A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Signal Model
2.2. Contrast-Enhanced Aerial Moving Target Detection Using Satellite Constellation
2.2.1. Long-Time Coherent/Noncoherent Integration
- The positive and negative SOKT method using range difference
- Interframe and interchannel target noncoherent integration
2.2.2. Contrast-Enhanced Target Detection Method via Multiradar Data Fusion
- Noncoherent integration among radars in the X-Y-Z-fdr domain
- (1)
- Such space acts as a common reference when multiple radars are exploited; thus, the operation can be applied directly.
- (2)
- No simplifying range polynomial models are considered; therefore, a complete compensation is allowed to track the exact range to yield higher integration gain.
- An enhanced-contrast target detection based on two-stage weighting
3. DFR Grid Design Criterion
4. Results
4.1. Evaluation of DFR Grid Design
4.2. Evaluation of Long-Time Coherent/Noncoherent Integration
4.3. Evaluation of Contrast-Enhanced Target Detection Method via Multiradar Data Fusion
5. Discussions
- The integration period: The observation period is further divided into several frames, with the employment of coherent integration inside the frame and noncoherent integration among the frames. Since applying Taylor-series expansion to range difference is more accurate than to the target range itself, we develop a range-difference-based positive and negative second-order KT (SOKT) method to improve target motion compensation.
- The detection period: A contrast-enhanced method is proposed to detect aerial moving targets via DFR variance weighting function and smooth spatial filtering weighting function, where the first function is used to extract prominent areas based on equal target DFRs, whereas the second function aims to refine potential detection areas to improve detection efficiency.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, V.; Westphal, R. New approach to a multistatic passive radar sensor for air/space defense. IEEE Aerosp. Electron. Syst. Mag. 1995, 10, 24–32. [Google Scholar] [CrossRef]
- Ulander, L.M.H. Theoretical Considerations of Bi- and Multistatic SAR; Swedish Defence Research Agency: Stockholm, Sweden, 2004; pp. 1–24. [Google Scholar]
- Zeng, T.; Ao, D.; Hu, C.; Zhang, T.; Liu, F.; Tian, W.; Lin, K. Multiangle BSAR imaging based on beidou-2 navigation satellite system: Experiments and preliminary results. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5760–5773. [Google Scholar] [CrossRef]
- Chen, J.; Huang, P.; Xia, X.G.; Chen, J.; Sun, Y.; Liu, X.; Liao, G. Multichannel signal modeling and AMTI performance analysis for distributed space-based radar systems. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5117724. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Zhang, Z.J.; Liu, J.; Zhou, S.; Zheng, J.; Liu, W. Target detection based on F-test in passive multistatic radar. Digit. Signal Process. 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Liu, C.; Chen, W. Sparse self-calibration imaging via iterative MAP in FM-based distributed passive radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 538–542. [Google Scholar] [CrossRef]
- Hu, Y.; Yi, J.; Cheng, F.; Wan, X.; Hu, S. 3-D target tracking for distributed heterogeneous 2-D–3-D passive radar network. IEEE Sens. J. 2023, 23, 29502–29512. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H.; Himed, B. Joint transmit and receive beamforming for hybrid active–passive radar. IEEE Signal Process. Lett. 2017, 24, 779–783. [Google Scholar] [CrossRef]
- Fang, Y.; Zhu, S.; Liao, B.; Li, X.; Liao, G. Target localization with bistatic MIMO and FDA-MIMO dual-mode radar. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 952–964. [Google Scholar] [CrossRef]
- McLaughlin, D.J.; Knapp, E.A.; Wang, Y.; Chandrasekar, V. Distributed weather radar using X-band active arrays. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 23–27. [Google Scholar]
- Kong, Y.K.; Cho, B.L. Ambiguity-free Doppler centroid estimation technique for airborne SAR using the radon transform. IEEE Trans. Geosci. Remote Sens. 2005, 43, 715–721. [Google Scholar] [CrossRef]
- Carlson, B.D.; Evans, E.D.; Wilson, S.L. Search radar detection and track with the Hough transform, Part I: System concept. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 102–108. [Google Scholar] [CrossRef]
- Perry, R.P.; DiPietro, R.C.; Fante, R.L. SAR imaging of moving targets. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 188–200. [Google Scholar] [CrossRef]
- Huang, P.H.; Liao, G.S.; Yang, Z. Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform. IEEE Trans. Signal Process. 2016, 64, 4013–4026. [Google Scholar] [CrossRef]
- Zhan, M.; Zhao, C.; Qin, K.; Huang, P.; Fang, M.; Zhao, C. Subaperture keystone transform matched filtering algorithm and its application for air moving target detection in an SBEWR system. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2262–2274. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Peng, Y.N.; Xia, X.G. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1186–1202. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Peng, Y.N.; Xia, X.G. Radon-Fourier transform for radar target detection, II: Blind speed sidelobe suppression. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2473–2489. [Google Scholar] [CrossRef]
- Rao, X.; Zhong, T.; Tao, H.; Xie, J.; Su, J. Improved axis rotation MTD algorithm and its analysis. Multidimens. Syst. Signal Process. 2019, 30, 885–902. [Google Scholar] [CrossRef]
- Fu, M.; Zhang, Y.; Wu, R.; Deng, Z.; Zhang, Y.; Xiong, X. Fast range and motion parameters estimation for maneuvering targets using time-reversal process. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3190–3206. [Google Scholar] [CrossRef]
- Tenney, R.R.; Sandell, N.R. Detection with distributed sensors. IEEE Trans. Aerosp. Electron. Syst. 1981, 17, 501–510. [Google Scholar] [CrossRef]
- Blum, R.S. Necessary conditions for optimum distributed sensor detectors under the Neyman–Pearson criterion. IEEE Trans. Inf. Theory 1996, 42, 990–994. [Google Scholar] [CrossRef]
- Yan, Q.; Blum, R.S. Distributed signal detection under the Neyman-Pearson criterion. IEEE Trans. Inf. Theory 2001, 47, 1368–1377. [Google Scholar] [CrossRef]
- Viswanathan, R.; Varshney, P.K. Distributed detection with multiple sensors: Part I-fundamentals. Proc. IEEE 1997, 85, 54–63. [Google Scholar] [CrossRef]
- Ferrari, G.Z.; Pagliari, R. Decentralized binary detection with noisy communication links. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 1554–1563. [Google Scholar] [CrossRef]
- Aziz, A.M. A soft-decision fusion approach for multiple-sensor distributed binary detection systems. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2208–2216. [Google Scholar] [CrossRef]
- Aziz, A.M. A new adaptive decentralized soft decision combining rule for distributed sensor systems with data fusion. Inf. Sci. 2014, 256, 197–210. [Google Scholar] [CrossRef]
- Yang, Y.; Su, H.; Hu, Q.; Zhou, S.; Huang, J. Centralized adaptive CFAR detection with registration errors in multistatic radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2370–2382. [Google Scholar] [CrossRef]
- Hack, D.E.; Patton, L.K.; Himed, B.; Saville, M.A. Centralized passive MIMO radar detection without direct-path reference signals. IEEE Trans. Signal Process. 2014, 62, 3013–3023. [Google Scholar]
- Fishler, E.; Haimovich, A.; Blum, R.; Cimini, L.; Chizhik, D.; Valenzuela, R. Spatial diversity in radars-models and detection performance. IEEE Trans. Signal Process. 2006, 54, 823–838. [Google Scholar] [CrossRef]
- He, Q.; Lehmann, N.H.; Blum, R.S.; Haimovich, A.M. MIMO radar moving target detection in homogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1290–1301. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Himed, B. Moving target detection using distributed MIMO radar in clutter with nonhomogeneous power. IEEE Trans. Signal Process. 2011, 59, 4809–4820. [Google Scholar] [CrossRef]
- Chong, C.Y.; Pascal, F.; Ovarlez, J.-P.; Lesturgie, M. MIMO radar detection in non-Gaussian and heterogeneous clutter. IEEE J. Sel. Top. Signal Process. 2010, 4, 115–126. [Google Scholar] [CrossRef]
- Chen, P.; Zheng, L.; Wang, X.; Li, H.; Wu, L. Moving target detection using colocated MIMO radar on multiple distributed moving platforms. IEEE Trans. Signal Process. 2017, 65, 4670–4683. [Google Scholar] [CrossRef]
- Duarte, M.; Hu, Y.-H. Distance based decision fusion in a distributed wireless sensor network. In Proceedings of the 2nd International Conference on Information Processing in Sensor Networks, Palo Alto, CA, USA, 22–23 April 2003; pp. 392–404. [Google Scholar]
- Marchan-Hernandez, J.F.; Valencia, E.; Rodriguez-Alvarez, N.; Ramos-Perez, I.; Bosch-Lluis, X.; Camps, A.; Eugenio, F.; Marcello, J. Sea-state determination using GNSS-R data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 621–625. [Google Scholar] [CrossRef]
- Santi, F.; Bucciarelli, M.; Pastina, D.; Antoniou, M.; Cherniakov, M. Spatial resolution improvement in GNSS-based SAR using multistatic acquisitions and feature extraction. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6217–6231. [Google Scholar] [CrossRef]
- Ramirez, J.; Krolik, J.L. Synthetic aperture processing for passive co-prime linear sensor arrays. Digit. Signal Process. 2017, 61, 62–75. [Google Scholar] [CrossRef]
- Suberviola, I.; Mayordomo, I.; Mendizabal, J. Experimental results of air target detection with a GPS forward-scattering radar. Remote Sens. Lett. 2012, 9, 47–51. [Google Scholar] [CrossRef]
- Ma, H.; Antoniou, M.; Cherniakov, M.; Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M. Maritime target detection using GNSS-based radar: Experimental proof of concept. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; Volume 9, pp. 0464–0469. [Google Scholar]
- Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M.; Ma, H.; Tzagkas, D.; Antoniou, M.; Cherniakov, M. Maritime moving target long time integration for GNSS-based passive bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 3060–3083. [Google Scholar] [CrossRef]
- Santi, F.; Pieralice, F.; Pastina, D. Joint detection and localization of vessels at sea with a GNSS-based multistatic radar. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5894–5913. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Sun, Z.; An, H.; Wu, J.; Yang, J. BeiDou-based passive multistatic radar maritime moving target detection technique via spacetime hybrid integration processing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5802313. [Google Scholar]
- Nan, J.; Wang, J.; Feng, D.; Kang, N.X.; Huang, X.T. SAR imaging method for moving target with azimuth missing data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 7100–7113. [Google Scholar]
- Nan, J.; Feng, D.; Wang, J.; Zhu, J.H.; Huang, X.T. Along-track swarm SAR: Echo modeling and sub-aperture collaboration imaging based on sparse constraints. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 5602–5617. [Google Scholar]
- Duan, C.; Li, Y.; Wang, W.; Li, J. LEO-based satellite constellation for moving target detection. Remote Sens. 2022, 14, 403. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Eccentricity | 0.003 |
Semimajor axis (km) | 6870 |
Right ascension of ascending node (degree) | 195.503 |
Inclination (degree) | 55 |
Argument of perigee (degree) | 200 |
The perigee times corresponding to satellite radars (s) | −0.5, 0, 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Su, H.; Chen, J.; Wang, W.; Wang, Y.; Duan, C.; Chen, A. A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites. Remote Sens. 2025, 17, 880. https://doi.org/10.3390/rs17050880
Li Y, Su H, Chen J, Wang W, Wang Y, Duan C, Chen A. A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites. Remote Sensing. 2025; 17(5):880. https://doi.org/10.3390/rs17050880
Chicago/Turabian StyleLi, Yu, Hansheng Su, Jinming Chen, Weiwei Wang, Yingbin Wang, Chongdi Duan, and Anhong Chen. 2025. "A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites" Remote Sensing 17, no. 5: 880. https://doi.org/10.3390/rs17050880
APA StyleLi, Y., Su, H., Chen, J., Wang, W., Wang, Y., Duan, C., & Chen, A. (2025). A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites. Remote Sensing, 17(5), 880. https://doi.org/10.3390/rs17050880