Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = murine and human B cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13539 KB  
Article
Trained Immunity in Bladder ILC3s Enhances Mucosal Defense Against Recurrent Urinary Tract Infections
by Qiaoqiao Pei, Jiaqi Liu, Ziwen Tang, Jiaqing Tan, Xu Han, Xinrong Hu, Zhou Liang, Feng Li, Changjian Zhu, Ruoni Lin, Ruilin Zheng, Jiani Shen, Qinghua Liu, Haiping Mao, Kefei Wu, Wei Chen and Yi Zhou
Biomedicines 2026, 14(1), 78; https://doi.org/10.3390/biomedicines14010078 - 30 Dec 2025
Viewed by 338
Abstract
Background: Urinary tract infections (UTIs) rank among the most prevalent infectious diseases globally, with recurrent UTIs (rUTIs) posing substantial therapeutic challenges due to the lack of durable protective immunity. While trained immunity augments innate immune responses, its induction and functional significance in [...] Read more.
Background: Urinary tract infections (UTIs) rank among the most prevalent infectious diseases globally, with recurrent UTIs (rUTIs) posing substantial therapeutic challenges due to the lack of durable protective immunity. While trained immunity augments innate immune responses, its induction and functional significance in bladder-resident group 3 innate lymphoid cells (ILC3s) remain unknown. This study investigates whether ILC3s develop trained immunity following uropathogenic Escherichia coli (UPEC) exposure and how they contribute to mucosal defense against rUTIs. Methods: The ILC3 counts were detected in bladder sections from UTI patients and health controls (HC). A recurrent UTI mouse model was established through primary and secondary urethral UPEC inoculation. Bacterial loads in tissues were assessed, and single-cell suspensions were analyzed via flow cytometry. Bladder naïve- and UPEC-trained ILC3s were adoptively transferred, with evaluations of histopathology, epithelial barrier function, inflammation, and antimicrobial peptides. The in vitro ILC3 cell line MNK-3 was detected for IL-17A and IL-22 production following primary and secondary UPEC lysate stimulation. Results: We demonstrate that primary UPEC infection triggers ILC3 expansion in both human and murine bladders. Upon secondary challenge, these ILC3s develop trained immunity, characterized by enhanced proliferation, amplified IL-17A and IL-22 production, and improved pathogen clearance. Mechanistically, trained ILC3s reinforce urothelial barrier integrity through upregulation of antimicrobial peptides (Reg3b/Reg3g) and attenuate inflammatory pathology by suppressing pro-inflammatory cytokines (IL-6, TNF-α). Conclusions: We uncover an endogenous defense mechanism wherein UPEC primes bladder ILC3s via trained immunity, enabling amplified IL-17A- and IL-22-mediated protection against recurrent infections. These findings establish ILC3-trained immunity as a novel conceptual foundation, providing a basis for developing immunotherapies against rUTIs. Full article
(This article belongs to the Special Issue Advances in Pathogenesis and Treatment of Infectious Diseases)
Show Figures

Figure 1

18 pages, 6505 KB  
Article
Pre-Treatment with Dacarbazine Sensitizes B16 Melanoma to CAR T Cell Therapy in Syngeneic Mouse Model
by Egor A. Emelianov, Elizaveta R. Naberezhnaya, Andrey S. Logvinov, Valeria M. Stepanova, Aleksandr S. Chernov, Yuliana A. Mokrushina, Diana M. Malabuiok, Dmitry E. Pershin, Ekaterina A. Malakhova, Elena A. Kulakovskaya, Tatiana N. Prokofeva, Victor V. Tatarskiy, Elena I. Shramova, Sergey M. Deyev, Alexander G. Gabibov, Nikolay E. Kushlinskii, Yury P. Rubtsov and Dmitry V. Volkov
Int. J. Mol. Sci. 2026, 27(1), 189; https://doi.org/10.3390/ijms27010189 - 24 Dec 2025
Viewed by 253
Abstract
Adoptive cell therapy (ACT) with T cells modified with a chimeric antigen receptor (CAR T cells) has dramatically improved outcomes in hematologic cancers. However, its efficacy in solid tumors, such as melanoma, is hampered by several factors. These include heterogeneous expression of tumor-associated [...] Read more.
Adoptive cell therapy (ACT) with T cells modified with a chimeric antigen receptor (CAR T cells) has dramatically improved outcomes in hematologic cancers. However, its efficacy in solid tumors, such as melanoma, is hampered by several factors. These include heterogeneous expression of tumor-associated antigens (TAA) and an immunosuppressive, profibrotic tumor microenvironment (TME), which restricts cytotoxic CAR T cells trafficking into the tumor, as well as their persistence and cytolytic activity. As a result, responses to CAR T cell monotherapy in melanoma and other solid tumors are typically weak, transient or even absent. Emerging evidence suggests that combining traditional chemotherapy with CAR T cell therapy can enhance the antitumor activity of CAR T cells in solid malignancies. Partial tumor cell killing by chemotherapy improves access to TAA and disrupts the TME by affecting the global structure of the tumor tissue. Here, we developed an immunocompetent syngeneic B16 melanoma mouse model to test a combination of classical dacarbazine (DTIC) chemotherapy with ACT with murine CAR T cells. B16-F10 (next as B16) melanoma cells were modified to express a human/murine hybrid epidermal growth factor receptor (EGFR) recognized by a murine CAR bearing a single-chain variable fragment (scFv) derived from cetuximab, an anti-EGFR monoclonal antibody approved for the treatment of colorectal and certain other solid tumors. Prior to CAR T cells administration, cyclophosphamide (CPA) pre-conditioning was used. We demonstrated that DTIC therapy followed by infusion of murine CAR T cells targeting the human/murine hybrid EGFR (EGFR mCAR T cells) provided superior tumor control and prolonged survival compared to monotherapy with either DTIC or EGFR mCAR T cells alone. These findings support the potential feasibility of a combined therapeutic strategy for human melanoma involving DTIC treatment followed by EGFR CAR T cells infusion after CPA pre-conditioning. Full article
(This article belongs to the Special Issue Chimeric Antigen Receptors Against Cancers and Autoimmune Diseases)
Show Figures

Graphical abstract

31 pages, 1883 KB  
Review
Refining Mouse Models of Gaucher Disease: Advancing Mechanistic Insights, Biomarker Discovery, and Therapeutic Strategies
by Nima Fattahi, Jiapeng Ruan, Glenn Belinsky, Shu Xing, Pramod K. Mistry and Shiny Nair
Int. J. Mol. Sci. 2025, 26(24), 11915; https://doi.org/10.3390/ijms262411915 - 10 Dec 2025
Viewed by 542
Abstract
Gaucher disease (GD), caused by biallelic pathogenic variants in GBA1, has evolved from being understood as a macrophage-restricted lysosomal disorder to a multisystem condition involving neuroinflammation, immune dysregulation, and cell-type-specific lipid toxicity. This expanded view has driven a parallel progression in GD [...] Read more.
Gaucher disease (GD), caused by biallelic pathogenic variants in GBA1, has evolved from being understood as a macrophage-restricted lysosomal disorder to a multisystem condition involving neuroinflammation, immune dysregulation, and cell-type-specific lipid toxicity. This expanded view has driven a parallel progression in GD mouse model development. Early chemically induced and germline knockout models provided foundational insights but were limited by perinatal lethality or incomplete phenotypic fidelity. Subsequent generations of conditional, inducible, and lineage-specific models enabled dissection of visceral and neuronopathic manifestations and clarified the contributions of macrophages, B cells, neurons, microglia, osteoblasts, and endothelial cells to disease pathogenesis. More recent humanized immune and gene-edited platforms, together with multi-omics integration, now allow modeling of genotype-specific biology and therapeutic response with greater translational precision. In this review, we synthesize the evolution of GD mouse models across these eras, evaluate their strengths and limitations, and highlight species-specific challenges including differences in lipid metabolism, immune architecture, and the absence of the GBAP1 pseudogene in mice that influence interpretation and clinical translation. We outline emerging strategies for incorporating patient-derived mutations, modifier pathways, and clinically meaningful endpoints into future models. Our aim is to provide a coherent framework that bridges murine and human GD biology and supports the development of more predictive platforms to accelerate mechanistic discovery, biomarker development, and therapeutic innovation across all subtypes of GD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

37 pages, 8927 KB  
Article
An Ongoing Search for Multitarget Ligands as Potential Agents for Diabetes Mellitus and Its Long-Term Complications: New Insights into (5-Arylidene-4-oxothiazolidin-3-yl)alkanoic Acid Derivatives
by Rosanna Maccari, Rosaria Ottanà, Valerij Talagayev, Roberta Moschini, Francesco Balestri, Francesca Felice, Francesca Iannuccilli, Gemma Sardelli, Rebecca Sodano, Gerhard Wolber, Paolo Paoli and Antonella Del Corso
Pharmaceuticals 2025, 18(12), 1863; https://doi.org/10.3390/ph18121863 - 5 Dec 2025
Viewed by 488
Abstract
Background: Diabetes mellitus is a multifactorial disease characterized by complex metabolic dysfunctions and chronic complications induced by hyperglycaemia. The design of multitarget ligands, capable of simultaneously controlling different pathogenic processes, was proposed as a promising approach to identify novel antidiabetic drugs endowed [...] Read more.
Background: Diabetes mellitus is a multifactorial disease characterized by complex metabolic dysfunctions and chronic complications induced by hyperglycaemia. The design of multitarget ligands, capable of simultaneously controlling different pathogenic processes, was proposed as a promising approach to identify novel antidiabetic drugs endowed with improved efficacy. Methods: (5-Arylidene-4-oxothiazolidin-3-yl)alkanoic acid derivatives 1ag and 2ag were synthesized as potential multitarget antidiabetic agents. They were tested in vitro as inhibitors of both human recombinant AKR1B1 and PTP1B, and kinetic studies and molecular docking simulations for both enzymes were performed. Their effects on cellular glucose uptake, insulin signalling, and mitochondrial potential were assayed in cultures of murine C2C12 myocytes. A lipid accumulation assay was performed in HepG2 liver cells. The effects on high glucose-induced sorbitol accumulation were evaluated in lens HLE and retinal MIO-M1 cells. Results: All compounds displayed excellent AKR1B1 inhibitory activity (IC50 0.03–0.46 μM 1ag; IC50 0.48–6.30 μM 2ag); 1g and 2eg also appreciably inhibited PTP1B at micromolar concentrations. Propanoic derivatives 2eg significantly stimulated glucose uptake in C2C12 myocytes, in an insulin-independent way, reduced lipid accumulation in HepG2 liver cells, and caused hyperpolarization of C2C12 mitochondria at 10 μM concentration. Derivative 2e significantly reduced sorbitol accumulation in both HLE and MIO-M1 cells at a 5 μM concentration. Conclusions: The results reported here provided new insights into the mechanisms of action and structure/activity relationships of 4-thiazolidinone derivatives, underscoring the capability of compounds 2eg of eliciting insulin-mimetic effects independent of hormone signalling. Among them, compound 2e also proved to inhibit AKR1B1-dependent sorbitol accumulation and, thus, emerged as a promising multitarget agent that can be considered for further investigations. Full article
(This article belongs to the Special Issue Antidiabetic Agents: New Drug Discovery Insights and Prospects)
Show Figures

Graphical abstract

21 pages, 3493 KB  
Article
Downregulation of the CCK-B Receptor in Pancreatic Stellate Cells Blocks Molecular Proliferative Pathways and Increases Apoptosis to Decrease Pancreatic Cancer Growth In Vitro
by Miranda Ortega, Eri Agena, Wenqiang Chen, Hong Cao, Sona Vasudevan, Narayan Shivapurkar, Mariaelena Pierobon and Jill P. Smith
Int. J. Mol. Sci. 2025, 26(23), 11699; https://doi.org/10.3390/ijms262311699 - 3 Dec 2025
Viewed by 528
Abstract
Pancreatic cancer is characterized by an extensive fibrotic stroma largely driven by activated pancreatic stellate cells (PSCs)/fibroblasts, which also function to support tumor growth and metastasis. Cholecystokinin-B receptors (CCK-BRs) are expressed on pancreatic stellate cells (PSCs) and have emerged as a key regulator [...] Read more.
Pancreatic cancer is characterized by an extensive fibrotic stroma largely driven by activated pancreatic stellate cells (PSCs)/fibroblasts, which also function to support tumor growth and metastasis. Cholecystokinin-B receptors (CCK-BRs) are expressed on pancreatic stellate cells (PSCs) and have emerged as a key regulator of PSC activation and tumor-stromal interactions. We hypothesized that disrupting CCK-BR function shifts PSCs to a more quiescent phenotype and reduces their pro-fibrotic and tumor-supportive activity to decrease growth of pancreatic cancer. Murine PSCs were genetically engineered with CRISPR-Cas9 to knockout the CCK-BR. In a series of experiments, the role of the CCK-BR expression was evaluated on cell migration, proliferation, differentially expressed genes, molecular signaling pathways, and in co-culture with murine pancreatic cancer epithelial cells. Next, primary human pancreatic stellate cells were treated with proglumide, a CCK-BR antagonist, to study the effects of pharmacologic blockade of the CCK-BR on cellular signaling and proliferative pathways by RNA sequencing. Knockout of the CCK-BR led to significant decreases in PSC activation and the ability to stimulate growth of pancreatic cancer cells in co-culture. Both genetic knockdown and pharmacologic blockade of the CCK-BR downregulated genes implicated in fibrosis, proliferation, fibroblast activation, and tumorigenesis, while genes implicated in apoptosis and tumor suppression were upregulated. Flow cytometry showed increased apoptosis markers in CCK-BR-knockout cells compared to controls. These experiments combine transcriptomic profiling with functional validation to provide a comprehensive analysis of how targeting CCK-BR interrupts the cross-communication between cancer cells and fibroblasts. Blockade or downregulation of the CCK-BR on pancreatic fibroblasts may provide a strategy to disrupt oncogenic signaling pathways and reprogram the tumor microenvironment. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

21 pages, 4254 KB  
Article
“Hyphae Intertwined, Biomolecules Co-Born”—New Polyketides Induction by Co-Culture of the Mangrove Endophytic Fungus Phomopsis asparagi DHS-48 and Pestalotiopsis sp. HHL-101 at Both Volatile and Non-Volatile Levels
by Ting Feng, Xiaojing Li, Zhenyi Liang and Jing Xu
Mar. Drugs 2025, 23(12), 452; https://doi.org/10.3390/md23120452 - 26 Nov 2025
Viewed by 566
Abstract
The co-culture technique, mimicking natural microbial interactions, has proven to be successful at activating silent biosynthetic gene clusters (BGCs) to produce novel metabolites or enhance the yield of specific metabolites. To effectively decode induction processes, it is critical to have a comprehensive understanding [...] Read more.
The co-culture technique, mimicking natural microbial interactions, has proven to be successful at activating silent biosynthetic gene clusters (BGCs) to produce novel metabolites or enhance the yield of specific metabolites. To effectively decode induction processes, it is critical to have a comprehensive understanding of intermicrobial interactions across both volatile and non-volatile metabolomes. As part of our attempt to uncover structurally unique and biologically active natural products from mangrove endophytic fungi, Phomopsis asparagi DHS-48 was co-cultured with another mangrove fungal strain, Pestalotiopsis sp. HHL-101. The competition interaction of the two strains was investigated using morphology and scanning electron microscopy (SEM), and it was discovered that the mycelia of the DHS-48 and HHL-101 compressed and tangled with each other in the co-culture system, forming an interwoven pattern. To profile volatile-mediated chemical interactions during fungal co-culture, headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) coupled with orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted. Meanwhile, non-volatile metabolites from both liquid and solid small-scale co-cultures were profiled via HPLC. Two new polyketides, named phaseolorin K (1) and pestaphthalide C (7), together with 11 known compounds (26, 813), were characterized from solid-state co-cultivation extracts of these two titled strains. Their planar structures were established by analysis of HRMS, MS/MS, and NMR spectroscopic data, while absolute configurations were assigned using ECD calculations. Co-culture feeding experiments demonstrated that DHS-48 exerts antagonistic activity against HHL-101 through altering its hyphal morphology, which mediated enhanced biosynthesis of non-volatile antimicrobial metabolites 5 and 6. Biological assays revealed that compounds 46 exhibited potent in vitro cytotoxicity against human cancer cell lines HeLa and HepG2, compared to the positive controls adriamycin and fluorouracil. Compound 2 moderately inhibited the proliferation of ConA-induced T and LPS-induced B murine spleen lymphocytes. Full article
(This article belongs to the Special Issue Advances in Secondary Metabolites from Mangrove Holobiont)
Show Figures

Graphical abstract

19 pages, 4355 KB  
Article
6-Isoprenylindole-3-carboxylic Acid with an Anti-Melanogenic Activity from a Marine-Derived Streptomyces sp. APA-053
by Minjeong Kim, Eun-Young Lee, Ga-Eun Shin, Jungwook Chin, Hongchan An, Sang-Jip Nam and Kyung-Min Lim
Mar. Drugs 2025, 23(12), 448; https://doi.org/10.3390/md23120448 - 21 Nov 2025
Viewed by 767
Abstract
In this study, we report the isolation of the known compound 6-isoprenylindole-3-carboxylic acid (SJ196), a prenylated indole derivative, from a marine Streptomyces sp., APA053, and its potent anti-melanogenic activity. SJ196 showed ABTS and DPPH radical scavenging activities and cellular antioxidant activities, significantly suppressing [...] Read more.
In this study, we report the isolation of the known compound 6-isoprenylindole-3-carboxylic acid (SJ196), a prenylated indole derivative, from a marine Streptomyces sp., APA053, and its potent anti-melanogenic activity. SJ196 showed ABTS and DPPH radical scavenging activities and cellular antioxidant activities, significantly suppressing cytoplasmic and mitochondrial reactive oxygen species (ROS) in B16F10 murine melanoma cells. Furthermore, SJ196 reduced both intracellular and extracellular melanin content without cytotoxicity. These effects coincided with suppression of intracellular signal transduction for melanogenesis, significantly reducing phosphorylation of ERK, JNK, and p38 MAPK, and attenuating the expression of MITF and melanogenic enzymes (TYR, TRP-1, and TRP-2). Importantly, in a three-dimensional human skin model (MelanoDerm™), SJ196 exhibited a skin-lightening effect, as evidenced by dose-dependent increases in skin brightness and histological confirmation. Collectively, we demonstrated that SJ196 is a potent anti-melanogenic marine compound that acts through antioxidant activity and MAPK-MITF pathway suppression, suggesting its therapeutic potential for the treatment of age-related hyperpigmentation disorders. Full article
(This article belongs to the Special Issue Marine Natural Products with Anti-aging Activity)
Show Figures

Graphical abstract

21 pages, 5883 KB  
Article
Phase Separation Competent TIA1 Couples Glycolytic Shutdown to CD8+ T-Cell Activation and Shapes the Efficacy of Intravesical BCG in Bladder Cancer
by Wenwen Zhang, Kailiang Zhou, Pinru Chen, Xuanshuang Du and Min Liu
Biology 2025, 14(11), 1576; https://doi.org/10.3390/biology14111576 - 11 Nov 2025
Viewed by 821
Abstract
Metabolic immune evasion is a major factor limiting the long-term efficacy of intravesical Bacillus Calmette–Guérin (BCG) therapy in non-muscle-invasive bladder cancer (NMIBC). TIA1 is a stress granule RNA-binding protein with liquid–liquid phase separation (LLPS) capacity. Its role in tumor metabolism and immunotherapy response [...] Read more.
Metabolic immune evasion is a major factor limiting the long-term efficacy of intravesical Bacillus Calmette–Guérin (BCG) therapy in non-muscle-invasive bladder cancer (NMIBC). TIA1 is a stress granule RNA-binding protein with liquid–liquid phase separation (LLPS) capacity. Its role in tumor metabolism and immunotherapy response has been unclear. Here, we demonstrated that high TIA1 expression was independently associated with favorable survival across multiple cohorts. Full-length TIA1 formed cytoplasmic condensates, repressed LDHA/PKM2/HK2, reduced lactate, and lowered extracellular acidification. A condensate-defective ΔLCD (deletion of the low-complexity domain) mutant was inactive. TIA1 showed physical association with these glycolytic mRNAs in human cells, consistent with mRNA-linked control. Condensate-competent TIA1 promoted CD8+ T-cell proliferation, increased CD69 and Granzyme-B, and reduced PD-1 in co-culture. TIMER (Tumor Immune Estimation Resource) and spatial-omics supported co-localization with tumoral CD8A. BCG induced this metabolic–immune signature in cell lines, murine models, and patient explants, but the effects were abolished by TIA1 knock-down. Conversely, TIA1 over-expression alone limited tumor growth and recapitulated BCG-mediated glycolytic restraint and T-cell activation. Together, these results support an LLPS-linked, mRNA-associated regulation of tumor glycolysis. BCG-driven glycolytic suppression and CD8+ T cell activation track with the condensate-forming capacity of TIA1. TIA1 emerges as a prognostic biomarker and a potential therapeutic axis to improve intravesical immunotherapy in NMIBC. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Graphical abstract

23 pages, 995 KB  
Review
Immunopathogenesis of Systemic Lupus Erythematosus: Interplay of Innate and Adaptive Immunity, Microbiome Dysbiosis, and Emerging Therapeutic Targets
by Arslan Ahmed, Siru Li, Jane J. Yu and Wen-Hai Shao
Pathophysiology 2025, 32(4), 61; https://doi.org/10.3390/pathophysiology32040061 - 10 Nov 2025
Viewed by 2787
Abstract
Systemic lupus erythematosus is a multifactorial autoimmune disease characterized by the dysregulation of both innate and adaptive immunity, resulting in chronic inflammation, autoantibody production, and multi-organ damage. Innate immune dysfunction involves macrophages, neutrophils, plasmacytoid dendritic cells, natural killer cells, and the complement system, [...] Read more.
Systemic lupus erythematosus is a multifactorial autoimmune disease characterized by the dysregulation of both innate and adaptive immunity, resulting in chronic inflammation, autoantibody production, and multi-organ damage. Innate immune dysfunction involves macrophages, neutrophils, plasmacytoid dendritic cells, natural killer cells, and the complement system, which collectively amplify autoimmunity through defective clearance of apoptotic cells, overproduction of pro-inflammatory cytokines, and abnormal type I interferon signaling. Adaptive immune abnormalities, including skewed T-cell subsets, impaired regulatory T and B cells, and autoreactive B-cell hyperactivity, further perpetuate pathogenic autoantibody generation. Gut microbiota dysbiosis contributes to SLE pathogenesis via Th17 activation, loss of mucosal tolerance, and molecular mimicry mechanisms. This review synthesizes current knowledge on the immunopathogenesis of SLE, emphasizing the interplay between innate and adaptive immunity and integrating evidence from both human and experimental murine models to provide a comprehensive understanding of disease mechanisms. Full article
Show Figures

Figure 1

17 pages, 2564 KB  
Article
Stimuli-Sensitive Platinum-Based Anticancer Polymer Therapeutics: Synthesis and Evaluation In Vitro
by Kateřina Běhalová, Martin Studenovský, Kevin Kotalík, Rafal Konefal, Marek Kovář and Tomáš Etrych
Pharmaceutics 2025, 17(11), 1433; https://doi.org/10.3390/pharmaceutics17111433 - 5 Nov 2025
Viewed by 634
Abstract
Background/Objectives: Here, we report the design, synthesis, and in vitro biological evaluation of a novel stimuli-sensitive nanotherapeutics based on cisplatin analog, cis-[PtCl2(NH3)(2-(3-oxobutyl)pyridine)] (Pt-OBP), covalently linked to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer via a pH-sensitive hydrazone bond. Methods: Two [...] Read more.
Background/Objectives: Here, we report the design, synthesis, and in vitro biological evaluation of a novel stimuli-sensitive nanotherapeutics based on cisplatin analog, cis-[PtCl2(NH3)(2-(3-oxobutyl)pyridine)] (Pt-OBP), covalently linked to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer via a pH-sensitive hydrazone bond. Methods: Two polymer–drug conjugates, P-Pt-A and P-Pt-B, were synthesized, differing in spacer length between the polymer chain and hydrazone bond, which in turn modulates their drug release kinetics. Results: The spacer based on hydrazone bond demonstrated satisfactory stability under blood-mimicking conditions while enabling selective release of the active drug intracellularly or even in the mildly acidic tumor microenvironment. Pt-OBP exhibits comparable or even superior cytostatic and cytotoxic activity to carboplatin across a panel of murine and human cancer cell lines, with the highest potency observed in FaDu cells representing human head and neck squamous cell carcinoma. Mechanistically, Pt-OBP induced significant phosphorylation of γ-H2AX and activation of caspase-3, indicating its ability to cause DNA damage with subsequent apoptosis induction. P-Pt-A retained moderate biological activity, whereas the slower-releasing P-Pt-B exhibited reduced potency in vitro, consistent with its drug release profile. Conclusions: Notably, free Pt-OBP induced rapid apoptotic cell death, surpassing carboplatin at early time points, and the polymeric conjugates achieved comparable pro-apoptotic activity after extended incubation, suggesting effective intracellular release of the active drug. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

11 pages, 3735 KB  
Communication
Topical Administration of a Mixed Microbial Culture of Lactobacillus paracasei, Pichia membranifaciens and Saccharomyces cerevisiae Significantly Inhibits the Development of Atopic Dermatitis in a Mouse Model Through IL-10 Overexpression by Dendritic Cells
by Mao Kaneki, Chiharu Ohira, Tensei Magami, Aika Hamauzu, Yukari Inaba, Hideo Togase and Tomoki Fukuyama
Biomedicines 2025, 13(10), 2536; https://doi.org/10.3390/biomedicines13102536 - 17 Oct 2025
Viewed by 939
Abstract
Background/Objectives: In this study, we focused on a mixed microbial culture of Lactobacillus paracasei, Pichia membranifaciens, and Saccharomyces cerevisiae (LS) as a new probiotic and examined the therapeutic and preventive effects of topical treatment with LS in a mouse model [...] Read more.
Background/Objectives: In this study, we focused on a mixed microbial culture of Lactobacillus paracasei, Pichia membranifaciens, and Saccharomyces cerevisiae (LS) as a new probiotic and examined the therapeutic and preventive effects of topical treatment with LS in a mouse model of atopic dermatitis (AD). Methods: Immunomodulatory effects of LS were examined with murine dendritic cell lines (DC2.4) by measuring the interleukin (IL)-10 and tumor necrosis factor (TNF) α levels. The anti-inflammatory effects of LS were evaluated in stimulated human epidermal keratinocytes (HaCaTs) by focusing on the production of IL-8 and thymus and activation-regulated chemokine (TARC). Therapeutic and preventive properties of topical treatment with LS (10%) were finally examined in a mouse model of AD developed by topical sensitization to house dust mite ointment. Clinical symptoms, back skin thickness, and transepidermal water loss (TEWL) were monitored weekly, and the immune responses in the auricular lymph nodes were analyzed after necropsy. Results: LS treatment significantly enhanced the secretions of IL-10 and TNFα by DC2.4 cells. IL-8 and TARC production by stimulated HaCaT cells was significantly decreased by co-culturing with LS. Although there were no significant changes in clinical symptoms, skin thickness, or TEWL in the therapeutic setting of the AD mouse model, the number of IgE-positive B cells and IL-4 levels in the local lymph nodes significantly decreased in the LS treatment group. Preventive treatment with LS significantly decreased AD symptoms compared to those in AD control mice. Conclusions: Our findings indicate that the immunomodulatory and anti-inflammatory effects of LS prevent the development of AD. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

23 pages, 8340 KB  
Article
Chemotherapy Liberates a Broadening Repertoire of Tumor Antigens for TLR7/8/9-Mediated Potent Antitumor Immunity
by Cheng Zu, Yiwei Zhong, Shuting Wu and Bin Wang
Cancers 2025, 17(19), 3277; https://doi.org/10.3390/cancers17193277 - 9 Oct 2025
Viewed by 842
Abstract
Background: Most immunologically “cold” tumors do not respond durably to checkpoint blockade because tumor antigen (TA) release and presentation are insufficient to prime effective T-cell immunity. While prior work demonstrated synergy between cisplatin and a TLR7/8/9 agonist (CR108) in 4T1 tumors, the underlying [...] Read more.
Background: Most immunologically “cold” tumors do not respond durably to checkpoint blockade because tumor antigen (TA) release and presentation are insufficient to prime effective T-cell immunity. While prior work demonstrated synergy between cisplatin and a TLR7/8/9 agonist (CR108) in 4T1 tumors, the underlying mechanism—particularly whether chemotherapy functions as a broad antigen-releasing agent enabling TLR-driven immune amplification—remained undefined. Methods: Using murine models of breast (4T1), melanoma (B16-F10), and colorectal cancer (CT26), we tested multiple chemotherapeutic classes combined with CR108. We quantified intratumoral and systemic soluble TAs, antigen presentation and cross-priming by antigen-presenting cells, tumor-infiltrating lymphocytes, and cytokine production by flow cytometry/ICS. T-cell receptor β (TCRβ) repertoire dynamics in tumor-draining lymph nodes were profiled to assess amplitude and breadth. Tumor microenvironment remodeling was analyzed, and public datasets (e.g., TCGA basal-like breast cancer) were interrogated for expression of genes linked to TA generation/processing and peptide loading. Results: Using cisplatin + CR108 in 4T1 as a benchmark, we demonstrate that diverse chemotherapies—especially platinum agents—broadly increase the repertoire of soluble tumor antigens available for immune recognition. Across regimens, chemotherapy combined with CR108 increased T-cell recognition of candidate TAs and enhanced IFN-γ+ CD8+ responses, with platinum agents producing the largest expansions in soluble TAs. TCRβ sequencing revealed increased clonal amplitude without loss of repertoire breadth, indicating focused yet diverse antitumor T-cell expansion. Notably, therapeutic efficacy was not predicted by canonical damage-associated molecular pattern (DAMP) signatures but instead correlated with antigen availability and processing capacity. In human basal-like breast cancer, higher expression of genes involved in TA generation and antigen processing/presentation correlated with improved survival. Conclusions: Our findings establish an antigen-centric mechanism underlying chemo–TLR agonist synergy: chemotherapy liberates a broadened repertoire of tumor antigens, which CR108 then leverages via innate immune activation to drive potent, T-cell-mediated antitumor immunity. This framework for rational selection of chemotherapy partners for TLR7/8/9 agonism and support clinical evaluation to convert “cold” tumors into immunologically responsive disease. Full article
Show Figures

Figure 1

13 pages, 1851 KB  
Article
The Protein Tyrosine Phosphatase 1B Modulates the Activation of Yes-Associated Protein and Sensitizes to Cytotoxic Chemotherapy in Preclinical Models of Cholangiocarcinoma
by Ryan D. Watkins, Jennifer L. Tomlinson, EeeLN H. Buckarma, Hendrien Kuipers, Danielle M. Carlson, Nathan W. Werneburg, Daniel R. O’Brien, Chen Wang and Rory L. Smoot
Cells 2025, 14(19), 1560; https://doi.org/10.3390/cells14191560 - 8 Oct 2025
Viewed by 795
Abstract
Lacking effective therapeutics, cholangiocarcinoma (CCA) remains a deadly malignancy of the biliary tract. The Hippo pathway effector protein Yes-associated protein (YAP) is implicated in CCA pathogenesis and chemotherapeutic resistance; however, the oncogenic mechanisms underlying YAP regulation remain incompletely understood. An enhanced understanding of [...] Read more.
Lacking effective therapeutics, cholangiocarcinoma (CCA) remains a deadly malignancy of the biliary tract. The Hippo pathway effector protein Yes-associated protein (YAP) is implicated in CCA pathogenesis and chemotherapeutic resistance; however, the oncogenic mechanisms underlying YAP regulation remain incompletely understood. An enhanced understanding of YAP and its role in CCA may uncover novel therapeutic targets and better define resistance pathways. Human CCA cells and murine syngeneic CCA models were utilized to explore the molecular relationship of YAP and protein tyrosine phosphatase 1B (PTP1B). Previous work in CCA has demonstrated that YAP interacts with multiple protein tyrosine phosphatases, including SHP2 and PTP1B. We observed that PTP1B pharmacologic inhibition was associated with increased cell proliferation and YAP target gene expression, while genetically enforced overexpression of PTP1B was associated with a decrease in YAP activation. Treatment of CCA cells in vitro and syngeneic, orthotopically implanted CCA murine tumors in vivo with standard cytotoxic chemotherapy, gemcitabine/cisplatin, had enhanced efficacy in the setting of PTP1B overexpression. These findings demonstrate that pYAPY357 can be modulated through protein tyrosine 1B phosphatase activity, and reducing pYAPY357 through enhanced phosphatase levels can sensitize CCA to chemotherapy. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

25 pages, 5098 KB  
Article
Novel Humanized Anti-HER3 Antibodies: Structural Characterization and Therapeutic Activity
by Alessia Muzi, Roberto Arriga, Giovanni Bulfaro, Francesca Fata, Antonella Costanzo, Valerio Chiarini, Manuela Cappelletti, Fabiana Fosca Ferrara, Federica Bucci, Linda Celeste Montemiglio, Carmelinda Savino, Emanuele Marra, Gennaro Ciliberto, Luigi Aurisicchio, Beatrice Vallone and Giuseppe Roscilli
Antibodies 2025, 14(4), 84; https://doi.org/10.3390/antib14040084 - 6 Oct 2025
Viewed by 1137
Abstract
Background/Objectives: The ErbB protein family plays a critical role in the progression of various solid tumors, and HER3 has been implicated in resistance mechanisms to multiple cancer therapies due to its ability to form heterodimers with other ErbB receptors, thereby activating pathways that [...] Read more.
Background/Objectives: The ErbB protein family plays a critical role in the progression of various solid tumors, and HER3 has been implicated in resistance mechanisms to multiple cancer therapies due to its ability to form heterodimers with other ErbB receptors, thereby activating pathways that promote tumor growth and survival. This study aimed to generate and characterize humanized monoclonal antibodies against HER3 to inhibit its function and evaluate their potential as therapeutic agents. Methods: Murine monoclonal antibodies TK-A3 and TK-A4 were humanized and tested for binding to ErbB3 and competition with neuregulin-1β (NRG). Specificity was assessed by ELISA, and epitope identified by X-ray crystallography. Downstream signaling was analyzed by western blot for phosphorylated ErbB3, Akt, and MAPK. Antitumor activity was evaluated in vitro and in a pancreatic cancer xenograft model. A toxicology study was also conducted. Results: TK-hu A3 and TK-hu A4 bound specifically to ErbB3 without cross-reactivity to other ErbB receptors. The ErbB3-TK-hu A3 Fab structure revealed the binding epitope. Both antibodies competed with NRG, inhibiting ErbB3, Akt, and MAPK phosphorylation in a dose-dependent manner. They suppressed cancer cell survival in vitro, and TK-hu A3 significantly delayed tumor growth in vivo. The toxicology study indicated good tolerability. Conclusions: TK-hu A3 emerged as the lead candidate, showing specific HER3 targeting, strong pathway inhibition, and antitumor efficacy in vivo. Beyond standalone use, it could support novel strategies such as T-cell engagers, ADCs, CAR-T, and bispecific antibodies. These findings highlight TK-hu A3 as a promising therapy for HER3-positive, treatment-resistant cancers, meriting further development. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

20 pages, 2624 KB  
Article
Design and Preclinical Validation of an Anti-B7-H3-Specific Radiotracer: A Non-Invasive Imaging Tool to Guide B7-H3-Targeted Therapies
by Cyprine Neba Funeh, Fien Meeus, Niels Van Winnendael, Timo W. M. De Groof, Matthias D’Huyvetter and Nick Devoogdt
Pharmaceuticals 2025, 18(10), 1477; https://doi.org/10.3390/ph18101477 - 30 Sep 2025
Viewed by 1335
Abstract
Background: B7-H3, an immunoregulatory protein of the B7 family, has been associated with both anti-cancer immunity and tumor promotion, with its expression commonly correlated with poor prognosis. Although it is frequently expressed across cancers, its heterogeneity may limit the effectiveness of B7-H3-targeted therapies. [...] Read more.
Background: B7-H3, an immunoregulatory protein of the B7 family, has been associated with both anti-cancer immunity and tumor promotion, with its expression commonly correlated with poor prognosis. Although it is frequently expressed across cancers, its heterogeneity may limit the effectiveness of B7-H3-targeted therapies. Consequently, a sensitive and non-invasive method is needed to assess B7-H3 expression for patient selection and stratification. Single-domain antibody fragments (sdAbs) offer a promising platform for developing such a diagnostic tool. Methods: To generate B7-H3 sdAbs, two Ilamas were immunized with the recombinant human B7-H3 protein. Positive clones were selected through Phage biopanning and characterized for thermal stability, binding specificity, and affinity to human and murine B7-H3 proteins. Selected sdAbs were radiolabeled with Technetium-99m (99mTc) and evaluated for B7-H3 detection in two xenograft tumor models using micro-SPECT/CT imaging and dissection studies. Results: Sixteen purified sdAbs bound specifically to recombinant B7-H3 proteins and cells expressing native B7-H3 antigens, with nanomolar affinities. The four best-performing sdAbs bound promiscuously to tested mouse and human B7-H3 isoforms. Lead sdAb C51 labeled with 99mTc displayed specific accumulation across two human B7-H3+ tumor models, achieving high contrast with a tumor-to-blood ratio of up to 10 ± 3.16, and a tumor uptake of up to 4.96 ± 1.4%IA/g at 1.5 h post injection. Conclusions: The lead sdAb enabled rapid, specific, and non-invasive imaging of human B7-H3+ tumors. Its isoform promiscuity supports broad applicability across cancers expressing different human B7-H3 isoforms. These results support further development for clinical translation to enable patient selection and improved B7-H3-targeted therapies. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Graphical abstract

Back to TopTop