concentration, with an increase from 17 g/L to 30 g/L reducing wear by over 60%. Contrary to predictive models, stair descent resulted in higher volumetric wear (8.62 ± 0.43 mm3/0.5 Mc) compared to stair ascent (4.15 ± 0.31 mm3/0.5 Mc), despite both profiles having similar peak torques. These findings underscore the limitations of current ISO standards in replicating physiologically relevant wear patterns. The application of patient-specific loading profiles highlights the need to integrate ADLs into pre-clinical testing protocols, ensuring a more accurate assessment of implant performance and longevity. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Figure 1

20 pages, 548 KiB  
Review
Kinetic Variables as Indicators of Lower Limb Indirect Injury Risk in Professional Soccer: A Systematic Review
by Jorge Pérez-Contreras, Juan Francisco Loro-Ferrer, Felipe Inostroza-Ríos, Pablo Merino-Muñoz, Alejandro Bustamante Garrido, Felipe Hermosilla-Palma, Ciro José Brito, Guillermo Cortés-Roco, David Arriagada Tarifeño, Fernando Muñoz-Hinrichsen and Esteban Aedo-Muñoz
J. Funct. Morphol. Kinesiol. 2025, 10(2), 228; https://doi.org/10.3390/jfmk10020228 - 16 Jun 2025
Viewed by 756
Abstract
Background: The high demands of professional soccer predispose players to musculoskeletal injuries. The primary challenge for identifying potential risk factors lies in determining the appropriate assessment methods and indicators to consider. Kinetic variables have been identified as potential indicators of injury risk. Objectives: [...] Read more.
Background: The high demands of professional soccer predispose players to musculoskeletal injuries. The primary challenge for identifying potential risk factors lies in determining the appropriate assessment methods and indicators to consider. Kinetic variables have been identified as potential indicators of injury risk. Objectives: To conduct a systematic review of the literature analyzing the relationship between kinetic variables and the risk of indirect musculoskeletal injuries of the lower limb in professional soccer players. Methods: A search was conducted on Web of Science, PubMed, and Scopus following the PRISMA guidelines. The search included articles that link kinetic variables assessed through dynamometry to indirect lower limb injuries. Sample characteristics, assessments, injury follow-ups, and statistical results were extracted for qualitative synthesis. Results: A total of 1096 studies were initially identified, of which 380 duplicates were removed. After screening 716 articles by title and abstract, 631 were excluded. Subsequently, 85 full-text articles were examined, resulting in 11 studies being included. Of the included articles, 10 used isokinetic dynamometry and the Nordic hamstring curl test to assess lower limb strength. Conclusions: The results of this review indicate that kinetic variables, particularly isokinetic strength measures at different angular velocities, are consistently associated with indirect musculoskeletal injury risk in professional soccer players. The most relevant indicators include eccentric hamstring force and concentric quadriceps torque, which help identify strength deficits and muscular disequilibrium. Monitoring these variables through validated assessments enables the development of targeted prevention strategies. Additionally, injury risk assessment should integrate kinetic data with contextual indicators such as well-being, fatigue, and training load. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

11 pages, 275 KiB  
Article
Effects of a Specific Proprioceptive Training Program on Injury Prevention and Stress in Basketball Players: A Pilot Study
by Vincenzo Cristian Francavilla, Giuseppe Messina, Omar Mingrino, Maria Chiara Parisi and Donatella Di Corrado
J. Funct. Morphol. Kinesiol. 2025, 10(2), 226; https://doi.org/10.3390/jfmk10020226 - 12 Jun 2025
Viewed by 1022
Abstract
Background: Basketball carries a high risk of both chronic and acute musculoskeletal injuries, affecting various parts of the body. Additionally, stress is a critical factor that influences athletic performance, particularly in high-pressure sports like basketball. This study aimed to investigate the impact [...] Read more.
Background: Basketball carries a high risk of both chronic and acute musculoskeletal injuries, affecting various parts of the body. Additionally, stress is a critical factor that influences athletic performance, particularly in high-pressure sports like basketball. This study aimed to investigate the impact of a specific proprioceptive training protocol on professional basketball players. Methods: Thirty male basketball players (M = 21.93, SD = 3.75 years) were divided into two groups: an experimental group (n = 15) and a control group (n = 15). The experimental group completed an adapted proprioceptive training program designed to enhance position-specific skills, following their regular team training. The control group continued to follow their routine training program without any additional proprioceptive intervention. The parameters assessed included stress levels, longitudinal body axis alignment, spinal range of motion, and total plantar load distribution. These were measured at three time points: baseline (T0), after 4 weeks of training (T1), and after 8 weeks of training (T2). Results: Data analysis showed a significant reduction in stress (p < 0.001), postural alignment (p < 0.001), and spinal range of motion (p < 0.001) in the experimental group compared to the control group. Conclusions: In conclusion, the findings highlight the effectiveness of specific and detailed training programs in injury prevention, offering valuable insights for coaches and sports psychologists. Full article
(This article belongs to the Special Issue Mood and Emotion in Sport and Exercise Performance)
15 pages, 2729 KiB  
Article
Asymmetric Knee Joint Loading in Post-Stroke Gait: A Musculoskeletal Modeling Analysis of Medial and Lateral Compartment Forces
by Georgios Giarmatzis, Nikolaos Aggelousis, Marinos Marinidis, Styliani Fotiadou, Erasmia Giannakou, Evangelia Makri, Junshi Liu and Konstantinos Vadikolias
Biomechanics 2025, 5(2), 39; https://doi.org/10.3390/biomechanics5020039 - 11 Jun 2025
Viewed by 406
Abstract
Background/Objectives: Stroke survivors often develop asymmetric gait patterns that may lead to abnormal knee joint loading and potentially increased risk of osteoarthritis. This study aimed to investigate differences in knee joint loading between paretic and non-paretic limbs during walking in individuals post-stroke. Methods [...] Read more.
Background/Objectives: Stroke survivors often develop asymmetric gait patterns that may lead to abnormal knee joint loading and potentially increased risk of osteoarthritis. This study aimed to investigate differences in knee joint loading between paretic and non-paretic limbs during walking in individuals post-stroke. Methods: Twenty-one chronic stroke survivors underwent three-dimensional gait analysis. A modified musculoskeletal model with a specialized knee mechanism was used to estimate medial and lateral tibiofemoral contact forces during the stance phase. Statistical parametric mapping was used to identify significant differences in joint kinematics, kinetics, and contact forces between limbs. Stepwise regression analyses examined relationships between knee moments and compartmental contact forces. Results: Significant differences in knee loading were observed between limbs, with the non-paretic limb experiencing higher medial compartment forces during early stance (6.7–15.1%, p = 0.001; 21.9–30.7%, p = 0.001) and late stance (72.3–93.7%, p < 0.001), and higher lateral compartment forces were recorded during pre-swing (86.2–99.0%, p < 0.001). In the non-paretic limb, knee extensor moment was the primary predictor of first peak medial contact force (R2 = 0.573), while knee abductor moment was the primary predictor in the paretic limb (R2 = 0.559). Conclusions: Musculoskeletal modeling revealed distinct asymmetries in knee joint loading between paretic and non-paretic limbs post-stroke, with the non-paretic limb experiencing consistently higher loads, particularly during late stance. These findings suggest that rehabilitation strategies should address not only paretic limb function but also potentially harmful compensatory mechanisms in the non-paretic limb to prevent long-term joint degeneration. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

15 pages, 671 KiB  
Article
Predictors of Static Postural Loading in Primary-School-Aged Children: Comparing Elastic Net and Multiple Regression Methods
by Mohammad Ali Mohseni Bandpei, Reza Osqueizadeh, Hamidreza Goudarzi, Nahid Rahmani and Abbas Ebadi
Children 2025, 12(6), 744; https://doi.org/10.3390/children12060744 - 8 Jun 2025
Viewed by 470
Abstract
Background/Objectives: Adverse effects of a sedentary lifestyle on an individual’s overall health are inevitable. With reference to primary-school-aged children, the establishment of effective postural hygiene is critical as it not only promotes optimal musculoskeletal development but also significantly influences their long-term well-being and [...] Read more.
Background/Objectives: Adverse effects of a sedentary lifestyle on an individual’s overall health are inevitable. With reference to primary-school-aged children, the establishment of effective postural hygiene is critical as it not only promotes optimal musculoskeletal development but also significantly influences their long-term well-being and productivity. This study aimed to develop and internally validate a regularized regression model to predict static postural loading (SPL) in primary school children. Methods: The outcome and predictors of SPL were shortlisted through a systematic review of the literature and expert panels. Data were derived from 258 primary school children. We developed regularized elastic net (EN) and used multiple linear regression (MLR) as a reference. Both models were fitted through five-fold cross-validation with 10 iterations. The grid search technique was used to find the optimal combination of hyperparameters α and λ for the EN. We conducted a permutation importance analysis to obtain and compare predictor rankings for each model. Results: Both models presented a good and comparable fit, with the EN marginally outperforming the MLR in error metrics. Postural risk, sedentary behavior, task duration, and BMI were the most important predictors of SPL in primary school children. Conclusions: The proof of a direct impact of a sedentary lifestyle on children’s overall health is both credible and alarming. Hence, proper identification and management of contributing factors to static postural loading in this age group is critical. In various clinical settings, where the objective is to develop a model that accurately forecasts the outcome, advanced regularized regression methods have evidently shown great performance. Full article
Show Figures

Figure 1

Back to TopTop