Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = multistatic radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 996 KiB  
Article
3-D Moving Target Localization in Multistatic HFSWR: Efficient Algorithm and Performance Analysis
by Xun Zhang, Jun Geng, Yunlong Wang and Yijia Guo
Remote Sens. 2025, 17(11), 1938; https://doi.org/10.3390/rs17111938 - 3 Jun 2025
Viewed by 475
Abstract
High-frequency surface wave radar (HFSWR) is unable to measure the target’s altitude information due to its limited antenna aperture in the elevation dimension. This paper focuses on the 3-D localization problem for moving targets within the line of sight (LOS) in multistatic HFSWR. [...] Read more.
High-frequency surface wave radar (HFSWR) is unable to measure the target’s altitude information due to its limited antenna aperture in the elevation dimension. This paper focuses on the 3-D localization problem for moving targets within the line of sight (LOS) in multistatic HFSWR. For this purpose, the 1-D space angle (SA) measurement is introduced into multistatic HFSWR to perform 3-D joint localization together with bistatic range (BR) and bistatic range rate (BRR) measurements. The target’s velocity can also be estimated due to the inclusion of BRR. In multistatic HFSWR, commonly used azimuth measurements offer no information about the target’s altitude. Since SA is associated with the target’s 3-D coordinates, combining SA measurements from multiple receivers can effectively enhance localization accuracy, particularly in altitude estimation. In this paper, we develop a two-stage localization algorithm that first derives a weighted least-squares (WLS) coarse estimate and then performs an algebraic error reduction (ER) procedure to enhance accuracy. Both stages yield closed-form results, thus ensuring overall computational efficiency. Theoretical analysis shows that the proposed WLS-ER algorithm can asymptotically attain the Cramér–Rao lower bound (CRLB) as the measurement noise decreases. Simulation results demonstrate the effectiveness of the proposed WLS-ER algorithm and highlight the contribution of SA measurements to altitude estimation in multistatic HFSWR. Full article
Show Figures

Figure 1

23 pages, 6895 KiB  
Article
A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites
by Yu Li, Hansheng Su, Jinming Chen, Weiwei Wang, Yingbin Wang, Chongdi Duan and Anhong Chen
Remote Sens. 2025, 17(5), 880; https://doi.org/10.3390/rs17050880 - 1 Mar 2025
Cited by 3 | Viewed by 770
Abstract
This study proposes a novel technique for detecting aerial moving targets using multiple satellite radars. The approach enhances the image contrast of fused local three-dimensional (3D) profiles. Exploiting global navigation satellite system (GNSS) satellites as illuminators of opportunity (IOs) has brought remarkable innovations [...] Read more.
This study proposes a novel technique for detecting aerial moving targets using multiple satellite radars. The approach enhances the image contrast of fused local three-dimensional (3D) profiles. Exploiting global navigation satellite system (GNSS) satellites as illuminators of opportunity (IOs) has brought remarkable innovations to multistatic radar. However, target detection is restricted by radiation sources since IOs are often uncontrollable. To address this, we utilize satellite radars operating in an active self-transmitting and self-receiving mode for controllability. The main challenge of multiradar target detection lies in effectively fusing the target echoes from individual radars, as the target ranges and Doppler histories differ. To this end, two periods, namely the integration period and detection period, are precisely designed. In the integration period, we propose a range difference-based positive and negative second-order Keystone transform (SOKT) method to make range compensation accurate. This method compensates for the range difference rather than the target range. In the detection period, we develop two weighting functions, i.e., the Doppler frequency rate (DFR) variance function and smooth spatial filtering function, to extract prominent areas and make efficient detection, respectively. Finally, the results from simulation datasets confirm the effectiveness of our proposed technique. Full article
Show Figures

Figure 1

27 pages, 2285 KiB  
Article
Pinpointing Defects in Grounding Grids with Multistatic Radars
by Rodrigo M. S. de Oliveira and Pedro G. B. Maia
Energies 2025, 18(1), 150; https://doi.org/10.3390/en18010150 - 2 Jan 2025
Viewed by 584
Abstract
In this paper, we propose a method for locating discontinuities in grounding grids using a multistatic radar. The objective is to determine the fault position in the structure by injecting an ultra-wideband pulse (Gaussian monocycle) at one of the corners of the grid [...] Read more.
In this paper, we propose a method for locating discontinuities in grounding grids using a multistatic radar. The objective is to determine the fault position in the structure by injecting an ultra-wideband pulse (Gaussian monocycle) at one of the corners of the grid and analyzing the transient signals obtained at two sensors and at the transceiver. To perform the analysis and validation of the developed method, simulations based on the finite-difference time-domain (FDTD) technique were carried out to numerically solve Maxwell’s equations. The voltage signals obtained in an intact grounding grid are used as a reference. Differences between these reference voltages and the voltages obtained with the faulty grid are calculated. With these difference signals, the parameters of the radar ellipses and circle are obtained, which delimit the area where the fault can be found. These parameters depend on the wave propagation speed and the arrival times of the signals at the sensors and the transceiver. The results show that the proposed method is able to reduce the estimated fault location area to a range of 2% to 19% of the total grid area. In addition, the average distance between the actual fault and the center of the estimated region varies between 3.0 and 4.0 m. Full article
(This article belongs to the Special Issue Simulation and Analysis of Electrical Power Systems)
Show Figures

Figure 1

21 pages, 6412 KiB  
Article
Detection of Flight Target via Multistatic Radar Based on Geosynchronous Orbit Satellite Irradiation
by Jia Dong, Peng Liu, Bingnan Wang and Yaqiu Jin
Remote Sens. 2024, 16(23), 4582; https://doi.org/10.3390/rs16234582 - 6 Dec 2024
Viewed by 1229
Abstract
As a special microwave detection system, multistatic radar has obvious advantages in covert operation, anti-jamming, and anti-stealth due to its configuration of spatial diversity. As a high-orbit irradiation source, a geosynchronous orbit satellite (GEO) has the advantages of a low revisit period, large [...] Read more.
As a special microwave detection system, multistatic radar has obvious advantages in covert operation, anti-jamming, and anti-stealth due to its configuration of spatial diversity. As a high-orbit irradiation source, a geosynchronous orbit satellite (GEO) has the advantages of a low revisit period, large beam coverage area, and stable power of ground beam compared with traditional passive radar irradiation sources. This paper focuses on the key technologies of flight target detection in multistatic radar based on geosynchronous orbit satellite irradiation with one transmitter and multiple receivers. We carry out the following work: Firstly, we aim to address the problems of low signal-to-noise ratio (SNR) and range cell migration of high-speed cruise targets. The Radon–Fourier transform constant false alarm rate detector-range cell migration correction (RFT-CFAR-RCMC) is adopted to realize the coherent integration of echoes with range cell migration correction (RCM) and Doppler phase compensation. It significantly improves the SNR. Furthermore, we utilize the staggered PRF to solve the ambiguity and obtain multi-view data. Secondly, based on the aforementioned target multi-view detection data, the linear least square (LLS) multistatic positioning method combining bistatic range positioning (BR) and time difference of arrival positioning (TDOA) is used, which constructs the BR and TDOA measurement equations and linearizes by mathematical transformation. The measurement equations are solved by the LLS method, and the target positioning and velocity inversion are realized by the fusion of multistatic data. Finally, using target positioning data as observation values of radar, the Kalman filter (KF) is used to achieve flight trajectory tracking. Numerical simulation verifies the effectiveness of the proposed process. Full article
Show Figures

Figure 1

13 pages, 6718 KiB  
Article
Accurate Phase Calibration of Multistatic Imaging System for Medical and Industrial Applications
by Hiroshi Tabata, Makoto R. Asakawa and Soichiro Yamaguchi
Appl. Sci. 2024, 14(22), 10671; https://doi.org/10.3390/app142210671 - 19 Nov 2024
Viewed by 752
Abstract
Multistatic imaging systems are commonly used in radar systems and microwave imaging. In these systems, many antennas are arranged three-dimensionally and connected to RF switches. The length of each transmitter (Tx) and receiver (Rx) channel differs slightly, causing artifacts in high-resolution image reconstruction. [...] Read more.
Multistatic imaging systems are commonly used in radar systems and microwave imaging. In these systems, many antennas are arranged three-dimensionally and connected to RF switches. The length of each transmitter (Tx) and receiver (Rx) channel differs slightly, causing artifacts in high-resolution image reconstruction. This study presents a novel method for the phase calibration of multistatic systems. This method does not require system reconstruction and can automatically perform phase calibration in a short time. This method is expected to facilitate an accurate phase measurement in multistatic systems. The approach involves phase calibration by analyzing the reflection coefficients of antenna elements in the time domain. Imaging experiments were performed on a multistatic imaging system using this calibration method, and the position and shape of a metal rod with a diameter one-fourth of a wavelength were reconstructed by simple back-projection with an accuracy beyond the diffraction limit. Full article
Show Figures

Figure 1

24 pages, 786 KiB  
Article
Multi-Static Radar System Deployment Within a Non-Connected Region Utilising Particle Swarm Optimization
by Yi Han, Xueting Li, Tianxian Zhang and Xiaobo Yang
Remote Sens. 2024, 16(21), 4004; https://doi.org/10.3390/rs16214004 - 28 Oct 2024
Cited by 3 | Viewed by 1273
Abstract
This paper is mainly devoted to studying the deployment problem of a multi-static radar system (MSRS) within a non-connected deployment region using multi-objective particle swarm optimization (MOPSO). By modeling and reformulating the problem, it can be represented as a multi-objective mixed integer programming [...] Read more.
This paper is mainly devoted to studying the deployment problem of a multi-static radar system (MSRS) within a non-connected deployment region using multi-objective particle swarm optimization (MOPSO). By modeling and reformulating the problem, it can be represented as a multi-objective mixed integer programming (MOMIP), which eliminates the need for additional constraints. To enhance the algorithm performance, integer variables and continuous ones are treated separately employing multiple velocity formulas. The velocity formulas for integer variables are modified using the sigmoid function and genetic operation, leading to the proposal of two MSRS deployment algorithms, namely MOPSO-Sigmoid and MOPSO-Gene. To evaluate the performance of the proposed algorithms, they are compared with two existing MOPSO-based algorithms. The first algorithm is the MSRS deployment algorithm for the non-connected deployment region that addresses the additional constraint problem model. The second algorithm is based on an existing conventional MOPSO algorithm and addresses the equivalent MOMIP problem model. A numerical study demonstrates that MOPSO-Sigmoid and MOPSO-Gene exhibit promising efficiency and effectiveness. Full article
Show Figures

Figure 1

17 pages, 10820 KiB  
Article
Multiple-Input Multiple-Output Microwave Tomographic Imaging for Distributed Photonic Radar Network
by Carlo Noviello, Salvatore Maresca, Gianluca Gennarelli, Antonio Malacarne, Filippo Scotti, Paolo Ghelfi, Francesco Soldovieri, Ilaria Catapano and Rosa Scapaticci
Remote Sens. 2024, 16(21), 3940; https://doi.org/10.3390/rs16213940 - 23 Oct 2024
Viewed by 1188
Abstract
This paper deals with the imaging problem from data collected by means of a microwave photonics-based distributed radar network. The radar network is leveraged on a centralized architecture, which is composed of one central unit (CU) and two transmitting and receiving dual-band remote [...] Read more.
This paper deals with the imaging problem from data collected by means of a microwave photonics-based distributed radar network. The radar network is leveraged on a centralized architecture, which is composed of one central unit (CU) and two transmitting and receiving dual-band remote radar peripherals (RPs), it is capable of collecting monostatic and multistatic phase-coherent data. The imaging is herein formulated as a linear inverse scattering problem and solved in a regularized way through the truncated singular value decomposition inversion scheme. Specifically, two different imaging schemes based on an incoherent fusion of the tomographic images or a fully coherent data processing are herein developed and compared. Experimental tests carried out in a port scenario for imaging both a stationary and a moving target are reported to validate the imaging approach. Full article
(This article belongs to the Special Issue State-of-the-Art and Future Developments: Short-Range Radar)
Show Figures

Graphical abstract

15 pages, 2995 KiB  
Article
Multiview Multistatic vs. Multimonostatic Three-Dimensional Ground-Penetrating Radar Imaging: A Comparison
by Mehdi Masoodi, Gianluca Gennarelli, Francesco Soldovieri and Ilaria Catapano
Remote Sens. 2024, 16(17), 3163; https://doi.org/10.3390/rs16173163 - 27 Aug 2024
Viewed by 1687
Abstract
The availability of multichannel ground-penetrating radar systems capable of gathering multiview, multistatic, multifrequency data provides novel chances to improve subsurface imaging results. However, customized data processing techniques and smart choices of the measurement setup are needed to find a trade-off between image quality [...] Read more.
The availability of multichannel ground-penetrating radar systems capable of gathering multiview, multistatic, multifrequency data provides novel chances to improve subsurface imaging results. However, customized data processing techniques and smart choices of the measurement setup are needed to find a trade-off between image quality and acquisition time. In this paper, we adopt a Born Approximation-based full 3D approach, which can manage multiview-multistatic, multifrequency data and faces the imaging as a linear inverse scattering problem. The inverse problem is solved by exploiting the truncated singular value decomposition as a regularization scheme. The paper presents a theoretical study aimed at assessing how the reconstruction capabilities of the imaging approach depend on the adopted measurement configuration. In detail, the performance achievable in the standard case of multimonostatic, multifrequency data is compared with that provided by a multiview-multistatic, multifrequency configuration, where the data are gathered by considering a progressively increasing number of transmitting antennas. The comparison of the achievable imaging performance is carried out by exploiting the spectral content and the point spread function, which are general tools to foresee the achievable reconstruction capabilities. Reconstruction results related to a numerical experiment based on full-wave data are also provided. Full article
(This article belongs to the Special Issue Microwave Tomography: Advancements and Applications)
Show Figures

Figure 1

18 pages, 3947 KiB  
Article
Potential of the Bi-Static SAR Satellite Companion Mission Harmony for Land-Ice Observations
by Andreas Kääb, Jérémie Mouginot, Pau Prats-Iraola, Eric Rignot, Bernhard Rabus, Andreas Benedikter, Helmut Rott, Thomas Nagler, Björn Rommen and Paco Lopez-Dekker
Remote Sens. 2024, 16(16), 2918; https://doi.org/10.3390/rs16162918 - 9 Aug 2024
Cited by 1 | Viewed by 2247
Abstract
The EarthExplorer 10 mission Harmony by the European Space Agency ESA, scheduled for launch around 2029–2030, consists of two passive C-band synthetic-aperture-radar companion satellites flying in a flexible constellation with one Sentinel-1 radar satellite as an illuminator. Sentinel-1 will serve as transmitter and [...] Read more.
The EarthExplorer 10 mission Harmony by the European Space Agency ESA, scheduled for launch around 2029–2030, consists of two passive C-band synthetic-aperture-radar companion satellites flying in a flexible constellation with one Sentinel-1 radar satellite as an illuminator. Sentinel-1 will serve as transmitter and receiver of radar waves, and the two Harmonys will serve as bistatic receivers without the ability to transmit. During the first and last year of the 5-year mission, the two Harmony satellites will fly in a cross-track interferometric constellation, such as that known from TanDEM-X, about 350 km ahead or behind the assigned Sentinel-1. This constellation will provide 12-day repeat DEMs, among other regions, over most land-ice and permafrost areas. These repeat DEMs will be complemented by synchronous lateral terrain displacements from the well-established offset tracking method. In between the cross-track interferometry phases, one of the Harmony satellites will be moved to the opposite side of the Sentinel-1 to form a symmetric bistatic “stereo” constellation with ±~350 km along-track baseline. In this phase, the mission will provide opportunity for radar interferometry along three lines of sight, or up to six when combining ascending and descending acquisitions, enabling the measurement of three-dimensional surface motion, for instance sub- and emergence components of ice flow, or three-dimensional deformation of permafrost surfaces or slow landslides. Such measurements would, for the first time, be available for large areas and are anticipated to provide a number of novel insights into the dynamics and mass balance of a range of mass movement processes. Full article
(This article belongs to the Special Issue Remote Sensing of the Cryosphere (Second Edition))
Show Figures

Graphical abstract

19 pages, 3482 KiB  
Article
Power Allocation Scheme for Multi-Static Radar to Stably Track Self-Defense Jammers
by Gangsheng Zhang, Junwei Xie, Haowei Zhang, Weike Feng, Mingjie Liu and Cong Qin
Remote Sens. 2024, 16(15), 2699; https://doi.org/10.3390/rs16152699 - 23 Jul 2024
Cited by 1 | Viewed by 946
Abstract
Due to suppression jamming by jammers, the signal-to-interference-plus-noise ratio (SINR) during tracking tasks is significantly reduced, thereby decreasing the target detection probability of radar systems. This may result in the interruption of the target track. To address this issue, we propose a multi-static [...] Read more.
Due to suppression jamming by jammers, the signal-to-interference-plus-noise ratio (SINR) during tracking tasks is significantly reduced, thereby decreasing the target detection probability of radar systems. This may result in the interruption of the target track. To address this issue, we propose a multi-static radar power allocation algorithm that enhances the detection and tracking performance of multiple radars in relation to their targets by optimizing power resource allocation. Initially, the echo signal model and measurement model of multi-static radar are formulated, followed by the derivation of the Bayesian Cramér–Rao lower bound (BCRLB). The multi-objective optimization method is utilized to establish the objective function for joint tracking and detection, with dynamic adjustment of the weight coefficient to balance the tracking and detection performance of multiple radars. This ensures the reliability and anti-jamming capability of the multi-static radar system. Simulation results indicate that the proposed algorithm can prevent the interruption of jammer tracking and maintain robust tracking performance. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

26 pages, 4669 KiB  
Review
GNSS Reflectometry-Based Ocean Altimetry: State of the Art and Future Trends
by Tianhe Xu, Nazi Wang, Yunqiao He, Yunwei Li, Xinyue Meng, Fan Gao and Ernesto Lopez-Baeza
Remote Sens. 2024, 16(10), 1754; https://doi.org/10.3390/rs16101754 - 15 May 2024
Cited by 2 | Viewed by 3466
Abstract
For the past 20 years, Global Navigation Satellite System reflectometry (GNSS-R) technology has successfully shown its potential for remote sensing of the Earth’s surface, including ocean and land surfaces. It is a multistatic radar that uses the GNSS signals reflected from the Earth’s [...] Read more.
For the past 20 years, Global Navigation Satellite System reflectometry (GNSS-R) technology has successfully shown its potential for remote sensing of the Earth’s surface, including ocean and land surfaces. It is a multistatic radar that uses the GNSS signals reflected from the Earth’s surface to extract land and ocean characteristics. Because of its numerous advantages such as low cost, multiple signal sources, and all-day/weather and high-spatiotemporal-resolution observations, this new technology has attracted the attention of many researchers. One of its most promising applications is GNSS-R ocean altimetry, which can complement existing techniques such as tide gauging and radar satellite altimetry. Since this technology for ocean altimetry was first proposed in 1993, increasing progress has been made including diverse methods for processing reflected signals (such as GNSS interferometric reflectometry, conventional GNSS-R, and interferometric GNSS-R), different instruments (such as an RHCP antenna with one geodetic receiver, a linearly polarized antenna, and a system of simultaneously used RHCP and LHCP antennas with a dedicated receiver), and different platform applications (such as ground-based, air-borne, or space-borne). The development of multi-mode and multi-frequency GNSS, especially for constructing the Chinese BeiDou Global Navigation Satellite System (BDS-3), has enabled more free signals to be used to further promote GNSS-R applications. The GNSS has evolved from its initial use of GPS L1 and L2 signals to include other GNSS bands and multi-GNSS signals. Using more advanced, multi-frequency, and multi-mode signals will bring new opportunities to develop GNSS-R technology. In this paper, studies of GNSS-R altimetry are reviewed from four perspectives: (1) classifications according to different data processing methods, (2) different platforms, (3) development of different receivers, and (4) our work. We overview the current status of GNSS-R altimetry and describe its fundamental principles, experiments, recent applications to ocean altimetry, and future directions. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Graphical abstract

18 pages, 4874 KiB  
Review
Review on Phase Synchronization Methods for Spaceborne Multistatic Synthetic Aperture Radar
by Qiang Lin, Shiqiang Li and Weidong Yu
Sensors 2024, 24(10), 3122; https://doi.org/10.3390/s24103122 - 14 May 2024
Cited by 3 | Viewed by 1833
Abstract
Multistatic synthetic aperture radar (SAR) is a special mode of SAR system. The radar transmitter and receiver are located on different satellites, which brings many advantages, such as flexible baseline configuration, diverse receiving modes, and more detailed ground object classification information. The multistatic [...] Read more.
Multistatic synthetic aperture radar (SAR) is a special mode of SAR system. The radar transmitter and receiver are located on different satellites, which brings many advantages, such as flexible baseline configuration, diverse receiving modes, and more detailed ground object classification information. The multistatic SAR has been widely used in interferometry, moving target detection, three-dimensional imaging, and other fields. The frequency offset between different oscillators will cause a modulation phase error in the signal. Therefore, phase synchronization is one of the most critical problems to be addressed in distributed SAR systems. This article reviews phase synchronization techniques, which are mainly divided into two methods: synchronization by direct microwave link and synchronization by a data-based estimation algorithm. Furthermore, the future development of synchronization technology is anticipated. Full article
(This article belongs to the Special Issue Sensing and Signal Analysis in Synthetic Aperture Radar Systems)
Show Figures

Figure 1

17 pages, 880 KiB  
Article
Deception Velocity-Based Method to Discriminate Physical Targets and Active False Targets in a Multistatic Radar System
by Qiang Li, Yumei Guo, Peng Zhang, Hong Xu, Linrang Zhang, Zhanye Chen and Yan Huang
Remote Sens. 2024, 16(2), 382; https://doi.org/10.3390/rs16020382 - 18 Jan 2024
Cited by 6 | Viewed by 1573
Abstract
Due to the silent operation of the receiver station in a multistatic radar system, it is difficult for the jammer to generate the cooperative active deception target for the multistatic radar system. Making use of the spatial diversity property, a data level fusion [...] Read more.
Due to the silent operation of the receiver station in a multistatic radar system, it is difficult for the jammer to generate the cooperative active deception target for the multistatic radar system. Making use of the spatial diversity property, a data level fusion method is proposed to counter the active deception jamming in this paper. According to the spatial correlation difference in physical target and active false target motion states, the deception velocity of the physical target, which is obtained by the radial velocity of each receiver, obeys the Gaussian distribution with zero mean, and the one of the active false target obeys the Gaussian distribution with the mean being its true deception velocity. Based on this fact, the active false target and physical target are discriminated by the deception velocity testing. The proposed deception velocity-based (DVB) method can keep a constant misjudgment probability for physical targets and discriminate active false targets effectively, especially in large deception velocity cases. The simulation verifies the feasibility and validity of the proposed discrimination method. Moreover, the proposed method can be combined with the location information association method to enhance the ability to discriminate the range–velocity joint deception of false targets. Full article
Show Figures

Graphical abstract

23 pages, 5606 KiB  
Article
Toward a European Facility for Ground-Based Radar Observations of Near-Earth Objects
by Giuseppe Pupillo, Simona Righini, Roberto Orosei, Claudio Bortolotti, Giuseppe Maccaferri, Mauro Roma, Marco Mastrogiuseppe, Tonino Pisanu, Luca Schirru, Stefano Cicalò, Antonio Tripodo, Jorma Harju, Antti Penttilä, Anne K. Virkki, Uwe Bach, Alexander Kraus, Alessio Margheri, Riccardo Ghiani, Maria N. Iacolina, Giuseppe Valente, Detlef Koschny, Richard Moissl and Gunther Sessleradd Show full author list remove Hide full author list
Remote Sens. 2024, 16(1), 38; https://doi.org/10.3390/rs16010038 - 21 Dec 2023
Cited by 4 | Viewed by 2512
Abstract
In this work, we present the preliminary results of radar observations of Near-Earth Objects (NEOs) carried out by European radio telescopes in the framework of the European Space Agency (ESA) project “NEO observation concepts for radar systems”, aimed at deriving the functional requirements [...] Read more.
In this work, we present the preliminary results of radar observations of Near-Earth Objects (NEOs) carried out by European radio telescopes in the framework of the European Space Agency (ESA) project “NEO observation concepts for radar systems”, aimed at deriving the functional requirements of a planetary radar system, evaluating the available European assets to perform NEO radar observations, and carrying out test radar campaigns. In the first part of the project, we executed the performance analysis of a possible European planetary radar system. Instrumental features, as much as issues like the impact of weather conditions on signal propagation at different radio frequencies, were considered. This paper focused on the test campaigns, performed in the years 2021–2022 in collaboration with the Jet Propulsion Laboratory (JPL), which led to the observation of several asteroids including 2021 AF8, (4660) Nereus, and 2005 LW3, which allowed us to derive astrometric measurements, as well as to measure physical properties, such as rotation periods, and observe how one of the targets is actually a binary asteroid. The obtained results demonstrated that European radio astronomical dishes, although employed only as receivers (in bistatic or multistatic configurations) and for a limited amount of time, are able to provide a significant contribution to the constitution of a European network to increase the opportunities for NEO monitoring and studies, if a transmitting antenna—equipped with a suitable high-power transmitter—were made available. Full article
(This article belongs to the Special Issue Radar for Planetary Exploration)
Show Figures

Figure 1

25 pages, 9041 KiB  
Article
MuA-SAR Fast Imaging Based on UCFFBP Algorithm with Multi-Level Regional Attention Strategy
by Fanyun Xu, Rufei Wang, Yulin Huang, Deqing Mao, Jianyu Yang, Yongchao Zhang and Yin Zhang
Remote Sens. 2023, 15(21), 5183; https://doi.org/10.3390/rs15215183 - 30 Oct 2023
Cited by 2 | Viewed by 1393
Abstract
Multistatic airborne SAR (MuA-SAR) benefits from the ability to flexibly adjust the positions of multiple transmitters and receivers in space, which can shorten the synthetic aperture time to achieve the required resolution. To ensure both imaging efficiency and quality of different system spatial [...] Read more.
Multistatic airborne SAR (MuA-SAR) benefits from the ability to flexibly adjust the positions of multiple transmitters and receivers in space, which can shorten the synthetic aperture time to achieve the required resolution. To ensure both imaging efficiency and quality of different system spatial configurations and trajectories, the fast factorized back projection (FFBP) algorithm is proposed. However, if the FFBP algorithm based on polar coordinates is directly applied to the MuA-SAR system, the interpolation in the recursive fusion process will bring the problem of redundant calculations and error accumulation, leading to a sharp decrease in imaging efficiency and quality. In this paper, a unified Cartesian fast factorized back projection (UCFFBP) algorithm with a multi-level regional attention strategy is proposed for MuA-SAR fast imaging. First, a global Cartesian coordinate system (GCCS) is established. Through designing the rotation mapping matrix and phase compensation factor, data from different bistatic radar pairs can be processed coherently and efficiently. In addition, a multi-level regional attention strategy based on maximally stable extremal regions (MSER) is proposed. In the recursive fusion process, only the suspected target regions are paid more attention and segmented for coherent fusion at each fusion level, which further improves efficiency. The proposed UCFFBP algorithm ensures both the quality and efficiency of MuA-SAR imaging. Simulation experiments verified the effectiveness of the proposed algorithm. Full article
Show Figures

Figure 1

Back to TopTop