Parathyroid Hormone as a Modulator of Skeletal Muscle: Insights into Bone–Muscle and Nerve–Muscle Interactions
Abstract
1. Introduction
2. Methodology
- -
- Original research articles, reviews, and meta-analyses published in English.
- -
- Studies addressing the role or effects of PTH (or its analogs) on skeletal muscle, neuromuscular junctions, or crosstalk between muscle and bone or nerve.
- -
- Studies involving in vivo, in vitro, or clinical investigations.
3. Parathyroid Hormone
4. Bone and Skeletal Muscle Interactions
4.1. Bone to Muscle
4.1.1. FGF23
4.1.2. PGE2
4.1.3. Osteocalcin
4.1.4. IGF-1
4.1.5. Sclerostin
4.2. Muscle to Bone
4.2.1. Myostatin
4.2.2. IGF-1
4.2.3. Osteoactivin
4.2.4. Interleukins
4.2.5. Irisin
4.2.6. FGF2
4.2.7. Musclin
Osteokines/Myokines | Effects on Bone | Mechanism/Signaling Involved | Effects on Skeletal Muscle | Mechanism/Signaling Involved |
---|---|---|---|---|
FGF23 | In vitro: ↓ BMSCs osteogenesis, ↓ mature osteoblast mineralization [27] | FGFR3-ERK [27] | In vitro: ↓ Muscle cell differentiation [30] | Insulin/IGF-1, klotho [30] |
Clinical: Serum level associated with low bone mass [28] | Relevant to skeletal muscle wasting [33] | |||
PGE2 | Regulating both bone resorption and formation processes [34,35] | In vitro: Myogenesis [38] | EP4 receptor [38] | |
In vivo, in vitro: Muscle regeneration and strength [39] | Muscle-specific stem cells [39] | |||
Related: Wnt, β-catenin [36], cAMP/PKA [37] | ||||
Osteocalcin | Glucose metabolism, reproduction, and cognition [41] | In vitro: ↑ Glucose transport [43] Clinical, in vivo: ↑ Muscle uptake [44,45] | ||
In vitro: ↓ Osteoclasts differentiation [42] | GPRC6A [42] | |||
IGF-1 | ↑ Osteoblasts differentiation, bone production [47] | ↑ Protein synthesis and regeneration ↓ Muscle atrophy [48] | ||
Related: PI3K/Akt, MAPK/ERK [46] | ||||
Sclerostin | Clinical, in vivo, in vitro: ↓ Bone formation [50,51] | Wnt [49] | Clinical: ↑ Muscle weakness [54] | |
Myostatin | ↓ Bone formation Metabolism [57] | ↓ Muscle mass [55] | ||
In vitro: ↓ Osteoblastic differentiation [58] | Osteocyte-derived exosomal miR-218 [58] | |||
↓ Osteoclast differentiation [59] | RANKL, NFATC1 [59] | |||
Related: ERK1/2, Wnt, TGF-β1, IGF-1 [55] | ||||
Osteoactivin | In vivo, in vitro: ↓ Osteoclastogenesis [61] | CD44-ERK [61] | In vivo: Protection from fibrosis [63] | MMP-3, MMP-9 [63] |
In vivo, in vitro: ↑ Bone formation [66] | TGF-β [66] | |||
IL-6 | ↑ Bone growth [70,71] | ↑ Formation, growth, regeneration, satellite-cell-dependent myogenesis [69] | ||
↑ Bone loss (in several osteolytic diseases) [70,71] | ↑ Protein synthesis and breakdown Engaged with muscle atrophy [69] | |||
IL-7 | In vivo: ↑ Bone loss [74] | RANKL | Might affect satellite cells [72,73] | |
IL-15 | Bidirectional regulatory function [79] | Clinical: ↑ Myoblast development, fiber growth; ↓ protein breakdown [78] | ||
Irisin | In vivo: ↓ Bone loss [84] | In vitro: Mitochondrial biogenesis [82] In vivo: ↑ Myogenesis [83] ↓ Muscle atrophy [84] | ||
Related: MAPK [85], ERK/STAT, BMP/SMAD [87], Wnt/β-catenin [88] | ||||
FGF2 | Bone growth [92,93,94] | Clinical, in vivo: ↑ Muscle growth, intramuscular adipogenesis [91] | miR-29a/SPARC [91] | |
In vivo: Bone marrow MSC Osteogenesis [95] | ERK/Runx2 [95] | |||
Musclin | Bone resorption [100] | RANKL [100] | Glucose metabolism [96,97] | |
In vivo: ↑ Physical endurance [98] | Mitochondrial biogenesis |
5. Muscle and Nerve Communication
5.1. Neuromuscular Junctions
5.2. Nerve to Muscle
5.3. Muscle to Nerve
Factors | Effects on Nerve | Mechanism/Signaling Involved | Effects on Skeletal Muscle | Mechanism/Signaling Involved |
---|---|---|---|---|
Motor neurons | Clinical: Affecting muscle fiber morphology and phenotype [116,117] In vivo: Differentiation of slow muscles [120]; affects contractile speed of re-innervated muscle [121] | |||
Gap junctions/NMJs | In vitro: ↑ Myoblast fusion [118] | Intercellular communication [118] | ||
Poor signal transmission and muscular weakening in aging [123,124] | NMJ deteriorates, mitochondria mechanism [123,124] | |||
Neural and hormonal influences | ↑ Muscle development [119] | Isogenes [119] | ||
DOK7 | In vivo: ↑ Muscles and motor activities [125] | ↑ NMJ innervation [125] | ||
MuSCs | NMJ repair and maintenance [135,136,137,138,139] | Myofiber components, derived factors, associated satellite cells [135,136,137,138,139] | Muscle repair and regeneration [123,128] | |
BDNF | ↑ Hippocampal neurons, neuronal plasticity, and synaptogenesis ↓ Neuroinflammation [130,131,132] | Supporting muscle regeneration and utilization [129] | ||
Irisin | In vitro: Regulating astrocytes, neuroprotective effects [133] | Interleukins, COX-2, AKT, NFκB [133] | In vitro: Mitochondrial biogenesis [82] In vivo: ↑ Myogenesis [83] ↓ Muscle atrophy [84] | |
In vitro: Neural generation and development [134] | Post-neural progenitor formation [134] |
6. The Effects of PTH on Skeletal Muscle
7. Parathyroid Hormone, Bone, Nerves, and Skeletal Muscle
7.1. PTH’s Role in the Bone–Muscle Axis
7.2. PTH’s Role in the Nerve–Muscle Axis
Target of NMJ Components | Study Design | PTH’s Effects | Ref. |
---|---|---|---|
Axon/Neuron | In vitro | PTH boosts the mean speed of both anterograde and retrograde organelle traffic on axons | [209] |
In vivo | PTH (1–34) treatment can affect axonal regeneration by enhancing endogenous BMP-7 in rat Schwann cells | [210] | |
In vivo | Circulating PTH activates neurons in the subfornical organ | [211] | |
Acetylcholine activities | In vitro | In the rat superior cervical ganglion, ACh is released when PTH increases and calcitonin is inhibited | [212] |
In vitro | PTH affects 3H-acetylcholine synthesis in rat parathyroid glands | [213] | |
In vitro | PTH-induced oxidative stress preserves ACh | [214] |
7.3. PTH and Skeletal Muscle
8. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
BDNF | Brain-derived neurotrophic factor |
BMD | Bone mineral density |
BMP | Bone morphogenetic protein |
BW | Body weight |
EVs | Extracellular vesicles |
exRNAs | Extracellular RNAs |
FAPs | Fibro-adipogenic progenitors |
FDA | Food and Drug Administration |
FGF | Fibroblast growth factor |
FNDC5 | Fibronectin type III domain-containing 5 |
FOXO1 | Forkhead box protein O1 |
GDF | Growth differentiation factor |
GH | Growth hormone |
GPRC6A | G protein-coupled receptor family C group 6 member A |
hSCs | Human skeletal muscle biopsies |
IGF | Insulin-like growth factor |
IL | Interleukin |
MAFbx | Muscle atrophy F-box |
MB | Myoblast |
mRNA | Messenger RNA |
MuRF1 | Muscle-specific RING finger protein 1 |
MuSCs | Muscle stem cells |
MuSK | Muscle-specific kinase |
NMJ | Neuromuscular junction |
LRP | Low-density lipoprotein receptor-related protein |
OB | Osteoblast |
OC | Osteoclast |
OSE1 | Osteoblast-specific element 1 |
OVX | Ovariectomy |
PGE2 | Prostaglandin E2 |
PTH | Parathyroid hormone |
PTH1R | Parathyroid hormone 1 receptor |
PTH2R | Parathyroid hormone 2 receptor |
PTHrP | Parathyroid hormone-related peptide |
SNAPs | Soluble NSF Attachment Proteins |
TGF | Transforming growth factor |
TPTD | Teriparatide |
UCP1 | Uncoupling protein 1 |
VEGF | Vascular endothelial growth factor |
References
- Goltzman, D. Physiology of Parathyroid Hormone. Endocrinol. Metab. Clin. N. Am. 2018, 47, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yuan, H.; Ma, G.; Cao, H. Bone-Muscle Crosstalk under Physiological and Pathological Conditions. Cell. Mol. Life Sci. 2024, 81, 310. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, C.; Wittrant, Y.; Davicco, M.-J.; Walrand, S.; Coxam, V. Muscle and Bone, Two Interconnected Tissues. Ageing Res. Rev. 2015, 21, 55–70. [Google Scholar] [CrossRef]
- Rubin, D.I. Normal and Abnormal Voluntary Activity. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 281–301. [Google Scholar] [CrossRef]
- Lepore, E.; Casola, I.; Dobrowolny, G.; Musarò, A. Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells 2019, 8, 906. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, C.; Brandi, M.L. Muscle Physiopathology in Parathyroid Hormone Disorders. Front. Med. 2021, 8, 764346. [Google Scholar] [CrossRef]
- Taterra, D.; Wong, L.M.; Vikse, J.; Sanna, B.; Pękala, P.; Walocha, J.; Cirocchi, R.; Tomaszewski, K.; Henry, B.M. The Prevalence and Anatomy of Parathyroid Glands: A Meta-Analysis with Implications for Parathyroid Surgery. Langenbecks Arch. Surg. 2019, 404, 63. [Google Scholar] [CrossRef]
- Dobolyi, A.; Palkovits, M.; Usdin, T.B. The TIP39–PTH2 Receptor System: Unique Peptidergic Cell Groups in the Brainstem and Their Interactions with Central Regulatory Mechanisms. Prog. Neurobiol. 2010, 90, 29–59. [Google Scholar] [CrossRef]
- Kimura, S.; Yoshioka, K. Parathyroid Hormone and Parathyroid Hormone Type-1 Receptor Accelerate Myocyte Differentiation. Sci. Rep. 2014, 4, 5066. [Google Scholar] [CrossRef]
- Hastings, R.H. Parathyroid Hormone-Related Protein and Lung Biology. Respir. Physiol. Neurobiol. 2004, 142, 95–113. [Google Scholar] [CrossRef]
- Murray, T.M.; Rao, L.G.; Divieti, P.; Bringhurst, F.R. Parathyroid Hormone Secretion and Action: Evidence for Discrete Receptors for the Carboxyl-Terminal Region and Related Biological Actions of Carboxyl-Terminal Ligands. Endocr. Rev. 2005, 26, 78–113. [Google Scholar] [CrossRef]
- Wang, S.P.; Chen, Y.J.; Hsu, C.E.; Chiu, Y.C.; Tsai, M.T.; Hsu, J.T. Intermittent Parathyroid Hormone Treatment Affects the Bone Structural Parameters and Mechanical Strength of the Femoral Neck after Ovariectomy-Induced Osteoporosis in Rats. Biomed. Eng. Online 2022, 21, 6. [Google Scholar] [CrossRef]
- Mannstadt, M.; Clarke, B.L.; Bilezikian, J.P.; Bone, H.; Denham, D.; Levine, M.A.; Peacock, M.; Rothman, J.; Shoback, D.M.; Warren, M.L.; et al. Safety and Efficacy of 5 Years of Treatment with Recombinant Human Parathyroid Hormone in Adults With Hypoparathyroidism. J. Clin. Endocrinol. Metab. 2019, 104, 5136–5147. [Google Scholar] [CrossRef]
- Yamaguchi, D.T.; Kleeman, C.R. The Neuromuscular Manifestations of Primary Hyperparathyroidism in Humans. In New Actions of Parathyroid Hormone; Springer: Boston, MA, USA, 1989; pp. 365–377. [Google Scholar] [CrossRef]
- Cheng, T.C.; Huang, S.H.; Kao, C.L.; Hsu, P.C. Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications—A Narrative Review. Int. J. Mol. Sci. 2022, 23, 6047. [Google Scholar] [CrossRef]
- Pietrzak, W.S. Foreword. In Mechanical Testing of Orthopaedic Implants; Woodhead Publishing: Cambridge, UK, 2017; pp. xi–xii. [Google Scholar] [CrossRef]
- Digirolamo, D.J.; Kiel, D.P.; Esser, K.A. Bone and Skeletal Muscle: Neighbors With Close Ties. J. Bone Miner. Res. 2013, 28, 1509–1518. [Google Scholar] [CrossRef]
- Kim, T.N.; Choi, K.M. Sarcopenia: Definition, Epidemiology, and Pathophysiology. J. Bone Metab. 2013, 20, 1. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Theintz, G.; Law, F.; Slosman, D.; Rizzoli, R. Peak Bone Mass. Osteoporos. Int. 1994, 4, S7–S13. [Google Scholar] [CrossRef]
- Girgis, C.M.; Mokbel, N.; DiGirolamo, D.J. Therapies for Musculoskeletal Disease: Can We Treat Two Birds with One Stone? Curr. Osteoporos. Rep. 2014, 12, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Bailly, M.; Boscaro, A.; Thomas, T.; Féasson, L.; Costes, F.; Pereira, B.; Hager, J.; Estour, B.; Galusca, B.; Metz, L.; et al. New Insights on Bone Tissue and Structural Muscle-Bone Unit in Constitutional Thinness. Front. Physiol. 2022, 13, 921351. [Google Scholar] [CrossRef]
- Herrmann, M.; Engelke, K.; Ebert, R.; Müller-Deubert, S.; Rudert, M.; Ziouti, F.; Jundt, F.; Felsenberg, D.; Jakob, F. Interactions between Muscle and Bone—Where Physics Meets Biology. Biomolecules 2020, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor Signaling Pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef] [PubMed]
- Beenken, A.; Mohammadi, M. The FGF Family: Biology, Pathophysiology and Therapy. Nat. Rev. Drug Discov. 2009, 8, 235–253. [Google Scholar] [CrossRef]
- Moin, M.R.; Das, S.; Sanyal, S. Emerging Roles of Osteocytes in the Regulation of Bone and Skeletal Muscle Mass. J. Mol. Endocrinol. 2024, 74, e240033. [Google Scholar] [CrossRef]
- Simic, P.; Babitt, J.L. Regulation of FGF23: Beyond Bone. Curr. Osteoporos. Rep. 2021, 19, 563–573. [Google Scholar] [CrossRef]
- Lyu, Z.; Li, H.; Li, X.; Wang, H.; Jiao, H.; Wang, X.; Zhao, J.; Lin, H. Fibroblast Growth Factor 23 Inhibits Osteogenic Differentiation and Mineralization of Chicken Bone Marrow Mesenchymal Stem Cells. Poult. Sci. 2023, 102, 102287. [Google Scholar] [CrossRef]
- Shen, J.; Fu, S.; Song, Y. Relationship of Fibroblast Growth Factor 23 (FGF-23) Serum Levels With Low Bone Mass in Postmenopausal Women. J. Cell. Biochem. 2017, 118, 4454–4459. [Google Scholar] [CrossRef]
- Kurpas, A.; Supeł, K.; Idzikowska, K.; Zielińska, M. FGF23: A Review of Its Role in Mineral Metabolism and Renal and Cardiovascular Disease. Dis. Markers 2021, 2021, 8821292. [Google Scholar] [CrossRef] [PubMed]
- Kido, S.; Hashimoto, Y.; Segawa, H.; Tatsumi, S.; Miyamoto, K. Muscle Atrophy in Patients Wirh Ckd Results from Fgf23/Klotho-Mediated Supression of Insulin/Igf-i Signaling. Kidney Res. Clin. Pract. 2012, 31, A44. [Google Scholar] [CrossRef]
- Si, Y.; Kazamel, M.; Benatar, M.; Wuu, J.; Kwon, Y.; Kwan, T.; Jiang, N.; Kentrup, D.; Faul, C.; Alesce, L.; et al. FGF23, a Novel Muscle Biomarker Detected in the Early Stages of ALS. Sci. Rep. 2021, 11, 12062. [Google Scholar] [CrossRef] [PubMed]
- Faul, C.; Amaral, A.P.; Oskouei, B.; Hu, M.C.; Sloan, A.; Isakova, T.; Gutiérrez, O.M.; Aguillon-Prada, R.; Lincoln, J.; Hare, J.M.; et al. FGF23 Induces Left Ventricular Hypertrophy. J. Clin. Investig. 2011, 121, 4393–4408. [Google Scholar] [CrossRef]
- Elsurer Afsar, R.; Afsar, B.; Ikizler, T.A. Fibroblast Growth Factor 23 and Muscle Wasting: A Metabolic Point of View. Kidney Int. Rep. 2023, 8, 1301–1314. [Google Scholar] [CrossRef]
- Blackwell, K.A.; Raisz, L.G.; Pilbeam, C.C. Prostaglandins in Bone: Bad Cop, Good Cop? Trends Endocrinol. Metab. 2010, 21, 294–301. [Google Scholar] [CrossRef]
- Ohshiba, T.; Miyaura, C.; Ito, A. Role of Prostaglandin E Produced by Osteoblasts in Osteolysis Due to Bone Metastasis. Biochem. Biophys. Res. Commun. 2003, 300, 957–964. [Google Scholar] [CrossRef]
- Gupta, A.; Chatree, S.; Buo, A.M.; Moorer, M.C.; Stains, J.P. Connexin43 Enhances Wnt and PGE2-Dependent Activation of β-Catenin in Osteoblasts. Pflugers Arch. 2019, 471, 1235–1243. [Google Scholar] [CrossRef]
- Kitase, Y.; Barragan, L.; Qing, H.; Kondoh, S.; Jiang, J.X.; Johnson, M.L.; Bonewald, L.F. Mechanical Induction of PGE2 in Osteocytes Blocks Glucocorticoid-induced Apoptosis through Both the Β-catenin and PKA Pathways. J. Bone Miner. Res. 2010, 25, 2657–2668. [Google Scholar] [CrossRef]
- Mo, C.; Zhao, R.; Vallejo, J.; Igwe, O.; Bonewald, L.; Wetmore, L.; Brotto, M. Prostaglandin E2 Promotes Proliferation of Skeletal Muscle Myoblasts via EP4 Receptor Activation. Cell Cycle 2015, 14, 1507–1516. [Google Scholar] [CrossRef]
- Ho, A.T.V.; Palla, A.R.; Blake, M.R.; Yucel, N.D.; Wang, Y.X.; Magnusson, K.E.G.; Holbrook, C.A.; Kraft, P.E.; Delp, S.L.; Blau, H.M. Prostaglandin E2 Is Essential for Efficacious Skeletal Muscle Stem-Cell Function, Augmenting Regeneration and Strength. Proc. Natl. Acad. Sci. USA 2017, 114, 6675–6684. [Google Scholar] [CrossRef] [PubMed]
- Boskey, A.L.; Robey, P.G. The Regulatory Role of Matrix Proteins in Mineralization of Bone. In Osteoporosis, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 235–255. [Google Scholar] [CrossRef]
- Zoch, M.L.; Clemens, T.L.; Riddle, R.C. New Insights into the Biology of Osteocalcin. Bone 2016, 82, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Xu, Z.; Wu, F.; Zhang, H.; Yang, C.; Chen, J.; Ding, B.; Sui, X.; Guo, Z.; et al. Undercarboxylated Osteocalcin Inhibits the Early Differentiation of Osteoclast Mediated by Gprc6a. PeerJ 2021, 9, e10898. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.S.; Grams, J.; Walton, R.G.; Liu, J.; Moellering, D.R.; Garvey, W.T. Carboxylated and Uncarboxylated Forms of Osteocalcin Directly Modulate the Glucose Transport System and Inflammation in Adipocytes. Horm. Metab. Res. 2014, 46, 341–347. [Google Scholar] [CrossRef]
- Mera, P.; Laue, K.; Ferron, M.; Confavreux, C.; Wei, J.; Galán-Díez, M.; Lacampagne, A.; Mitchell, S.J.; Mattison, J.A.; Chen, Y.; et al. Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab. 2016, 23, 1078–1092. [Google Scholar] [CrossRef]
- Lin, X.; Parker, L.; McLennan, E.; Hayes, A.; McConell, G.; Brennan-Speranza, T.C.; Levinger, I. Undercarboxylated Osteocalcin Improves Insulin-Stimulated Glucose Uptake in Muscles of Corticosterone-Treated Mice. J. Bone Miner. Res. 2019, 34, 1517–1530. [Google Scholar] [CrossRef]
- Khan, M.Z.; Zugaza, J.L.; Torres Aleman, I. The Signaling Landscape of Insulin-like Growth Factor 1. J. Biol. Chem. 2025, 301, 108047. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhang, X.; Chen, X.; Wang, Z.; Zheng, S.; Cheng, Y.; Liu, S.; Hao, L. The Role of Insulin-like Growth Factor-1 in Bone Remodeling: A Review. Int. J. Biol. Macromol. 2023, 238, 124125. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Baron, R.; Kneissel, M. WNT Signaling in Bone Homeostasis and Disease: From Human Mutations to Treatments. Nat. Med. 2013, 19, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Fulzele, K.; Lai, F.; Dedic, C.; Saini, V.; Uda, Y.; Shi, C.; Tuck, P.; Aronson, J.L.; Liu, X.; Spatz, J.M.; et al. Osteocyte-Secreted Wnt Signaling Inhibitor Sclerostin Contributes to Beige Adipogenesis in Peripheral Fat Depots. J. Bone Miner. Res. 2017, 32, 373–384. [Google Scholar] [CrossRef]
- Fairfield, H.; Falank, C.; Harris, E.; Demambro, V.; McDonald, M.; Pettitt, J.A.; Mohanty, S.T.; Croucher, P.; Kramer, I.; Kneissel, M.; et al. The Skeletal Cell-Derived Molecule Sclerostin Drives Bone Marrow Adipogenesis. J. Cell. Physiol. 2018, 233, 1156–1167. [Google Scholar] [CrossRef]
- Morse, L.R.; Sudhakar, S.; Lazzari, A.A.; Tun, C.; Garshick, E.; Zafonte, R.; Battaglino, R.A. Sclerostin: A Candidate Biomarker of SCI-Induced Osteoporosis. Osteoporos. Int. 2013, 24, 961–968. [Google Scholar] [CrossRef]
- Rudnicki, M.A.; Williams, B.O. Wnt Signaling in Bone and Muscle. Bone 2015, 80, 60–66. [Google Scholar] [CrossRef]
- Hesse, E.; Schröder, S.; Brandt, D.; Pamperin, J.; Saito, H.; Taipaleenmäki, H. Sclerostin Inhibition Alleviates Breast Cancer–Induced Bone Metastases and Muscle Weakness. JCI Insight 2019, 4, e125543. [Google Scholar] [CrossRef]
- Baig, M.H.; Ahmad, K.; Moon, J.S.; Park, S.Y.; Ho Lim, J.; Chun, H.J.; Qadri, A.F.; Hwang, Y.C.; Jan, A.T.; Ahmad, S.S.; et al. Myostatin and Its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front. Physiol. 2022, 13, 876078. [Google Scholar] [CrossRef] [PubMed]
- Giannesini, B.; Vilmen, C.; Amthor, H.; Bernard, M.; Bendahan, D. Lack of Myostatin Impairs Mechanical Performance and ATP Cost of Contraction in Exercising Mouse Gastrocnemius Muscle in Vivo. Am. J. Physiol. Endocrinol. Metab. 2013, 305, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yi, Q.; Sun, W.; Huang, D.; Zhang, H.; Duan, L.; Shang, H.; Wang, D.; Xiong, J. Molecular Basis and Therapeutic Potential of Myostatin on Bone Formation and Metabolism in Orthopedic Disease. BioFactors 2023, 49, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Peng, Y.; Zhao, W.; Pan, J.; Ksiezak-Reding, H.; Cardozo, C.; Wu, Y.; Pajevic, P.D.; Bonewald, L.F.; Bauman, W.A.; et al. Myostatin Inhibits Osteoblastic Differentiation by Suppressing Osteocyte-Derived Exosomal MicroRNA-218: A Novel Mechanism in Muscle-Bone Communication. J. Biol. Chem. 2017, 292, 11021. [Google Scholar] [CrossRef]
- Dankbar, B.; Fennen, M.; Brunert, D.; Hayer, S.; Frank, S.; Wehmeyer, C.; Beckmann, D.; Paruzel, P.; Bertrand, J.; Redlich, K.; et al. Myostatin Is a Direct Regulator of Osteoclast Differentiation and Its Inhibition Reduces Inflammatory Joint Destruction in Mice. Nat. Med. 2015, 21, 1085–1090. [Google Scholar] [CrossRef]
- Barclay, R.D.; Burd, N.A.; Tyler, C.; Tillin, N.A.; Mackenzie, R.W. The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. Front. Nutr. 2019, 6, 462838. [Google Scholar] [CrossRef]
- Sondag, G.R.; Mbimba, T.S.; Moussa, F.M.; Novak, K.; Yu, B.; Jaber, F.A.; Abdelmagid, S.M.; Geldenhuys, W.J.; Safadi, F.F. Osteoactivin Inhibition of Osteoclastogenesis Is Mediated through CD44-ERK Signaling. Exp. Mol. Med. 2016, 48, e257. [Google Scholar] [CrossRef]
- Nikawa, T.; Ishidoh, K.; Hirasaka, K.; Ishihara, I.; Ikemoto, M.; Kano, M.; Kominami, E.; Nonaka, I.; Ogawa, T.; Adams, G.R.; et al. Skeletal Muscle Gene Expression in Space-Flown Rats. FASEB J. 2004, 18, 522–524. [Google Scholar] [CrossRef]
- Furochi, H.; Tamura, S.; Takeshima, K.; Hirasaka, K.; Nakao, R.; Kishi, K.; Nikawa, T. Overexpression of Osteoactivin Protects Skeletal Muscle from Severe Degeneration Caused by Long-Term Denervation in Mice. J. Med. Investig. 2007, 54, 248–254. [Google Scholar] [CrossRef]
- Miyazaki, T.; Miyauchi, S.; Anada, T.; Tawada, A.; Suzuki, O. Chondroitin Sulfate-E Binds to Both Osteoactivin and Integrin AVβ3 and Inhibits Osteoclast Differentiation. J. Cell. Biochem. 2015, 116, 2247–2257. [Google Scholar] [CrossRef]
- Sheng, M.H.-C.; Wergedal, J.E.; Mohan, S.; Lau, K.-H.W. Osteoactivin Is a Novel Osteoclastic Protein and Plays a Key Role in Osteoclast Differentiation and Activity. FEBS Lett. 2008, 582, 1451–1458. [Google Scholar] [CrossRef]
- Abdelmagid, S.M.; Belcher, J.Y.; Moussa, F.M.; Lababidi, S.L.; Sondag, G.R.; Novak, K.M.; Sanyurah, A.S.; Frara, N.A.; Razmpour, R.; Del Carpio-Cano, F.E.; et al. Mutation in Osteoactivin Decreases Bone Formation in Vivo and Osteoblast Differentiation in Vitro. Am. J. Pathol. 2014, 184, 697–713. [Google Scholar] [CrossRef]
- Hamrick, M.W. The Skeletal Muscle Secretome: An Emerging Player in Muscle–Bone Crosstalk. Bonekey Rep. 2012, 1, 60. [Google Scholar] [CrossRef]
- Wueest, S.; Konrad, D. The Controversial Role of IL-6 in Adipose Tissue on Obesity-Induced Dysregulation of Glucose Metabolism. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E607–E613. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 Myokine Signaling in Skeletal Muscle: A Double-Edged Sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, F.; Duplomb, L.; Baud’huin, M.; Brounais, B. The Dual Role of IL-6-Type Cytokines on Bone Remodeling and Bone Tumors. Cytokine Growth Factor Rev. 2009, 20, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Sims, N.A. Influences of the IL-6 Cytokine Family on Bone Structure and Function. Cytokine 2021, 146, 155655. [Google Scholar] [CrossRef]
- Haugen, F.; Norheim, F.; Lian, H.; Wensaas, A.J.; Dueland, S.; Berg, O.; Funderud, A.; Skålhegg, B.S.; Raastad, T.; Drevon, C.A. IL-7 Is Expressed and Secreted by Human Skeletal Muscle Cells. Am. J. Physiol. Cell. Physiol. 2010, 298, C807–C816. [Google Scholar] [CrossRef]
- Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal Muscle as Potential Central Link between Sarcopenia and Immune Senescence. EBioMedicine 2019, 49, 381–388. [Google Scholar] [CrossRef]
- Toraldo, G.; Roggia, C.; Qian, W.P.; Pacific, R.; Weitzmann, M.N. IL-7 Induces Bone Loss in Vivo by Induction of Receptor Activator of Nuclear Factor ΚB Ligand and Tumor Necrosis Factor α from T Cells. Proc. Natl. Acad. Sci. USA 2003, 100, 125–130. [Google Scholar] [CrossRef]
- Weitzmann, M.N.; Roggia, C.; Toraldo, G.; Weitzmann, L.; Pacifici, R. Increased Production of IL-7 Uncouples Bone Formation from Bone Resorption during Estrogen Deficiency. J. Clin. Investig. 2002, 110, 1643–1650. [Google Scholar] [CrossRef]
- Mishra, A.; Sullivan, L.; Caligiuri, M.A. Molecular Pathways: Interleukin-15 Signaling in Health and in Cancer. Clin. Cancer Res. 2014, 20, 2044–2050. [Google Scholar] [CrossRef]
- Nadeau, L.; Aguer, C. Interleukin-15 as a Myokine: Mechanistic Insight into Its Effect on Skeletal Muscle Metabolism. Appl. Physiol. Nutr. Metab. 2018, 44, 229–238. [Google Scholar] [CrossRef]
- Khalafi, M.; Maleki, A.H.; Symonds, M.E.; Sakhaei, M.H.; Rosenkranz, S.K.; Ehsanifar, M.; Korivi, M.; Liu, Y. Interleukin-15 Responses to Acute and Chronic Exercise in Adults: A Systematic Review and Meta-Analysis. Front. Immunol. 2023, 14, 1288537. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Qin, M.; Yi, X. Interleukin 15: A New Intermediary in the Effects of Exercise and Training on Skeletal Muscle and Bone Function. J. Cell. Mol. Med. 2024, 28, e70136. [Google Scholar] [CrossRef]
- Mahgoub, M.O.; D’Souza, C.; Al Darmaki, R.S.M.H.; Baniyas, M.M.Y.H.; Adeghate, E. An Update on the Role of Irisin in the Regulation of Endocrine and Metabolic Functions. Peptides 2018, 104, 15–23. [Google Scholar] [CrossRef]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-Dependent Myokine That Drives Brown-Fat-like Development of White Fat and Thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Vaughan, R.A.; Gannon, N.P.; Barberena, M.A.; Garcia-Smith, R.; Bisoffi, M.; Mermier, C.M.; Conn, C.A.; Trujillo, K.A. Characterization of the Metabolic Effects of Irisin on Skeletal Muscle in Vitro. Diabetes Obes. Metab. 2014, 16, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Becerril, S.; Méndez-Giménez, L.; Ramírez, B.; Sáinz, N.; Catalán, V.; Gómez-Ambrosi, J.; Frühbeck, G. Leptin Administration Activates Irisin-Induced Myogenesis via Nitric Oxide-Dependent Mechanisms, but Reduces Its Effect on Subcutaneous Fat Browning in Mice. Int. J. Obes. 2014, 39, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Colaianni, G.; Mongelli, T.; Cuscito, C.; Pignataro, P.; Lippo, L.; Spiro, G.; Notarnicola, A.; Severi, I.; Passeri, G.; Mori, G.; et al. Irisin Prevents and Restores Bone Loss and Muscle Atrophy in Hind-Limb Suspended Mice. Sci. Rep. 2017, 7, 2811. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.Y.; Nie, Y.; Ma, Y.X.; Chen, Y.; Cheng, R.; Yin, W.Y.; Hu, Y.; Xu, W.M.; Xu, L.Z. Irisin Promotes Osteoblast Proliferation and Differentiation via Activating the MAP Kinase Signaling Pathways. Sci. Rep. 2016, 6, 18732. [Google Scholar] [CrossRef]
- Colaianni, G.; Cuscito, C.; Mongelli, T.; Pignataro, P.; Buccoliero, C.; Liu, P.; Lu, P.; Sartini, L.; Comite, M.D.; Mori, G.; et al. The Myokine Irisin Increases Cortical Bone Mass. Proc. Natl. Acad. Sci. USA 2015, 112, 12157–12162. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Hu, S.; Chen, C.; He, J.; Sun, J.; Jin, Y.; Zhang, Y.; Zhu, G.; Shi, Q.; Rui, Y. Myokine Irisin Promotes Osteogenesis by Activating BMP/SMAD Signaling via AV Integrin and Regulates Bone Mass in Mice. Int. J. Biol. Sci. 2022, 18, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, K.; Zhao, S.; Geng, T.; Fan, X.; Sun, S.; Zheng, M.; Jin, Q. Irisin Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Activating Autophagy via the Wnt//β-Catenin Signal Pathway. Cytokine 2020, 136, 155292. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wu, H.; Lu, J.; Zhang, R.; Shen, X.; Gu, Y.; Shi, C.; Zhang, Y.; Yuan, W. Irisin Reduces Bone Fracture by Facilitating Osteogenesis and Antagonizing TGF-β/Smad Signaling in a Growing Mouse Model of Osteogenesis Imperfecta. J. Orthop. Transl. 2023, 38, 175–189. [Google Scholar] [CrossRef]
- Floege, J.; Hudkins, K.L.; Eitner, F.; Cui, Y.; Morrison, R.S.; Schelling, M.A.; Alpers, C.E. Localization of Fibroblast Growth Factor-2 (Basic FGF) and FGF Receptor-1 in Adult Human Kidney. Kidney Int. 1999, 56, 883–897. [Google Scholar] [CrossRef]
- Mathes, S.; Fahrner, A.; Ghoshdastider, U.; Rüdiger, H.A.; Leunig, M.; Wolfrum, C.; Krützfeldt, J. FGF-2–Dependent Signaling Activated in Aged Human Skeletal Muscle Promotes Intramuscular Adipogenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2021013118. [Google Scholar] [CrossRef]
- Yang, W.; Cao, Y.; Zhang, Z.; Du, F.; Shi, Y.; Li, X.; Zhang, Q. Targeted Delivery of FGF2 to Subchondral Bone Enhanced the Repair of Articular Cartilage Defect. Acta Biomater. 2018, 69, 170–182. [Google Scholar] [CrossRef]
- Poudel, S.B.; Min, C.K.; Lee, J.H.; Shin, Y.J.; Kwon, T.H.; Jeon, Y.M.; Lee, J.C. Local Supplementation with Plant-Derived Recombinant Human FGF2 Protein Enhances Bone Formation in Critical-Sized Calvarial Defects. J. Bone Miner. Metab. 2019, 37, 900–912. [Google Scholar] [CrossRef]
- Huang, G.; Zhao, G.; Xia, J.; Wei, Y.; Chen, F.; Chen, J.; Shi, J. FGF2 and FAM201A Affect the Development of Osteonecrosis of the Femoral Head after Femoral Neck Fracture. Gene 2018, 652, 39–47. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, C.; Chen, G.; Tang, Z.; Liu, Q.; Chen, J.; Tong, X.; Wang, J. Effects of BMP-2 and FGF2 on the Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells in Hindlimb-Unloaded Rats. Cell Biochem. Biophys. 2014, 70, 1127–1136. [Google Scholar] [CrossRef]
- Nishizawa, H.; Matsuda, M.; Yamada, Y.; Kawai, K.; Suzuki, E.; Makishima, M.; Kitamura, T.; Shimomura, I. Musclin, a Novel Skeletal Muscle-Derived Secretory Factor. J. Biol. Chem. 2004, 279, 19391–19395. [Google Scholar] [CrossRef] [PubMed]
- Szaroszyk, M.; Kattih, B.; Martin-Garrido, A.; Trogisch, F.A.; Dittrich, G.M.; Grund, A.; Abouissa, A.; Derlin, K.; Meier, M.; Holler, T.; et al. Skeletal Muscle Derived Musclin Protects the Heart during Pathological Overload. Nat. Commun. 2022, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Subbotina, E.; Sierra, A.; Zhu, Z.; Gao, Z.; Koganti, S.R.K.; Reyes, S.; Stepniak, E.; Walsh, S.A.; Acevedo, M.R.; Perez-Terzic, C.M.; et al. Musclin Is an Activity-Stimulated Myokine That Enhances Physical Endurance. Proc. Natl. Acad. Sci. USA 2015, 112, 16042–16047. [Google Scholar] [CrossRef]
- Yasui, A.; Nishizawa, H.; Okuno, Y.; Morita, K.; Kobayashi, H.; Kawai, K.; Matsuda, M.; Kishida, K.; Kihara, S.; Kamei, Y.; et al. Foxo1 Represses Expression of Musclin, a Skeletal Muscle-Derived Secretory Factor. Biochem. Biophys. Res. Commun. 2007, 364, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Bartell, S.M.; Kim, H.N.; Ambrogini, E.; Han, L.; Iyer, S.; Ucer, S.S.; Rabinovitch, P.; Jilka, R.L.; Weinstein, R.S.; Zhao, H.; et al. FoxO Proteins Restrain Osteoclastogenesis and Bone Resorption by Attenuating H2O2 Accumulation. Nat. Commun. 2014, 5, 3773. [Google Scholar] [CrossRef]
- Carlson, B. Mature Skeletal Muscle—An Overview. In Muscle Biology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–33. [Google Scholar] [CrossRef]
- Adrian, E.D. The All-or-none Principle in Nerve. J. Physiol. 1914, 47, 460–474. [Google Scholar] [CrossRef]
- Drukarch, B.; Holland, H.A.; Velichkov, M.; Geurts, J.J.G.; Voorn, P.; Glas, G.; de Regt, H.W. Thinking about the Nerve Impulse: A Critical Analysis of the Electricity-Centered Conception of Nerve Excitability. Prog. Neurobiol. 2018, 169, 172–185. [Google Scholar] [CrossRef]
- Rudolf, R.; Khan, M.M.; Witzemann, V. Motor Endplate—Anatomical, Functional, and Molecular Concepts in the Historical Perspective. Cells 2019, 8, 387. [Google Scholar] [CrossRef]
- Bock, O. Cajal, Golgi, Nansen, Schäfer and the Neuron Doctrine. Endeavour 2013, 37, 228–234. [Google Scholar] [CrossRef]
- Andersson-Cedergren, E. Ultrastructure of Motor End Plate and Sarcoplasmic Components of Mouse Skeletal Muscle Fiber as Revealed by Three-Dimensional Reconstructions from Serial Sections. J. Ultrastruct. Res. 1959, 2, 5–191. [Google Scholar] [CrossRef]
- Hirsch, N.P. Neuromuscular Junction in Health and Disease. Br. J. Anaesth. 2007, 99, 132–138. [Google Scholar] [CrossRef]
- Slater, C.R. The Structure of Human Neuromuscular Junctions: Some Unanswered Molecular Questions. Int. J. Mol. Sci. 2017, 18, 2183. [Google Scholar] [CrossRef]
- Ratliff, W.A.; Saykally, J.N.; Kane, M.J.; Citron, B.A. Neuromuscular Junction Morphology and Gene Dysregulation in the Wobbler Model of Spinal Neurodegeneration. J. Mol. Neurosci. 2018, 66, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Tsim, K.W.K.; Ruegg, M.A.; Escher, G.; Kröger, S.; McMahan, U.J. CDNA That Encodes Active Agrin. Neuron 1992, 8, 677–689. [Google Scholar] [CrossRef] [PubMed]
- DeChiara, T.M.; Bowen, D.C.; Valenzuela, D.M.; Simmons, M.V.; Poueymirou, W.T.; Thomas, S.; Kinetz, E.; Compton, D.L.; Rojas, E.; Park, J.S.; et al. The Receptor Tyrosine Kinase MuSK Is Required for Neuromuscular Junction Formation In Vivo. Cell 1996, 85, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.; Froehner, S.C. Characterization and Localization of the Mr = 43,000 Proteins Associated with Acetylcholine Receptor-Rich Membranes. J. Biol. Chem. 1983, 258, 10034–10040. [Google Scholar] [CrossRef]
- Weatherbee, S.D.; Anderson, K.V.; Niswander, L.A. LDL-Receptor-Related Protein 4 Is Crucial for Formation of the Neuromuscular Junction. Development 2006, 133, 4993–5000. [Google Scholar] [CrossRef]
- Frail, D.E.; McLaughlin, L.L.; Mudd, J.; Merlie, J.P. Identification of the Mouse Muscle 43,000-Dalton Acetylcholine Receptor-Associated Protein (RAPsyn) by CDNA Cloning. J. Biol. Chem. 1988, 263, 15602–15607. [Google Scholar] [CrossRef]
- Belotti, E.; Schaeffer, L. Regulation of Gene Expression at the Neuromuscular Junction. Neurosci. Lett. 2020, 735, 135163. [Google Scholar] [CrossRef]
- Lømo, T. Chapter 4 Nerve–Muscle Interactions. In Handbook of Clinical Neurophysiology; IFCN: Milwaukee, WI, USA, 2003; Volume 2, pp. 47–65. [Google Scholar] [CrossRef]
- Tøien, T.; Nielsen, J.L.; Berg, O.K.; Brobakken, M.F.; Nyberg, S.K.; Espedal, L.; Malmo, T.; Frandsen, U.; Aagaard, P.; Wang, E. The Impact of Life-Long Strength versus Endurance Training on Muscle Fiber Morphology and Phenotype Composition in Older Men. J. Appl. Physiol. 2023, 135, 1360–1371. [Google Scholar] [CrossRef]
- Mège, R.M.; Goudou, D.; Giaume, C.; Nicolet, M.; Rieger, F. Is Intercellular Communication Via Gap Junctions Required for Myoblast Fusion? Cell Adhes. Commun. 1994, 2, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Reggiani, C. Molecular Diversity of Myofibrillar Proteins: Gene Regulation and Functional Significance. Physiol. Rev. 1996, 76, 371–423. [Google Scholar] [CrossRef]
- Buller, A.J.; Eccles, J.C.; Eccles, R.M. Differentiation of Fast and Slow Muscles in the Cat Hind Limb. J. Physiol. 1960, 150, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Niven-Jenkins, N.; Vrbová, G. Observations on Neuromuscular Connection between the Vagus Nerve and Skeletal Muscle. Neuroscience 1980, 5, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jiang, J.; Xu, J. Denervation-Related Neuromuscular Junction Changes: From Degeneration to Regeneration. Front. Mol. Neurosci. 2022, 14, 810919. [Google Scholar] [CrossRef]
- Coletti, C.; Acosta, G.F.; Keslacy, S.; Coletti, D. Exercise-Mediated Reinnervation of Skeletal Muscle in Elderly People: An Update. Eur. J. Transl. Myol. 2022, 32, 2022. [Google Scholar] [CrossRef]
- Anagnostou, M.-E.; Hepple, R.T. Mitochondrial Mechanisms of Neuromuscular Junction Degeneration with Aging. Cells 2020, 9, 197. [Google Scholar] [CrossRef]
- Ueta, R.; Sugita, S.; Minegishi, Y.; Shimotoyodome, A.; Ota, N.; Ogiso, N.; Eguchi, T.; Yamanashi, Y. DOK7 Gene Therapy Enhances Neuromuscular Junction Innervation and Motor Function in Aged Mice. iScience 2020, 23, 101385. [Google Scholar] [CrossRef]
- Kedlian, V.R.; Wang, Y.; Liu, T.; Chen, X.; Bolt, L.; Tudor, C.; Shen, Z.; Fasouli, E.S.; Prigmore, E.; Kleshchevnikov, V.; et al. Human Skeletal Muscle Aging Atlas. Nat. Aging 2024, 4, 727–744. [Google Scholar] [CrossRef]
- Blau, H.M.; Cosgrove, B.D.; Ho, A.T.V. The Central Role of Muscle Stem Cells in Regenerative Failure with Aging. Nat. Med. 2015, 21, 854–862. [Google Scholar] [CrossRef]
- Muñoz-Cánoves, P.; Neves, J.; Sousa-Victor, P. Understanding Muscle Regenerative Decline with Aging: New Approaches to Bring Back Youthfulness to Aged Stem Cells. FEBS J. 2020, 287, 406–416. [Google Scholar] [CrossRef]
- Rentería, I.; García-Suárez, P.C.; Fry, A.C.; Moncada-Jiménez, J.; Machado-Parra, J.P.; Antunes, B.M.; Jiménez-Maldonado, A. The Molecular Effects of BDNF Synthesis on Skeletal Muscle: A Mini-Review. Front. Physiol. 2022, 13, 934714. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Pedersen, M.; Krabbe, K.S.; Bruunsgaard, H.; Matthews, V.B.; Febbraio, M.A. Role of Exercise-Induced Brain-Derived Neurotrophic Factor Production in the Regulation of Energy Homeostasis in Mammals. Exp. Physiol. 2009, 94, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell. Mol. Neurobiol. 2017, 38, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Moya-Alvarado, G.; Gonzalez-Billaut, C.; Bronfman, F.C. Cellular and Molecular Mechanisms Regulating Neuronal Growth by Brain-Derived Neurotrophic Factor. Cytoskeleton 2016, 73, 612–628. [Google Scholar] [CrossRef]
- Wang, K.; Li, H.; Wang, H.; Wang, J.H.; Song, F.; Sun, Y. Irisin Exerts Neuroprotective Effects on Cultured Neurons by Regulating Astrocytes. Mediat. Inflamm. 2018, 2018, 9070341. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Ghaedi, K.; Salamian, A.; Karbalaie, K.; Emadi-Baygi, M.; Tanhaei, S.; Nasr-Esfahani, M.H.; Baharvand, H. Fndc5 Knockdown Significantly Decreased Neural Differentiation Rate of Mouse Embryonic Stem Cells. Neuroscience 2013, 231, 296–304. [Google Scholar] [CrossRef]
- Sanes, J.R.; Marshall, L.M.; McMahan, U.J. Reinnervation of Muscle Fiber Basal Lamina after Removal of Myofibers. Differentiation of Regenerating Axons at Original Synaptic Sites. J. Cell Biol. 1978, 78, 176–198. [Google Scholar] [CrossRef]
- Sanes, J.R.; Lichtman, J.W. Development of the Vertebrate Neuromuscular Junction. Annu. Rev. Neurosci. 1999, 22, 389–442. [Google Scholar] [CrossRef]
- Fox, M.A.; Sanes, J.R.; Borza, D.B.; Eswarakumar, V.P.; Fässler, R.; Hudson, B.G.; John, S.W.M.; Ninomiya, Y.; Pedchenko, V.; Pfaff, S.L.; et al. Distinct Target-Derived Signals Organize Formation, Maturation, and Maintenance of Motor Nerve Terminals. Cell 2007, 129, 179–193. [Google Scholar] [CrossRef]
- Williams, A.H.; Valdez, G.; Moresi, V.; Qi, X.; McAnally, J.; Elliott, J.L.; Bassel-Duby, R.; Sanes, J.R.; Olson, E.N. MicroRNA-206 Delays ALS Progression and Promotes Regeneration of Neuromuscular Synapses in Mice. Science 2009, 326, 1549–1554. [Google Scholar] [CrossRef]
- Liu, W.; Wei-LaPierre, L.; Klose, A.; Dirksen, R.T.; Chakkalakal, J.V. Inducible Depletion of Adult Skeletal Muscle Stem Cells Impairs the Regeneration of Neuromuscular Junctions. eLife 2015, 4, e09221. [Google Scholar] [CrossRef] [PubMed]
- Garber, A.J. Effects of Parathyroid Hormone on Skeletal Muscle Protein and Amino Acid Metabolism in the Rat. J. Clin. Investig. 1983, 71, 1806–1821. [Google Scholar] [CrossRef]
- Baczynski, R.; Massry, S.G.; Magott, M.; el-Belbessi, S.; Kohan, R.; Brautbar, N. Effect of Parathyroid Hormone on Energy Metabolism Ofskeletal Muscle. Kidney Int. 1985, 28, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Iio, R.; Manaka, T.; Takada, N.; Orita, K.; Nakazawa, K.; Hirakawa, Y.; Ito, Y.; Nakamura, H. Parathyroid Hormone Inhibits Fatty Infiltration and Muscle Atrophy After Rotator Cuff Tear by Browning of Fibroadipogenic Progenitors in a Rodent Model. Am. J. Sports Med. 2023, 51, 3251–3260. [Google Scholar] [CrossRef]
- Romagnoli, C.; Zonefrati, R.; Lucattelli, E.; Innocenti, M.; Civinini, R.; Iantomasi, T.; Brandi, M.L. In Vitro Effects of PTH (1-84) on Human Skeletal Muscle-Derived Satellite Cells. Biomedicines 2023, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- Fujimaki, T.; Ando, T.; Hata, T.; Takayama, Y.; Ohba, T.; Ichikawa, J.; Takiyama, Y.; Tatsuno, R.; Koyama, K.; Haro, H. Exogenous Parathyroid Hormone Attenuates Ovariectomy-Induced Skeletal Muscle Weakness in Vivo. Bone 2021, 151, 116029. [Google Scholar] [CrossRef]
- Palermo, A.; Sanesi, L.; Colaianni, G.; Tabacco, G.; Naciu, A.M.; Cesareo, R.; Pedone, C.; Lelli, D.; Brunetti, G.; Mori, G.; et al. A Novel Interplay Between Irisin and PTH: From Basic Studies to Clinical Evidence in Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2019, 104, 3088–3096. [Google Scholar] [CrossRef]
- Abboud, M.; Rybchyn, M.S.; Liu, J.; Ning, Y.; Gordon-Thomson, C.; Brennan-Speranza, T.C.; Cole, L.; Greenfield, H.; Fraser, D.R.; Mason, R.S. The Effect of Parathyroid Hormone on the Uptake and Retention of 25-Hydroxyvitamin D in Skeletal Muscle Cells. J. Steroid Biochem. Mol. Biol. 2017, 173, 173–179. [Google Scholar] [CrossRef]
- Sato, C.; Miyakoshi, N.; Kasukawa, Y.; Nozaka, K.; Tsuchie, H.; Nagahata, I.; Yuasa, Y.; Abe, K.; Saito, H.; Shoji, R.; et al. Teriparatide and Exercise Improve Bone, Skeletal Muscle, and Fat Parameters in Ovariectomized and Tail-Suspended Rats. J. Bone Miner. Metab. 2021, 39, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Grynpas, M.; Mitchell, J. Intermittent PTH Treatment Improves Bone and Muscle in Glucocorticoid Treated Mdx Mice: A Model of Duchenne Muscular Dystrophy. Bone 2019, 121, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Brent, M.B.; Brüel, A.; Thomsen, J.S. PTH (1–34) and Growth Hormone in Prevention of Disuse Osteopenia and Sarcopenia in Rats. Bone 2018, 110, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Komrakova, M.; Stuermer, E.K.; Werner, C.; Wicke, M.; Kolios, L.; Sehmisch, S.; Tezval, M.; Daub, F.; Martens, T.; Witzenhausen, P.; et al. Effect of Human Parathyroid Hormone HPTH (1–34) Applied at Different Regimes on Fracture Healing and Muscle in Ovariectomized and Healthy Rats. Bone 2010, 47, 480–492. [Google Scholar] [CrossRef]
- Visser, M.; Deeg, D.J.H.; Lips, P. Low Vitamin D and High Parathyroid Hormone Levels as Determinants of Loss of Muscle Strength and Muscle Mass (Sarcopenia): The Longitudinal Aging Study Amsterdam. J. Clin. Endocrinol. Metab. 2003, 88, 5766–5772. [Google Scholar] [CrossRef]
- Sikjaer, T.; Rolighed, L.; Hess, A.; Fuglsang-Frederiksen, A.; Mosekilde, L.; Rejnmark, L. Effects of PTH(1-84) Therapy on Muscle Function and Quality of Life in Hypoparathyroidism: Results from a Randomized Controlled Trial. Osteoporos. Int. 2014, 25, 1717–1726. [Google Scholar] [CrossRef]
- Gielen, E.; O’neill, T.W.; Pye, S.R.; Adams, J.E.; Wu, F.C.; Laurent, M.R.; Claessens, F.; Ward, K.A.; Boonen, S.; Bouillon, R.; et al. Endocrine Determinants of Incident Sarcopenia in Middle-Aged and Elderly European Men. J. Cachexia Sarcopenia Muscle 2015, 6, 242–252. [Google Scholar] [CrossRef]
- Umakanthan, M.; Li, J.W.; Sud, K.; Duque, G.; Guilfoyle, D.; Cho, K.; Brown, C.; Boersma, D.; Komala, M.G. Prevalence and Factors Associated with Sarcopenia in Patients on Maintenance Dialysis in Australia—A Single Centre, Cross-Sectional Study. Nutrients 2021, 13, 3284. [Google Scholar] [CrossRef]
- Iolascon, G.; Paoletta, M.; Liguori, S.; Curci, C.; Moretti, A. Neuromuscular Diseases and Bone. Front. Endocrinol. 2019, 10, 497297. [Google Scholar] [CrossRef]
- Khan, A.; Bilezikian, J. Primary Hyperparathyroidism: Pathophysiology and Impact on Bone. CMAJ Can. Med. Assoc. J. 2000, 163, 184. [Google Scholar]
- Rolighed, L.; Amstrup, A.K.; Jakobsen, N.F.B.; Sikjaer, T.; Mosekilde, L.; Christiansen, P.; Rejnmark, L. Muscle Function Is Impaired in Patients With “Asymptomatic” Primary Hyperparathyroidism. World J. Surg. 2014, 38, 549–557. [Google Scholar] [CrossRef]
- Diniz, E.T.; Bandeira, F.; Lins, O.G.; Cavalcanti, É.N.B.; De Arruda, T.M.; Januário, A.M.S.; Diniz, K.T.; Marques, T.F.; Azevedo, H. Primary Hyperparathyroidism Is Associated With Subclinical Peripheral Neural Alterations. Endocr. Pract. 2013, 19, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kuro-o, M. Klotho as a Regulator of Fibroblast Growth Factor Signaling and Phosphate/Calcium Metabolism. Curr. Opin. Nephrol. Hypertens. 2006, 15, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.; Naveh-Many, T. Phosphate and the Parathyroid. Kidney Int. 2009, 75, 898–905. [Google Scholar] [CrossRef]
- Lavi-Moshayoff, V.; Wasserman, G.; Meir, T.; Silver, J.; Naveh-Many, T. PTH Increases FGF23 Gene Expression and Mediates the High-FGF23 Levels of Experimental Kidney Failure: A Bone Parathyroid Feedback Loop. Am. J. Physiol. Renal. Physiol. 2010, 299, 882–889. [Google Scholar] [CrossRef]
- Bakker, A.D.; Joldersma, M.; Klein-Nulend, J.; Burger, E.H. Interactive Effects of PTH and Mechanical Stress on Nitric Oxide and PGE2 Production by Primary Mouse Osteoblastic Cells. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E608–E613. [Google Scholar] [CrossRef]
- Raisz, L.G.; Simmons, H.A. Effects of Parathyroid Hormone and Cortisol on Prostaglandin Production by Neonatal Rat Calvaria in Vitro. Endocr. Res. 1985, 11, 59–74. [Google Scholar] [CrossRef]
- Coetzee, M.; Haag, M.; Claassen, N.; Kruger, M.C. Stimulation of Prostaglandin E2 (PGE2) Production by Arachidonic Acid, Oestrogen and Parathyroid Hormone in MG-63 and MC3T3-E1 Osteoblast-like Cells. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 423–430. [Google Scholar] [CrossRef]
- Yu, X.P.; Chandrasekhar, S. Parathyroid Hormone (PTH 1–34) Regulation of Rat Osteocalcin Gene Transcription. Endocrinology 1997, 138, 3085–3092. [Google Scholar] [CrossRef]
- Boguslawski, G.; Hale, L.V.; Yu, X.P.; Miles, R.R.; Onyia, J.E.; Santerre, R.F.; Chandrasekhar, S. Activation of Osteocalcin Transcription Involves Interaction of Protein Kinase A- and Protein Kinase C-Dependent Pathways. J. Biol. Chem. 2000, 275, 999–1006. [Google Scholar] [CrossRef]
- Jiang, D.; Franceschi, R.T.; Boules, H.; Xiao, G. Parathyroid Hormone Induction of the Osteocalcin Gene: Requirement for an Osteoblast-Specific Element 1 Sequence in the Promoter and Involvement of Multiple Signaling Pathways. J. Biol. Chem. 2004, 279, 5329–5337. [Google Scholar] [CrossRef] [PubMed]
- Canalis, E.; Centrella, M.; Burch, W.; McCarthy, T.L. Insulin-like Growth Factor I Mediates Selective Anabolic Effects of Parathyroid Hormone in Bone Cultures. J. Clin. Investig. 1989, 83, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Linkhart, T.A.; Mohan, S. Parathyroid Hormone Stimulates Release of Insulin-Like Growth Factor-I (IGF-I) and IGF-II from Neonatal Mouse Calvaria in Organ Culture. Endocrinology 1989, 125, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, T.L.; Centrella, M.; Canalis, E. Regulatory Effects of Insulin-Like Growth Factors I and II on Bone Collagen Synthesis in Rat Calvarial Cultures. Endocrinology 1989, 124, 301–309. [Google Scholar] [CrossRef]
- Harvey, A.K.; Yu, X.P.; Frolik, C.A.; Chandrasekhar, S. Parathyroid Hormone-(1–34) Enhances Aggrecan Synthesis via an Insulin-like Growth Factor-I Pathway. J. Biol. Chem. 1999, 274, 23249–23255. [Google Scholar] [CrossRef]
- Miyakoshi, N.; Kasukawa, Y.; Linkhart, T.A.; Baylink, D.J.; Mohan, S. Evidence That Anabolic Effects of PTH on Bone Require IGF-I in Growing Mice. Endocrinology 2001, 142, 4349–4356. [Google Scholar] [CrossRef]
- Bikle, D.D.; Sakata, T.; Leary, C.; Elalieh, H.; Ginzinger, D.; Rosen, C.J.; Beamer, W.; Majumdar, S.; Halloran, B.P. Insulin-Like Growth Factor I Is Required for the Anabolic Actions of Parathyroid Hormone on Mouse Bone. J. Bone Miner. Res. 2002, 17, 1570–1578. [Google Scholar] [CrossRef]
- Wang, Y.; Nishida, S.; Boudignon, B.M.; Burghardt, A.; Elalieh, H.Z.; Hamilton, M.M.; Majumdar, S.; Halloran, B.P.; Clemens, T.L.; Bikle, D.D. IGF-I Receptor Is Required for the Anabolic Actions of Parathyroid Hormone on Bone. J. Bone Miner. Res. 2007, 22, 1329–1337. [Google Scholar] [CrossRef]
- Wang, Y.; Menendez, A.; Fong, C.; Elalieh, H.Z.; Chang, W.; Bikle, D.D. Ephrin B2/EphB4 Mediates the Actions of IGF-I Signaling in Regulating Endochondral Bone Formation. J. Bone Miner. Res. 2014, 29, 1900–1913. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Z.; Elalieh, H.Z.; Nakamura, E.; Nguyen, M.T.; MacKem, S.; Clemens, T.L.; Bikle, D.D.; Chang, W. IGF-1R Signaling in Chondrocytes Modulates Growth Plate Development by Interacting with the PTHrP/Ihh Pathway. J. Bone Miner. Res. 2011, 26, 1437–1446. [Google Scholar] [CrossRef]
- Keller, H.; Kneissel, M. SOST Is a Target Gene for PTH in Bone. Bone 2005, 37, 148–158. [Google Scholar] [CrossRef]
- Bellido, T.; Ali, A.A.; Gubrij, I.; Plotkin, L.I.; Fu, Q.; O’Brien, C.A.; Manolagas, S.C.; Jilka, R.L. Chronic Elevation of Parathyroid Hormone in Mice Reduces Expression of Sclerostin by Osteocytes: A Novel Mechanism for Hormonal Control of Osteoblastogenesis. Endocrinology 2005, 146, 4577–4583. [Google Scholar] [CrossRef]
- Drake, M.T.; Srinivasan, B.; Mödder, U.I.; Peterson, J.M.; McCready, L.K.; Riggs, B.L.; Dwyer, D.; Stolina, M.; Kostenuik, P.; Khosla, S. Effects of Parathyroid Hormone Treatment on Circulating Sclerostin Levels in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2010, 95, 5056–5062. [Google Scholar] [CrossRef]
- Masiukiewicz, U.S.; Mitnick, M.; Grey, A.B.; Insogna, K.L. Estrogen Modulates Parathyroid Hormone-Induced Interleukin-6 Production in Vivo and in Vitro. Endocrinology 2000, 141, 2526–2531. [Google Scholar] [CrossRef] [PubMed]
- Grey, A.; Mitnick, M.A.; Masiukiewicz, U.; Sun, B.H.; Rudikoff, S.; Jilka, R.L.; Manolagas, S.C.; Insogna, K. A Role for Interleukin-6 in Parathyroid Hormone-Induced Bone Resorption in Vivo. Endocrinology 1999, 140, 4683–4690. [Google Scholar] [CrossRef] [PubMed]
- Safley, S.A.; Villinger, F.; Jackson, E.H.; Tucker-Burden, C.; Cohen, C.; Weber, C.J. Interleukin-6 Production and Secretion by Human Parathyroids. Clin. Exp. Immunol. 2004, 136, 145. [Google Scholar] [CrossRef]
- Szulc, P.; Schoppet, M.; Goettsch, C.; Rauner, M.; Dschietzig, T.; Chapurlat, R.; Hofbauer, L.C. Endocrine and Clinical Correlates of Myostatin Serum Concentration in Men—The STRAMBO Study. J. Clin. Endocrinol. Metab. 2012, 97, 3700–3708. [Google Scholar] [CrossRef] [PubMed]
- De Martino, V.; Pepe, J.; Biamonte, F.; Colangelo, L.; Di Giuseppe, L.; Nieddu, L.; Occhiuto, M.; Minisola, S.; Cipriani, C. Impairment in Muscle Strength and Its Determinants in Primary Hyperparathyroidism: A Study in Postmenopausal Women. Bone 2023, 166, 116604. [Google Scholar] [CrossRef]
- Silva, B.C.; Bilezikian, J.P. Parathyroid Hormone: Anabolic and Catabolic Actions on the Skeleton. Curr. Opin. Pharmacol. 2015, 22, 41–50. [Google Scholar] [CrossRef]
- Chang, E.; Donkin, S.S.; Teegarden, D. Parathyroid Hormone Suppresses Insulin Signaling in Adipocytes. Mol. Cell. Endocrinol. 2009, 307, 77–82. [Google Scholar] [CrossRef]
- Hurley, M.M.; Okada, Y.; Xiao, L.; Tanaka, Y.; Ito, M.; Okimoto, N.; Nakamura, T.; Rosen, C.J.; Doetschman, T.; Coffin, J.D. Impaired Bone Anabolic Response to Parathyroid Hormone in Fgf2−/− and Fgf2+/− Mice. Biochem. Biophys. Res. Commun. 2006, 341, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Sabbieti, M.G.; Agas, D.; Xiao, L.; Marchetti, L.; Coffin, J.D.; Doetschman, T.; Hurley, M.M. Endogenous FGF-2 Is Critically Important in PTH Anabolic Effects on Bone. J. Cell. Physiol. 2009, 219, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hurley, M.M.; Tetradis, S.; Huang, Y.F.; Hock, J.; Kream, B.E.; Raisz, L.G.; Sabbieti, M.G. Parathyroid Hormone Regulates the Expression of Fibroblast Growth Factor-2 MRNA and Fibroblast Growth Factor Receptor MRNA in Osteoblastic Cells. J. Bone Miner. Res. 1999, 14, 776–783. [Google Scholar] [CrossRef]
- Okada, Y.; Montero, A.; Zhang, X.; Sobue, T.; Lorenzo, J.; Doetschman, T.; Coffin, J.D.; Hurley, M.M. Impaired Osteoclast Formation in Bone Marrow Cultures of Fgf2 Null Mice in Response to Parathyroid Hormone. J. Biol. Chem. 2003, 278, 21258–21266. [Google Scholar] [CrossRef] [PubMed]
- Slavin, B.R.; Sarhane, K.A.; von Guionneau, N.; Hanwright, P.J.; Qiu, C.; Mao, H.Q.; Höke, A.; Tuffaha, S.H. Insulin-Like Growth Factor-1: A Promising Therapeutic Target for Peripheral Nerve Injury. Front. Bioeng. Biotechnol. 2021, 9, 695850. [Google Scholar] [CrossRef]
- McGregor, C.E.; English, A.W. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front. Cell. Neurosci. 2019, 12, 427102. [Google Scholar] [CrossRef]
- Cintron-Colon, A.; Almeida-Alves, G.; Vangyseghem, J.; Spitsbergen, J. GDNF to the Rescue: GDNF Delivery Effects on Motor Neurons and Nerves, and Muscle Re-Innervation after Peripheral Nerve Injuries. Neural Regen. Res. 2022, 17, 748–753. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, Z.; Shen, D.; Gao, L.; Li, Q. Testosterone Levels Positively Linked to Muscle Mass but Not Strength in Adult Males Aged 20–59 Years: A Cross-Sectional Study. Front. Physiol. 2025, 16, 1512268. [Google Scholar] [CrossRef]
- Joassard, O.R.; Durieux, A.C.; Freyssenet, D.G. Β2-Adrenergic Agonists and the Treatment of Skeletal Muscle Wasting Disorders. Int. J. Biochem. Cell Biol. 2013, 45, 2309–2321. [Google Scholar] [CrossRef]
- Rossi, L.; Mota, B.I.; Valadão, P.A.C.; Magalhães-Gomes, M.P.S.; Oliveira, B.S.; Guatimosim, S.; Navegantes, L.C.C.; Miranda, A.S.; Prado, M.A.M.; Prado, V.F.; et al. Influence of Β2-Adrenergic Selective Agonist Formoterol on the Motor Unit of a Mouse Model of a Congenital Myasthenic Syndrome with Complete VAChT Deletion. Neuropharmacology 2024, 260, 110116. [Google Scholar] [CrossRef]
- Chen, C.; Tian, Y.; Wang, J.; Zhang, X.; Nan, L.; Dai, P.; Gao, Y.; Zheng, S.; Liu, W.; Zhang, Y. Testosterone Propionate Can Promote Effects of Acellular Nerve Allograft-Seeded Bone Marrow Mesenchymal Stem Cells on Repairing Canine Sciatic Nerve. J. Tissue Eng. Regen. Med. 2019, 13, 1685–1701. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Song, H.; Shen, J.; Wang, J.; Yang, Y.; Yang, Y.; Cao, J.; Xue, L.; Zhao, F.; Xiao, T.; et al. Functional Role of Skeletal Muscle-Derived Interleukin-6 and Its Effects on Lipid Metabolism. Front. Physiol. 2023, 14, 1110926. [Google Scholar] [CrossRef] [PubMed]
- Kummer, K.K.; Zeidler, M.; Kalpachidou, T.; Kress, M. Role of IL-6 in the Regulation of Neuronal Development, Survival and Function. Cytokine 2021, 144, 155582. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Yao, J.; Li, J.; Zhang, J.; Wang, D.; Zuo, H.; Zhang, Y.; Xu, B.; Zhong, Y.; Shen, F.; et al. Irisin Ameliorates Age-Associated Sarcopenia and Metabolic Dysfunction. J. Cachexia Sarcopenia Muscle 2023, 14, 391–405. [Google Scholar] [CrossRef]
- Liu, S.; Cui, F.; Ning, K.; Wang, Z.; Fu, P.; Wang, D.; Xu, H. Role of Irisin in Physiology and Pathology. Front. Endocrinol. 2022, 13, 962968. [Google Scholar] [CrossRef]
- Südhof, T.C. Calcium Control of Neurotransmitter Release. Cold Spring Harb. Perspect. Biol. 2012, 4, a011353. [Google Scholar] [CrossRef]
- Cho, C.H.; Woo, J.S.; Perez, C.F.; Lee, E.H. A Focus on Extracellular Ca2+ Entry into Skeletal Muscle. Exp. Mol. Med. 2017, 49, e378. [Google Scholar] [CrossRef]
- Kaplan, M.M.; Sultana, N.; Benedetti, A.; Obermair, G.J.; Linde, N.F.; Papadopoulos, S.; Dayal, A.; Grabner, M.; Flucher, B.E. Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation. Cell Rep. 2018, 23, 3891–3904. [Google Scholar] [CrossRef]
- Dierdorf, S.F. Hypocalcemia/Hypercalcemia; McEvoy, M.D., Furse, C.M., Eds.; Oxford University Press: Oxford, UK, 2017; Volume 1. [Google Scholar]
- Allen, B.W.; Somjen, G.G.; Sanders, D.B. Effect of Hypocalcemia on Neuromuscular Function in Cats. In Ion Measurements in Physiology and Medicine; Springer: Berlin/Heidelberg, Germany, 1985; pp. 243–248. [Google Scholar]
- Monti, E.; Reggiani, C.; Franchi, M.V.; Toniolo, L.; Sandri, M.; Armani, A.; Zampieri, S.; Giacomello, E.; Sarto, F.; Sirago, G.; et al. Neuromuscular Junction Instability and Altered Intracellular Calcium Handling as Early Determinants of Force Loss during Unloading in Humans. J. Physiol. 2021, 599, 3037–3061. [Google Scholar] [CrossRef]
- Gifondorwa, D.J.; Thompson, T.D.; Wiley, J.; Culver, A.E.; Shetler, P.K.; Rocha, G.V.; Ma, Y.L.; Krishnan, V.; Bryant, H.U. Vitamin D and/or Calcium Deficient Diets May Differentially Affect Muscle Fiber Neuromuscular Junction Innervation. Muscle Nerve 2016, 54, 1120–1132. [Google Scholar] [CrossRef]
- Breuer, A.C.; Atkinson, M.B. Fast Axonal Transport Alterations in Amyotrophic Lateral Sclerosis (ALS) and in Parathyroid Hormone (PTH)-Treated Axons. Cell Motil. Cytoskelet. 1988, 10, 321–330. [Google Scholar] [CrossRef]
- Kokubu, N.; Tsujii, M.; Akeda, K.; Iino, T.; Sudo, A. BMP-7/Smad Expression in Dedifferentiated Schwann Cells during Axonal Regeneration and Upregulation of Endogenous BMP-7 Following Administration of PTH (1-34). J. Orthop. Surg. 2018, 26, 2309499018812953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, N.; Shao, J.; Wang, L.; Lu, W.W. Bidirectional Control of Parathyroid Hormone and Bone Mass by Subfornical Organ. Neuron 2023, 111, 1914–1932.e6. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.E.; Cardinali, D.P. Effect of Parathyroid Hormone and Calcitonin on Acetylcholine Release in Rat Sympathetic Superior Cervical Ganglion. Brain Res. 1994, 650, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.E.; Cardinali, D.P. Effect of Parathyroid Hormone and Calcitonin on Cholinergic Markers in Rat Parathyroid Gland. J. Neuroendocrinol. 1995, 7, 689–693. [Google Scholar] [CrossRef]
- Gambardella, J.; De Rosa, M.; Sorriento, D.; Prevete, N.; Fiordelisi, A.; Ciccarelli, M.; Trimarco, B.; De Luca, N.; Iaccarino, G. Parathyroid Hormone Causes Endothelial Dysfunction by Inducing Mitochondrial ROS and Specific Oxidative Signal Transduction Modifications. Oxidative Med. Cell. Longev. 2018, 2018, 9582319. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, J.-W.; Lin, J.; Zhu, J.-H.; Lin, Y.-Z.; Wang, X.-X.; Zhou, L.-Y.; Huang, H.-B.; Tian, X.-B. The Stability of Intact Parathyroid Hormone (PTH) in Different Types of Blood Collection Tubes. Clin. Lab. 2022, 68, 463–471. [Google Scholar] [CrossRef]
- Geara, A.S.; Castellanos, M.R.; Bassil, C.; Schuller-Levis, G.; Park, E.; Smith, M.; Goldman, M.; Elsayegh, S. Effects of Parathyroid Hormone on Immune Function. J. Immunol. Res. 2010, 2010, 418695. [Google Scholar] [CrossRef]
- Puliani, G.; Hasenmajer, V.; Simonelli, I.; Sada, V.; Pofi, R.; Minnetti, M.; Cozzolino, A.; Napoli, N.; Pasqualetti, P.; Gianfrilli, D.; et al. Safety and Efficacy of PTH 1-34 and 1-84 Therapy in Chronic Hypoparathyroidism: A Meta-Analysis of Prospective Trials. J. Bone Miner. Res. 2022, 37, 1233–1250. [Google Scholar] [CrossRef]
- Hong, H.; Song, T.; Liu, Y.; Li, J.; Jiang, Q.; Song, Q.; Deng, Z. The Effectiveness and Safety of Parathyroid Hormone in Fracture Healing: A Meta-Analysis. Clinics 2019, 74, e800. [Google Scholar] [CrossRef]
- Qin, W.; Dallas, S.L. Exosomes and Extracellular RNA in Muscle and Bone Aging and Crosstalk. Curr. Osteoporos. Rep. 2019, 17, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, Y.; Chen, Q.; Zhang, H. Exosomal MiRNAs in Muscle-Bone Crosstalk: Mechanistic Links, Exercise Modulation and Implications for Sarcopenia, Osteoporosis and Osteosarcopenia. Metabolism 2025, 170, 156333. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Wang, L.; Zhou, Y.; Zhang, P.; Chen, X. Muscle-Derived Extracellular Vesicles Mediate Crosstalk between Skeletal Muscle and Other Organs. Front. Physiol. 2024, 15, 1501957. [Google Scholar] [CrossRef] [PubMed]
- Vrščaj, L.A.; Marc, J.; Ostanek, B. Interactome of PTH-Regulated MiRNAs and Their Predicted Target Genes for Investigating the Epigenetic Effects of PTH (1–34) in Bone Metabolism. Genes 2022, 13, 1443. [Google Scholar] [CrossRef]
- Mohanakrishnan, V.; Balasubramanian, A.; Mahalingam, G.; Partridge, N.C.; Ramachandran, I.; Selvamurugan, N. Parathyroid Hormone-Induced down-Regulation of MiR-532-5p for Matrix Metalloproteinase-13 Expression in Rat Osteoblasts. J. Cell. Biochem. 2018, 119, 6181–6193. [Google Scholar] [CrossRef]
- Evenson, A.; Mitchell, J.; Wei, W.; Poylin, V.; Parangi, S.; Hasselgren, P.O. The Gene Expression and Activity of Calpains and the Muscle Wasting-Associated Ubiquitin Ligases, Atrogin-1 and MuRF1, Are Not Altered in Patients with Primary Hyperparathyroidism. Int. J. Mol. Med. 2006, 18, 471–475. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.H.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef]
- Hu, L.; Chen, W.; Qian, A.; Li, Y.P. Wnt/β-Catenin Signaling Components and Mechanisms in Bone Formation, Homeostasis, and Disease. Bone Res. 2024, 12, 39. [Google Scholar] [CrossRef]
- Lin, W.; Chow, S.K.H.; Cui, C.; Liu, C.; Wang, Q.; Chai, S.; Wong, R.M.Y.; Zhang, N.; Cheung, W.H. Wnt/β-Catenin Signaling Pathway as an Important Mediator in Muscle and Bone Crosstalk: A Systematic Review. J. Orthop. Transl. 2024, 47, 63–73. [Google Scholar] [CrossRef]
- Lin, F.X.; Gu, H.Y.; He, W. MAPK Signaling Pathway in Spinal Cord Injury: Mechanisms and Therapeutic Potential. Exp. Neurol. 2025, 383, 115043. [Google Scholar] [CrossRef]
- Zhu, W.; Ming, P.; Zhang, S.; Qiu, J. Role of MAPK/JNK Signaling Pathway on the Regulation of Biological Behaviors of MC3T3-E1 Osteoblasts under Titanium Ion Exposure. Mol. Med. Rep. 2020, 22, 4792–4800. [Google Scholar] [CrossRef]
- Brennan, C.M.; Emerson, C.P.; Owens, J.; Christoforou, N. P38 MAPKs—Roles in Skeletal Muscle Physiology, Disease Mechanisms, and as Potential Therapeutic Targets. JCI Insight 2021, 6, e149915. [Google Scholar] [CrossRef]
- Park, Y.J.; Yoo, S.A.; Kim, M.; Kim, W.U. The Role of Calcium–Calcineurin–NFAT Signaling Pathway in Health and Autoimmune Diseases. Front. Immunol. 2020, 11, 455685. [Google Scholar] [CrossRef]
- Kipanyula, M.J.; Kimaro, W.H.; Etet, P.F.S. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J. Aging Res. 2016, 2016, 5081021. [Google Scholar] [CrossRef]
In Vitro/Ex Vivo | |||
Treatment | Cell Model | Mechanism | Ref. |
100 nM PTH | FAPs and C2C12 coculture |
| [142] |
PTH (1–84) from 10−6 to 10−12 mol/L | hSCs | Promotes the myogenic differentiation process | [143] |
1–1000 nM PTH (1–34) | 3T3-L1, MCF7, C2C12, MC3T3-E1, G8 |
| [144] |
10−10 M to 10−8 M PTH (1–34) | C2C12, MC3T3-E1 | r-Irisin leads to a 50% downregulation of PTH-r mRNA expression compared with untreated cells | [145] |
0.1 pM, 1 pM, 10 pM and 100 pM PTH (1–34) | C2 | Modulates muscle cell uptake and retention of 25(OH)D3 | [146] |
20 nM rat PTH (1–34) | C2C12 and ZHTc6-MyoD | Accelerates myocyte differentiation | [9] |
PTH (1–34) and PTH (1–84) | Rat skeletal muscle | Increases the release of alanine and glutamine | [140] |
In vivo | |||
Treatment | Animal model | Mechanism | Ref. |
30 μg/kg teriparatide 3 times a week for 4 or 8 weeks | 9-week-old Sprague Dawley rats |
| [142] |
80 μg/kg of PTH (1–34) three times a week for 20 weeks | 8-week-old female WT C57BL/6J mice |
| [144] |
30 µg/kg TPTD, 3 days/week | 7-month-old female Wistar rats | Improves bone, skeletal muscle, and fat mass | [147] |
150 μg/kg body weight/day of PTH (1–34), daily | 4-week-old C57BL/10ScSn-Dmdmdx/J (Mdx) and C57BL/10SnJ wild-type (WT), male mice |
| [148] |
PTH (1–34) 60 μg/kg/day, 5 days a week | 12–14-week-old female Wistar rats |
| [149] |
60 μg/kg/d of PTH for 59 days | 4-week-old Mdx mice | Improved the muscle strength and histological characteristics of the skeletal muscle | [9] |
PTH (40 μg/kg BW/day) every other day for 1–35 days | 3-month-old female Sprague–Dawley rats | No impacts on muscle weight or muscle fiber size | [150] |
1–84 or 1–34 PTH, 200 U/day, for 4 days | Sprague Dawley rats weighing 150 to 200 g | Decreases energy production, transfer, and utilization | [141] |
PTH (1–34) and PTH (1–84) | Sprague Dawley rats | In primary hyperparathyroidism and chronic uremia, PTH may directly impact muscle dysfunction and wasting | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.-L.; Lee, K.-B.; Moon, Y.J. Parathyroid Hormone as a Modulator of Skeletal Muscle: Insights into Bone–Muscle and Nerve–Muscle Interactions. Int. J. Mol. Sci. 2025, 26, 7060. https://doi.org/10.3390/ijms26157060
Nguyen V-L, Lee K-B, Moon YJ. Parathyroid Hormone as a Modulator of Skeletal Muscle: Insights into Bone–Muscle and Nerve–Muscle Interactions. International Journal of Molecular Sciences. 2025; 26(15):7060. https://doi.org/10.3390/ijms26157060
Chicago/Turabian StyleNguyen, Vinh-Lac, Kwang-Bok Lee, and Young Jae Moon. 2025. "Parathyroid Hormone as a Modulator of Skeletal Muscle: Insights into Bone–Muscle and Nerve–Muscle Interactions" International Journal of Molecular Sciences 26, no. 15: 7060. https://doi.org/10.3390/ijms26157060
APA StyleNguyen, V.-L., Lee, K.-B., & Moon, Y. J. (2025). Parathyroid Hormone as a Modulator of Skeletal Muscle: Insights into Bone–Muscle and Nerve–Muscle Interactions. International Journal of Molecular Sciences, 26(15), 7060. https://doi.org/10.3390/ijms26157060