Analysis of Internal Training Load and Sports Injuries Incidence in Gymnasts of Different Exposure Levels
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Characteristics
2.3. Design and Training Periodization
2.4. Sports Injuries Incidence
2.5. Training Load Monitoring
2.6. Recovery Monitoring
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trucharte, P.; Grande, I. Analysis and comparison of training load between two groups of women’s artistic gymnasts related to the perception of effort and the rating of the perceived effort session. Sci. Gymnast. J. 2021, 13, 19–33. [Google Scholar] [CrossRef]
- Boullosa, D.; Casado, A.; Claudino, J.G.; Jiménez-Reyes, P.; Ravé, G.; Castaño-Zambudio, A.; Lima-Alves, A.; de Oliveira, S.A.; Dupont, G.; Granacher, U.; et al. Do you Play or Do you Train? Insights From Individual Sports for Training Load and Injury Risk Management in Team Sports Based on Individualization. Front. Physiol. 2020, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring Athlete Training Loads: Consensus Statement. Int. J. Sports Physiol. Perform. 2017, 12, S2-161–S2-170. [Google Scholar] [CrossRef] [PubMed]
- Debien, P.B.; Miloski, B.; Werneck, F.Z.; Timoteo, T.F.; Ferezin, C.; Filho, M.G.B.; Gabbett, T.J. Training load and recovery during a pre-olympic season in professional rhythmic gymnasts. J. Athl. Train. 2020, 55, 977–983. [Google Scholar] [CrossRef]
- Griffin, A.; Kenny, I.C.; Comyns, T.M.; Lyons, M. The Association Between the Acute:Chronic Workload Ratio and Injury and its Application in Team Sports: A Systematic Review. Sport. Med. 2020, 50, 561–580. [Google Scholar] [CrossRef]
- Maupin, D.; Schram, B.; Canetti, E.; Orr, R. The Relationship Between Acute: Chronic Workload Ratios and Injury Risk in Sports: A Systematic Review. Open Access J. Sport. Med. 2020, 11, 51–75. [Google Scholar] [CrossRef]
- Andrade, R.; Wik, E.H.; Rebelo-Marques, A.; Blanch, P.; Whiteley, R.; Espregueira-Mendes, J.; Gabbett, T.J. Is the Acute: Chronic Workload Ratio (ACWR) Associated with Risk of Time-Loss Injury in Professional Team Sports? A Systematic Review of Methodology, Variables and Injury Risk in Practical Situations. Sport. Med. 2020, 50, 1613–1635. [Google Scholar] [CrossRef]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Bruce-Low, S.; Li, F.-X. Spikes in acute:chronic workload ratio (ACWR) associated with a 5–7 times greater injury rate in English Premier League football players: A comprehensive 3-year study. Br. J. Sports Med. 2020, 54, 731–738. [Google Scholar] [CrossRef]
- Bacciotti, S.; Baxter-Jones, A.; Gaya, A.; Maia, J. Body physique and proportionality of Brazilian female artistic gymnasts. J. Sports Sci. 2018, 36, 749–756. [Google Scholar] [CrossRef]
- Campbell, R.A.; Bradshaw, E.J.; Ball, N.B.; Pease, D.L.; Spratford, W. Injury epidemiology and risk factors in competitive artistic gymnasts: A systematic review. Br. J. Sports Med. 2019, 53, 1056–1069. [Google Scholar] [CrossRef]
- Federation Internationale de Gymnastique Technical Regulations for Men’s and Women’s Artistic Gymnastics. 2017. Available online: https://www.gymnastics.sport/site/rules/ (accessed on 29 September 2022).
- Sastre-Munar, A.; Pades-Jiménez, A.; García-Coll, N.; Molina-Mula, J.; Romero-Franco, N. Injuries, Pain, and Catastrophizing Level in Gymnasts: A Retrospective Analysis of a Cohort of Spanish Athletes. Healthcare 2022, 10, 890. [Google Scholar] [CrossRef]
- Tisano, B.; Zynda, A.J.; Ellis, H.B.; Wilson, P.L. Epidemiology of Pediatric Gymnastics Injuries Reported in US Emergency Departments: Sex- and Age-Based Injury Patterns. Orthop. J. Sport. Med. 2022, 10, 23259671221102478. [Google Scholar] [CrossRef]
- de Freitas, E.G.; Debien, P.B.; da Silva, C.D.; Carrara, P.D.S.; Bara Filho, M.G. Training Load Monitoring in Elite Youth Women’s Artistic Gymnasts: A Pilot Study. Sports Health 2025, 17, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Leupold, O.; Cheng, J.; Wimberly, A.; Nguyen, J.; Tilley, D.; Gabbett, T.J.; Casey, E. A Novel Approach for Monitoring Training Gymnastics. Sports Health A Multidiscip. Approach 2024, 17, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Minganti, C.; Capranica, L.; Meeusen, R.; Amici, S.; Piacentini, M.F. The Validity of Sessionrating of Perceived Exertion Method for Quantifying Training Load in Teamgym. J. Strength Cond. Res. 2010, 24, 3063–3068. [Google Scholar] [CrossRef] [PubMed]
- Sartor, F.; Vailati, E.; Valsecchi, V.; Vailati, F.; La Torre, A. Heart Rate Variability Reflects Training Load and Psychophysiological Status in Young Elite Gymnasts. J. Strength Cond. Res. 2013, 27, 2782–2790. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Bacciotti, S.d.M.; Baxter-Jones, A.; Gaya, A.C.A.; Maia, J. Análise discriminante do desempenho motor de ginastas brasileiras de níveis competitivos distintos. Rev. Bras. Educ. Fís. E Esporte 2022, 36, e36208940. [Google Scholar] [CrossRef]
- Malina, R.M.; Baxter-Jones, A.D.G.; Armstrong, N.; Beunen, G.P.; Caine, D.; Daly, R.M.; Lewis, R.D.; Rogol, A.D.; Russell, K. Role of Intensive Training in the Growth and Maturation of Artistic Gymnasts. Sport. Med. 2013, 43, 783–802. [Google Scholar] [CrossRef]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar]
- Matveyev, L. Problem of Periodization the Sport Training; FiS Publisher: Moscow, Russia, 1964. (In Russian) [Google Scholar]
- Bahr, R.; Clarsen, B.; Derman, W.; Dvorak, J.; Emery, C.A.; Finch, C.F.; Hägglund, M.; Junge, A.; Kemp, S.; Khan, K.M.; et al. International Olympic Committee consensus statement: Methods for recording and reporting of epidemiological data on injury and illness in sport 2020 (including STROBE Extension for Sport Injury and Illness Surveillance (STROBE-SIIS)). Br. J. Sports Med. 2020, 54, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Gabbett, T.J.; Hulin, B.; Blanch, P.; Chapman, P.; Bailey, D. To Couple or not to Couple? For Acute:Chronic Workload Ratios and Injury Risk, Does it Really Matter? Int. J. Sports Med. 2019, 40, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Kenttä, G.; Hassmén, P. Overtraining and Recovery. Sport. Med. 1998, 26, 1–16. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Sterkowicz-Przybycień, K.; Sterkowicz, S.; Biskup, L.; Żarów, R.; Kryst, Ł.; Ozimek, M. Somatotype, body composition, and physical fitness in artistic gymnasts depending on age and preferred event. PLoS ONE 2019, 14, e0211533. [Google Scholar] [CrossRef]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise, 7th ed.; Human Kinetics Publishers: Champaign, IL, USA, 2019; ISBN 1492572292. [Google Scholar]
- Pons, V.; Riera, J.; Galilea, P.A.; Drobnic, F.; Banquells, M.; Ruiz, O. Características antropométricas, composición corporal y somatotipo por deportes. Datos de referencia del CAR de San Cugat, 1989–2013. Apunt. Med. l’Esport 2015, 50, 65–72. [Google Scholar] [CrossRef]
- Vanderlei, F.M.; Vanderlei, L.C.M.; Bastos, F.N.; Netto Júnior, J.; Pastre, C.M. Characteristics and associated factors with sports injuries among children and adolescents. Brazilian J. Phys. Ther. 2014, 18, 530–537. [Google Scholar] [CrossRef]
- Kolt, G.S.; Kirkby, R.J. Epidemiology of injury in elite and subelite female gymnasts: A comparison of retrospective and prospective findings. Br. J. Sports Med. 1999, 33, 312–318. [Google Scholar] [CrossRef]
- Foster, C.; Hoyos, J.; Earnest, C.; Lucia, A. Regulation of energy expenditure during prolonged athletic competition. Med. Sci. Sports Exerc. 2005, 37, 670–675. [Google Scholar] [CrossRef]
- Banister, E.W.; Calvert, T.W.; Savage, M.V.; Batch, M. A systems model of training for athletic performance. J. Sci. Med. Sport 1975, 7, 57–61. [Google Scholar]
- Gabbett, T.J.; Hulin, B.T.; Blanch, P.; Whiteley, R. High training workloads alone do not cause sports injuries: How you get there is the real issue. Br. J. Sports Med. 2016, 50, 444–445. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.; Owen, A.; Newton, M.; Mendes, B.; Collins, K.D.; Gabbett, T.J. The acute:chonic workload ratio in relation to injury risk in professional soccer. J. Sci. Med. Sport 2017, 20, 561–565. [Google Scholar] [CrossRef] [PubMed]
Period Weeks | Weeks | Characteristics |
---|---|---|
Specific Preparatory | 1–6 | General conditioning, mainly flexibility, aerobic capacity, and strength; promotion of new morphologic adaptations in the athlete’s body after vacation and the composition of new routines |
Precompetitive Preparatory | 7–18 | Decrease in duration of general conditioning and greater duration and intensity of specific conditioning; increase in technical training duration and intensity. Improvement of competitive performance, increase in the specificity in all components of the training session |
Competitive | 19–24 | Peak performance during the competition of the season; focus on technique and routine, with high intensity and repetition; adjustment of training |
Transition | 25–28 | Exercise training new elements |
Variable | Group | p-Value | ||
---|---|---|---|---|
ME | LE | |||
Age (years) | 10.0 (8.5; 11.0) | 11.0 (9.3; 11.0) | 0.252 | |
Heigth (cm) | 138.1 ± 9.1 | 144.7 ± 13.1 | 0.132 | |
Body Weight (kg) | 34.6 ± 7.8 | 39.1 ± 10.5 | 0.211 | |
BMI (kg/m2) | 17.9 ± 2.1 | 18.4 ± 2.9 | 0.578 | |
Body adiposity (%) a | 11.8 (8.6; 14.7) | 12.7 (9.7; 18.7) | 0.361 | |
Practice Time (years) | 4.2 ± 1.5 | 3.6 ± 2.0 | 0.412 | |
Week training exposure (h) a | 17.38 (16.37; 18.79) | 5.14 (5.00; 5.21) | <0.001 * | |
Gender | Female | 8 (50%) | 11 (100%) | 0.018 † |
Male | 8 (50%) | 0 (0%) | ||
Injuries | Cases incidence | 24 | 4 | - |
Cases/gymnasts | 1.50 | 0.36 | - | |
Cases/injured gymnasts | 1.85 | 2.00 | - | |
Injuries/1000 h | 3.09 | 2.53 | - | |
Participants (n) | 16 | 11 | - |
Variable | Gr | Exercise Training Period (week, W) | |||
---|---|---|---|---|---|
Specific (1st–6th W) | Precompetitive (7th–18th W) | Competitive (19th–24th W) | Transition (25th–28th W) | ||
ITL | ME | 1292 ± 237 | 1502 ± 215 * | 1424 ± 107 * | 1449 ± 165 * |
LE | 651 ± 63 # | 783 ± 110 *# | 676 ± 75 #† | 750 ± 53 *# | |
Monotony | ME | 4.83 ± 1.98 | 4.72 ± 1.98 | 5.74 ± 2.49 | 2.29 ± 2.43 *†‡ |
LE | 2.94 ± 0.80 # | 5.99 ± 1.56 * | 4.53 ± 1.53 | 4.52 ± 1.6 # | |
Strain a | ME | 3822 (3201) | 5951 (2860) | 7593 (2800) * | 1470 (4242) †‡ |
LE | 1035 (438) # | 2201 (999) *# | 1736 (1746) # | 2191 (1086) *# | |
ACWR | ME | 0.952 ± 0.126 | 0.996 ± 0.056 | 0.972 ± 0.047 | 1.002 ± 0.031 |
LE | 1.065 ± 0.135 # | 1.018 ± 0.046 | 1.073 ± 0.073 # | 1.118 ± 0.077 #† |
Variable | Sum of Squares | DF | Mean Square | F | p-Value |
---|---|---|---|---|---|
Group | 25.779 | 1 | 25.779 | 6.8656 | 0.016 * |
ITL | 0.201 | 1 | 0.201 | 0.0534 | 0.819 |
Monotony | 16.008 | 1 | 16.008 | 4.2634 | 0.052 |
Strain | 29.523 | 1 | 29.523 | 7.8627 | 0.011 * |
ACWR | 1.329 | 1 | 1.329 | 0.3540 | 0.558 |
Residual | 78.852 | 21 | 3.755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, N.I.M.d.; Gasparetto, Z.; Bacciotti, S.M.; Dellagrana, R.A.; Sganzerla, G.; Martinez, P.F.; Oliveira-Junior, S.A.d. Analysis of Internal Training Load and Sports Injuries Incidence in Gymnasts of Different Exposure Levels. Healthcare 2025, 13, 1536. https://doi.org/10.3390/healthcare13131536
Silva NIMd, Gasparetto Z, Bacciotti SM, Dellagrana RA, Sganzerla G, Martinez PF, Oliveira-Junior SAd. Analysis of Internal Training Load and Sports Injuries Incidence in Gymnasts of Different Exposure Levels. Healthcare. 2025; 13(13):1536. https://doi.org/10.3390/healthcare13131536
Chicago/Turabian StyleSilva, Nicole Iasmim Minante da, Zadriane Gasparetto, Sarita Mendonça Bacciotti, Rodolfo André Dellagrana, Gianfranco Sganzerla, Paula Felippe Martinez, and Silvio Assis de Oliveira-Junior. 2025. "Analysis of Internal Training Load and Sports Injuries Incidence in Gymnasts of Different Exposure Levels" Healthcare 13, no. 13: 1536. https://doi.org/10.3390/healthcare13131536
APA StyleSilva, N. I. M. d., Gasparetto, Z., Bacciotti, S. M., Dellagrana, R. A., Sganzerla, G., Martinez, P. F., & Oliveira-Junior, S. A. d. (2025). Analysis of Internal Training Load and Sports Injuries Incidence in Gymnasts of Different Exposure Levels. Healthcare, 13(13), 1536. https://doi.org/10.3390/healthcare13131536