GNSS Reflectometry-Based Ocean Altimetry: State of the Art and Future Trends
Abstract
:1. Introduction
2. Current Status of GNSS-R Sea Level Altimetry
2.1. Sea Level Estimation Using GNSS-IR/MR
2.1.1. Geodetic Receiver
- Spectrogram analysis: The frequency of the non-stationary signal is treated as a constant during a full satellite tracking period (e.g., 5°–25°) [26]. Then, Lomb–Scargle spectral analysis is used to determine the peak frequency of the signal with a frequency resolution of 1 mm. One example of this method is shown in Figure 2. The temporal variation in the reflector height can be solved via height rate correction based on tidal harmonic estimation. Then, a piecewise cubic spline is used to fit the residuals. This method was proposed by [5,21]. In addition to Lomb–Scargle spectral analysis, wavelet analysis has been used to estimate the sea level [27,28]. Wavelet analysis performs better than the Lomb–Scargle method both in temporal and spatial resolution of the sea level. Wang et al. [29] also evaluated the performance of multi-frequency signals for different constellations, and a multi-GNSS combination algorithm was used to improve the accuracy of estimating the reflector height.
- 2.
- SNR inverse modeling: Whereas spectrogram analysis uses an isolated period of SNR data to obtain a single measurement, this method is based on a forward/inverse approach to modeling the entirety of SNR observations [30,31]. The pre-fit residuals and parameter biases are calculated through a statistically rigorous inverse model, which is based on the physical forward model. The linear phase bias coefficient is related to the reflector height and thus the sea level. For each satellite track, an independent sea level estimation can be obtained. All the track-derived sea level estimations are combined to obtain a regularly spaced time series of sea levels based on a weighted moving average with a post-spacing of 1 h and a window width of 8 h [9,32]. Strandberg et al. [24] used a B-spline function to describe the temporal sea level (or the reflector height) variations to satisfy sea level continuity. The coefficients of the B-spline function can be determined through nonlinear Least Squares fitting of the SNR series. This method has significantly higher precision in sea level estimations than spectrogram methods (e.g., the FFT or Lomb–Scargle method). The method also contributes to a better spatial and temporal sampling of the sea surface. However, the method requires SNR observations in a full period (with the elevation angle basically from 5° to 25°), which induces significant time delays for GNSS-based sea level measurements. In [33], interval analysis was used to find the global optimization when using the model to fit the SNR data, and the proposed method improved both the precision and computation efficiency. Later, a sea level time series in the form of a B-spline curve combined with a Kalman filter was proposed to estimate sea levels in real time with high precision [25]. The method was successfully used to estimate sea level in real time with an RMS error of approximately 3 cm.
2.1.2. GNSS-IR with a Low-Cost GNSS Receiver
2.2. GNSS-R Altimetry with Two or More Antennas
2.2.1. cGNSS-R Altimetry
- (1)
- Ground/ship-based GNSS-R: Ground-based GNSS-R altimetry can be an effective supplement to existing TG stations and radar altimetry for sea level monitoring in coastal areas. Ground/ship-based GNSS-R altimetry includes code-based and phase-based methods according to the observables. The experimental configuration usually contains two antennas: one upward RHCP antenna to receive the direct GNSS signal and a downward left-handed circularly polarized (LHCP) antenna to receive the reflected signals from the sea surface. Then, the two signals are processed using a dedicated software-defined or hardware receiver to obtain the code delay or phase delay between the two signals. The accuracy of sea level measurement for code-based GNSS-R is limited to the meter or decimeter level because of the code chip length of GNSS signals. Centimeter-level sea levels can be determined using phase-based GNSS-R when the sea surface is relatively calm. However, when the sea becomes rough, the phase cannot be continuously tracked, and this method may fail.
- (2)
- Air-borne GNSS-R altimetry: For ground-based GNSS-R altimetry, the observation area is limited to only 1 km around the station, whereas air-borne GNSS-R altimetry can cover bigger observation areas. In 2002, Lowe et al. [14] presented the first two aircraft GNSS-R ocean altimetry measurements. The first experiment demonstrated 14 cm precision single-satellite altimetric measurements [54], and the second used authorized P(Y) codes to demonstrate 5 cm altimetric precision with 5 km spatial resolution [14]. In 2004, Ruffini et al. [15] used two synchronous GPS receivers flown at a 1 km altitude to collect L1 reflections from the sea surface to assess the altimetric precision and accuracy. The 20 km averaged GNSS-R absolute altimetric solution with respect to the Jason-1 sea surface height (SSH) and a GPS buoy measurement had an RMS error of 10 cm with a 2 cm mean difference. In 2014, sea surface topography in the Mediterranean Sea near Italy was deduced from an air-borne GNSS-R experiment using carrier phase data. The results revealed that eight tracks with centimeter precision were obtained between 11° and 33° of elevation, while at higher elevation angles, the number of tracks was significantly reduced owing to surface roughness [55]. In 2016, an air-borne GNSS-R altimetric experiment was conducted in Monterey Bay, California, and sea levels were observed with a standard deviation of 0.6 m using GPS L1 P-code data [56]. Air-borne GNSS-R altimetry has already proven its feasibility, and it has better flexibility and can cover a big observation area. However, it is not usually adopted because of the expensive fuel consumption of an airplane.
- (3)
- Space-borne GNSS-R altimetry: Space-borne GNSS-R satellites are equipped with small GNSS-R payloads to collect GNSS signals reflected off the sea surface, generating delay-Doppler maps (DDMs) or carrier phase measurements, which are then used to obtain the SSH. Space-borne GNSS-R can be regarded as a bistatic passive radar that processes the forward scattering signals (as shown in Figure 7). Compared with other space systems, space-borne GNSS-R has many characteristics: the system does not transmit any signals, thereby reducing the hardware requirements; with hundreds of GNSS satellites as illumination opportunities, more observations can be obtained with one track; the system can work in all weather conditions [42,57,58].
- (4)
- GNSS-R dedicated receiver: The receiver is a core component that has a significant impact on GNSS-R sea surface height measurements. It needs to be different from the geodetic receiver because it needs to provide path delays between the direct and reflected signals, and the accuracy of the estimated path delays greatly determines the accuracy of the final altimetry results. In addition, algorithms need to be integrated into the baseband signal processing of the receiver for situations in which the reflected signals are generally weakened and scattered by the sea surface. Therefore, the development of the recorder, to some extent, affects the GNSS-R measurement accuracy.
2.2.2. iGNSS-R Altimetry
2.3. Multi-Mode and Multi-Frequency GNSS-R Altimetry at Our University
2.3.1. GNSS-IR Altimetry
2.3.2. GNSS-R Altimetry with Two Antennas
2.4. Current GNSS Networks and Satellite Constellations
3. Future Developments
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cazenave, A.; Le, G.C. Sea level rise and its coastal impacts. Earth’s Future 2013, 2, 15–34. [Google Scholar] [CrossRef]
- Löfgren, J.S.; Haas, R.; Scherneck, H.G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J. Geodyn. 2014, 80, 66–80. [Google Scholar] [CrossRef]
- Bouffard, J.; Roblou, L.; Birol, F.; Pascual, A.; Fenoglio-Marc, L.; Cancet, M.; Morrow, R.; Ménard, Y. Introduction and Assessment of Improved Coastal Altimetry Strategies: Case Study over the Northwestern Mediterranean Sea. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 297–330. [Google Scholar]
- Roussel, N.; Ramillien, G.; Frappart, F.; Darrozes, J.; Gay, A.; Biancale, R.; Striebig, N.; Hanquiez, V.; Bertin, X.; Allain, D. Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sens. Environ. 2015, 171, 261–277. [Google Scholar] [CrossRef]
- Larson, K.M.; Ray, R.D.; Williams, S.D.P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. J. Atmos. Ocean Technol. 2017, 34, 295–307. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.S. Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) mission. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4419–4432. [Google Scholar] [CrossRef]
- Reinking, J.; Roggenbuck, O.; Even-Tzur, G. Estimating wave direction using terrestrial GNSS reflectometry. Remote Sens. 2019, 11, 1027. [Google Scholar] [CrossRef]
- Larson, K.M.; Gutmann, E.D.; Zavorotny, V.U.; Braun, J.J.; Williams, M.W.; Nievinski, F.G. Can we measure snow depth with GPS receivers? Geophys. Res. Lett. 2009, 36, L17502. [Google Scholar] [CrossRef]
- Tabibi, S.; Geremia-Nievinski, F.; Dam, T. Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3773–3785. [Google Scholar] [CrossRef]
- Larson, K.M.; Braun, J.J.; Small, E.E.; Zavorotny, V.U.; Gutmann, E.D.; Bilich, A.L. GPS multipath and its relation to near-surface soil moisture content. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2010, 3, 91–99. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E.; Larson, K.M.; Zavorotny, V.U. Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture. IEEE Trans. Geosci. Remote Sens. 2014, 52, 537–543. [Google Scholar] [CrossRef]
- Martín-Neira, M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Martín-Neira, M.; Caparrini, M.; Font-Rossello, J.; Lannelongue, S.; Vallmitjana, C.S. The PARIS concept: An experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Trans. Geosci. Remote Sens. 2001, 39, 142–150. [Google Scholar] [CrossRef]
- Lowe, S.; Zuffada, C.; Chao, Y.; Kroger, P.; Young, L.; LaBrecque, J. 5-cm-precision aircraft ocean altimetry using GPS reflections. Geophys. Res. Lett. 2002, 29, 13-1–13-4. [Google Scholar] [CrossRef]
- Ruffini, G.; Soulat, F.; Caparrini, M.; Germain, O.; Martín-Neira, M. The eddy experiment: Accurate GNSS-R ocean altimetry from low altitude aircraft. Geophys. Res. Lett. 2004, 31, X-1–X-4. [Google Scholar] [CrossRef]
- Löfgren, J.; Haas, R.; Scherneck, H.; Bos, M. Three months of local sea level derived from reflected GNSS signals. Radio Sci. 2011, 46, RS0C05. [Google Scholar] [CrossRef]
- Semmling, A.; Beyerle, G.; Stosius, R.; Dick, G.; Wickert, J.; Fabra, F.; Cardellach, E.; Ribó, S.; Rius, A.; Helm, A.; et al. Detection of Artic ocean tides using interfeometric GNSS-R signals. Geophys. Res. Lett. 2011, 38, L04103. [Google Scholar] [CrossRef]
- Rius, A.; Noque’s-Correig, O.; Ribo, S.; Cardellach, E.; Oliveras, S.; Valencia, E.; Park, H.; Tarongí, J.M.; Camps, A.; Marel, H.; et al. Altimetry with GNSS-R interferometry: First proof of concept experiment. GPS Solut. 2012, 16, 231–241. [Google Scholar] [CrossRef]
- Cardellach, E.; Li, W.; Rius, A.; Semmling, M.; Wickert, J.; Zus, F.; Christo, S.R.; Buontempo, C. First Precise Spaceborne Sea Surface Altimetry with GNSS Reflected Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 102–112. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Y.; Sun, B. Basic performance and future developments of BeiDou global navigation satellite system. Satell Navig. 2020, 1, 1. [Google Scholar] [CrossRef]
- Larson, K.M.; Ray, R.D.; Nievinski, F.G.; Freymueller, J.T. The accidental tide gauge: A GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1200–1204. [Google Scholar] [CrossRef]
- Anderson, K.D. Determination of water level and tides using interferometric observations of GPS signals. J. Atmos. Ocean Technol. 2000, 17, 1118–1127. [Google Scholar] [CrossRef]
- Nievinski, F.G.; Larson, K.M. Inverse modeling of GPS multipath for snow depth estimation—Part I: Formulation and simulations. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6555–6563. [Google Scholar] [CrossRef]
- Strandberg, J.; Hobiger, T.; Haas, R. Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Sci. 2016, 51, 1286–1296. [Google Scholar] [CrossRef]
- Strandberg, J.; Hobiger, T.; Haas, R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solut. 2019, 23, 61. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Ramos-Perez, I.; Valencia, E.; Park, H.; Vall-llossera, M. Water level monitoring using the interference pattern GNSS-R technique. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Wang, X.; Zhang, Q.; Zhang, S. Water levels measured with SNR using wavelet decomposition and Lomb-Scargle periodogram. GPS Solut. 2018, 22, 22. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Zhang, S. Sea level estimation from SNR data of geodetic receivers using wavelet analysis. GPS Solut. 2019, 23, 6. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q. Evaluation and combination of quad-constellation multi-gnss multipath reflectometry applied to sea level retrieval. Remote Sens. Environ. Interdiscip. J. 2019, 231, 111229. [Google Scholar] [CrossRef]
- Nievinski, F.G.; Larson, K.M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications. GPS Solut. 2014, 18, 309–322. [Google Scholar] [CrossRef]
- Nievinski, F.G.; Larson, K.M. An open source GPS multipath simulator in Matlab/Octave. GPS Solut. 2014, 18, 473–481. [Google Scholar] [CrossRef]
- Tabibi, S.; Geremia-Nievinski, F.; Francis, O.; Dam, T. Tidal analysis of GNSS Reflectometry applied for coastal sea level sensing in Antarctica and Greenland. Remote Sens. Environ. 2020, 248, 111959. [Google Scholar] [CrossRef]
- Reinking, J. GNSS-SNR water level estimation using global optimization based on interval analysis. J. Geod. Sci. 2016, 6, 80–92. [Google Scholar] [CrossRef]
- Jin, S.; Qian, X.; Wu, X. Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): First results and evaluation. Glob. Planet. Chang. 2017, 149, 20–25. [Google Scholar] [CrossRef]
- Wang, N.; Xu, T.; Gao, F.; Xu, G. Sea Level Estimation Based on GNSS Dual-Frequency Carrier Phase Linear Combinations and SNR. Remote Sens. 2018, 10, 470. [Google Scholar] [CrossRef]
- Wang, N.; Wang, J.; Xu, T.; Gao, F.; He, Y.; Meng, X. Applications of ground-based multipath reflectometry based on combinations of pseudorange and carrier phase observations of multi-GNSS dual-frequency signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9557–9570. [Google Scholar] [CrossRef]
- Wang, N.; Xu, T.; Gao, F.; He, Y.; Meng, X.; Jing, L.; Ning, B. Sea-Level Monitoring and Ocean Tide Analysis based on Multipath Reflectometry Using Received Strength Indicator Data from Multi-GNSS Signals. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4211513. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S. An improved sea level retrieval method using the differential evolution of GNSS SNR data. Adv. Space Res. 2020, 67, 975–984. [Google Scholar] [CrossRef]
- Li, Y.; Yu, K.; Jin, T.; Chang, X.; Wang, Q.; Li, J. Development of GNSS-IR instrument based on low-cost positioning chips and its performance evaluation for estimating reflective height variation. GPS Solut. 2021, 25, 1–12. [Google Scholar]
- Williams, S.D.P.; Bell, P.S.; McCann, D.L.; Cooke, R.; Sams, C. Demonstrating the potential of low-cost GPS units for the remote measurement of tides and water levels using interferometric reflectometry. J. Atmos. Ocean. Technol. 2020, 37, 1925–1935. [Google Scholar] [CrossRef]
- Strandberg, J.; Haas, R. Can we measure sea level with a tablet computer? IEEE Geosci. Remote Sens. Lett. 2019, 17, 1876–1878. [Google Scholar] [CrossRef]
- Liu, Z.; Du, L.; Zhou, P.; Liu, Z.; Zhang, Z.; Xu, Z. Performance assessment of GNSS-IR altimetry using signal-to-noise ratio data from a Huawei P30 smartphone. GPS Solut. 2022, 26, 42. [Google Scholar] [CrossRef]
- Fagundes, M.A.R.; Mendonça-Tinti, I.; Iescheck, A.L.; Akos, D.M.; Geremia-Nievinski, F. An open-source low-cost sensor for SNR-based GNSS reflectometry: Design and long-term validation towards sea-level altimetry. GPS Solut. 2021, 25, 73. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity. Geosci. Remote Sens. 2014, 2, 8–45. [Google Scholar] [CrossRef]
- Garrison, J.L.; Katzberg, S.J.; Hill, M.I. Effect of sea roughness on bistatically scattered range coded signals from the Global Positioning System. Geophys. Res. Lett. 1998, 25, 2257–2260. [Google Scholar] [CrossRef]
- Helm, A. Ground-based GPS altimetry with the L1 OpenGPS receiver using carrier phase delay observations of reflected GPS signals. Doctoral Dissertation, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, 2008. [Google Scholar]
- Lowe, S.T.; Meehan, T.; Young, L. Direct signal enhanced semicodeless processing of GNSS surface-reflected signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1469–1472. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Camps, A.; Ramos-Perez, I.; Rius, A. Experimental evaluation of GNSS-reflectometry altimetric precision using the P (Y) and C/A signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1493–1500. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Lowe, S.T.; Zuffada, C.; Chao, Y. 2-cm GPS altimetry over Crater Lake. Geophys. Res. Lett. 2001, 28, 4343–4346. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, L.; Meng, W.; Gu, Q.; Han, Y.; Hong, Z. Feasibility of Code-Level Altimetry Using Coastal BeiDou Reflection (BeiDou-R) Setups. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4130–4140. [Google Scholar] [CrossRef]
- Gao, F.; Xu, T.; Wang, N.; He, Y.; Luo, X. A shipborne experiment using a dual-antenna reflectometry system for GPS/BDS code delay measurements. J. Geodesy. 2020, 94, 88. [Google Scholar] [CrossRef]
- Gao, F.; Xu, T.; Meng, X.; Wang, N.; He, Y.; Ning, B. A Coastal Experiment for GNSS-R Code-Level Altimetry Using BDS-3 New Civil Signals. Remote Sens. 2021, 13, 1378. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Gao, F.; Guo, P.; Wang, X.; Niu, X.; Wu, M.; Fu, N. Sea surface estimation by ground-based BDS GEO satellit reflectometry. IEEE J. Sel. Top Appl. Earth Obser. Remote Sens. 2020, 13, 5550–5559. [Google Scholar] [CrossRef]
- Lowe, S.T.; Zuffada, C.; Labrecque, J.L.; Lough, M.; Young, L.E. An ocean-altimetry measurement using reflected GPS signals observed from a low-altitude aircraft. IEEE Int. Geosci. Remote Sens. Symp. 2000, 5, 2185–2187. [Google Scholar]
- Semmling, A.M.; Beckheinrich, J.; Wickert, J.; Beyerle, G.; Schon, S.; Fabra, F.; Pflug, H.; He, K.; Schwabe, J.; Scheinert, M. Sea surface topography retrieved from GNSS reflectometry phase data of the GEOHALO flight mission. Geophys. Res. Lett. 2014, 41, 954–960. [Google Scholar] [CrossRef]
- Mashburn, J.; Axelrad, P.; Lowe, S.T.; Larson, K.M. An assessment of the precision and accuracy of altimetry retrievals for a monterey bay GNSS-R experiment. IEEE J. Sel. Top Appl. Earth Obser. Remote Sens. 2016, 9, 4660–4668. [Google Scholar] [CrossRef]
- Zheng, W.; Li, Z.; Wu, F. Research progress in improving the accuracy of underwater inertial/gravity integrated navigation based on the new generation of GNSS-R constellation sea surface altimetry principle. Sci. Technol. Eng. 2019, 19, 21–36. [Google Scholar]
- Carreno-Luengo, H.; Camps, A.; Ruf, C.; Floury, N.; Martín-Neira, M.; Wang, T.; Khalsa, S.J.; Clarizia, M.P.; Reynolds, J.; Johnson, J.; et al. The IEEE-SA Working Group on Spaceborne GNSS-R: Scene Study. IEEE Access 2021, 9, 89906–89933. [Google Scholar] [CrossRef]
- Hoseini, M.; Asgarimehr, M.; Zavorotny, V.; Nahavandchi, H.; Ruf, C.; Wickert, J. First Evidence of Mesoscale Ocean Eddies Signature in GNSS Reflectometry Measurements. Remote Sens. 2020, 12, 542. [Google Scholar] [CrossRef]
- Peng, Q.; Jin, S. Significant Wave Height Estimation from Space-Borne Cyclone-GNSS Reflectometry. Remote Sens. 2019, 11, 584. [Google Scholar] [CrossRef]
- Wang, Y.; Morton, Y.J. Ionospheric Total Electron Content and Disturbance Observations from Space-Borne Coherent GNSS-R Measurements. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5801013. [Google Scholar] [CrossRef]
- Bai, W.; Zhao, D.; Xia, J.; Sun, Y.; Du, Q.; Wang, X.; Meng, X.; Liu, C.; Cai, Y.; Wang, Y. Statistical Analysis of Simulated Space-Borne GNSS-R Data in Different Antenna Coverage and Installation Condition. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 386–395. [Google Scholar]
- Gao, F.; Xu, T.; Wang, N.; Jiang, C.; Du, Y.; Nie, W.; Xu, G. Spatiotemporal Evaluation of GNSS-R Based on Future Fully Operational Global Multi-GNSS and Eight-LEO Constellations. Remote Sens. 2018, 10, 67. [Google Scholar] [CrossRef]
- Gleason, S.; Gommenginger, C.; Cromwell, D. Fading statistics and sensing accuracy of ocean scattered GNSS and altimetry signals. Adv. Space Res. 2010, 46, 208–220. [Google Scholar] [CrossRef]
- Pascual, D.; Camps, A.; Martin, F.; Park, H.; Arroyo, A.A.; Onrubia, R. Precision Bounds in GNSS-R Ocean Altimetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1416–1423. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.; Cipollini, P.; Zuffada, C. First spaceborne observation of sea surface height using GPS-Reflectometry. Geophys. Res. Lett. 2016, 43, 767–774. [Google Scholar] [CrossRef]
- D’Addio, S.; Martín-Neira, M.; Bisceglie, M.; Galdi, C.; Alemany, F.M. GNSS-R Altimeter Based on Doppler Multi-looking. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1452–1460. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Camps, A.; Via, P.; Munoz, J.F.; Cortiella, A.; Vidal, D.; Jané, J.; Catarino, N.; Hagenfeldt, M.; Palomo, P.; et al. 3Cat-2—An experimental nanosatellite for GNSS-R earth observation: Mission concept and analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4540–4551. [Google Scholar] [CrossRef]
- Camps, A.; Park, H.; Domènech, E.V.; Pascual, D.; Martin, F.; Rius, A.; Ribo, S.; Benito, J.; Saameno, P.; Staton, G.; et al. Optimization and Performance Analysis of Interferometric GNSS-R Altimeters: Application to the PARIS IoD Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1436–1451. [Google Scholar] [CrossRef]
- Wickert, J.; Cardellach, E.; Martín-Neira, M.; Bandeiras, J.; Bertino, L.; Andersen, O.B.; Camps, A.; Catarino, N.; Chapron, B.; Fabra, F.; et al. GEROS-ISS: GNSS Reflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4552–4581. [Google Scholar] [CrossRef]
- Unwin, M.J.; Pierdicca, N.; Cardellach, E.; Rautiainen, K.; Foti, G.; Blunt, P.; Guerriero, L.; Santi, E.; Tossaint, M. An Introduction to the HydroGNSS GNSS Reflectometry Remote Sensing Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6987–6999. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Bian, Z.; Wei, H.; Fan, D.; Bai, Z. Improving GNSS-R Ocean Wind Speed Retrieval for the BF-1 Mission Using Satellite Platform Attitude Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2121–2133. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Yang, D.; Zheng, Q.; Li, F. Wind Speed Retrieval and Assessment Using GNSS-R Data from “Jilin 1” Kuanfu 01B Satellite. Geomat. Inf. Sci. Wuhan Univ. 2023, 49, 56–67. [Google Scholar]
- Mashburn, J.; Axelrad, P.; Lowe, S.T.; Larson, K.M. Global Ocean Altimetry with GNSS Reflections from TechDemoSat-1. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4088–4097. [Google Scholar] [CrossRef]
- Rius, A.; Cardellach, E.; Fabra, F.; Li, W.; Ribó, S.; Hernández-Pajares, M. Feasibility of GNSS-R Ice Sheet Altimetry in Greenland Using TDS-1. Remote Sens. 2017, 9, 742. [Google Scholar] [CrossRef]
- Cartwright, J.; Clarizia, M.P.; Cipollini, P.; Banks, C.J.; Srokosz, M. Independent DEM of Antarctica Using GNSS-R Data from TechDemoSat-1. Geophys. Res. Lett. 2018, 45, 6117–6123. [Google Scholar] [CrossRef]
- Cartwright, J.; Banks, C.J.; Srokosz, M. Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1. Cryosphere 2020, 14, 1909–1917. [Google Scholar] [CrossRef]
- Li, W.; Rius, A.; Fabra, F.; Martín-Neira, M.; Cardellach, E.; Ribó, S.; Yang, D. The Impact of Inter-Modulation Components on Interferometric GNSS-Reflectometry. Remote Sens. 2016, 8, 1013. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Ribo, S.; Rius, A. Assessment of Spaceborne GNSS-R Ocean Altimetry Performance Using CYGNSS Mission Raw Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 238–250. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; RibÓ, S.; Rius, A.; Zhou, B. First spaceborne demonstration of BeiDou-3 signals for GNSS reflectometry from CYGNSS constellation. Chin. J. Aeronaut. 2021, 34, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, D.; Meng, W.; Zheng, Q.; Yang, S. Sea surface height inversion of GPS reflected signal based on TechDemoSat-1 satellite. J. Beijing Univ. Aeronaut. Astronaut. 2021, 47, 1941–1948. [Google Scholar]
- Cardellach, E.; Ao, C.O.; Juárez, M.T.; Hajj, G.A. Carrier phase delay altimetry with GPS-reflection/occultation interferometry from low Earth orbiters. Geophys. Res. Lett. 2004, 31, L10402. [Google Scholar] [CrossRef]
- Semmling, A.M.; Leister, V.; Saynisch, J.; Zus, F.; Heise, S.; Wickert, J. A Phase-Altimetric Simulator: Studying the Sensitivity of Earth-Reflected GNSS Signals to Ocean Topography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6791–6802. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Lake Level and Surface Topography Measured with Spaceborne GNSS-Reflectometry from CYGNSS Mission: Example for the Lake Qinghai. Geophys. Res. Lett. 2018, 45, 13332–13341. [Google Scholar] [CrossRef]
- Wang, Y.; Morton, Y.J. Coherent GNSS Reflection Signal Processing for High-Precision and High-Resolution Spaceborne Applications. IEEE Trans. Geosci. Remote Sens. 2021, 59, 831–842. [Google Scholar] [CrossRef]
- Wang, Y.; Morton, Y.J. River Slope Observation from Spaceborne GNSS-R Carrier Phase Measurements: A Case Study. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1503105. [Google Scholar] [CrossRef]
- Nguyen, V.A.; Nogués-Correig, O.; Yuasa, T.; Masters, D.; Irisov, V. Initial GNSS Phase Altimetry Measurements from the Spire Satellite Constellation. Geophys. Res. Lett. 2020, 47, e2020GL088308. [Google Scholar] [CrossRef]
- Roesler, C.J.; Morton, Y.J.; Wang, Y.; Nerem, R.S. Coherent GNSS-Reflections Characterization Over Ocean and Sea Ice Based on Spire Global CubeSat Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5801918. [Google Scholar] [CrossRef]
- Nogués-Correig, O.; Galí, E.C.; Campderrós, J.S.; Rius, A. A GPS-reflections receiver that computes Doppler/delay maps in real time. IEEE Trans. Geosci. Remote Sens. 2006, 45, 156–174. [Google Scholar] [CrossRef]
- Rius, A.; Fabra, F.; Ribo, S.; Arco, J.C.; Oliveras, S.; Cardellach, E.; Camps, A.; Nogués-Correig, O.; Kainulainen, J.; Rohue, E.; et al. PARIS interferometric technique proof of concept: Sea surface altimetry measurements. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Helm, A.; Montenbruck, O.; Ashjaee, J.; Yudanov, S.; Beyerle, G.; Stosius, R.; Rothacher, M. GORS-A GNSS Occultation, Reflectometry and Scatterometry Space Receiver. In Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, USA, 25–28 September 2007. [Google Scholar]
- Jing, C.; Niu, X.; Duan, C.; Lu, F.; Di, G.; Yang, X. Sea surface wind speed retrieval from the first Chinese GNSS-R mission: Technique and preliminary results. Remote Sens. 2019, 11, 3013. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, B.; Wan, W.; Lu, F.; Niu, X.; Ji, R.; Jing, C.; Li, W.; Chen, X.; Yang, J.; et al. Soil moisture retrieval using BuFeng-1 A/B based on land surface clustering algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4680–4689. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Du, Q.; Wang, X.; Bai, W.; Kirchengast, G.; Xia, J.; Meng, X.; Wang, D.; Cai, Y.; et al. Global navigation satellite system occultation sounder II (GNOS II). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Huang, F.; Xia, J.; Yin, C.; Zhai, X.; Yang, G.; Bai, W.; Sun, Y.; Du, Q.; Wang, X.; Qiu, T.; et al. Spaceborne GNSS Reflectometry with Galileo Signals on FY-3E/GNOS-II: Measurements, Calibration, and Wind Speed Retrieval. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3501505. [Google Scholar] [CrossRef]
- Onrubia, R.; Pascual, D.; Querol, J.; Park, H.; Camps, A. The global navigation satellite systems reflectometry (GNSS-R) microwave interferometric reflectometer: Hardware, calibration, and validation experiments. Sensors 2019, 19, 1019. [Google Scholar] [CrossRef]
- Munoz-Martin, J.F.; Miguelez, N.; Castella, R.; Fernandez, L.; Solanellas, A.; Via, P.; Camps, A. 3Cat-4: Combined GNSS-R, L-Band radiometer with RFI mitigation, and AIS receiver for an I-Unit Cubesat based on software defined radio. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Caparrini, M.; Egido, A.; Soulat, F.; Germain, O.; Farres, E.; Dunne, S.; Ruffini, G. Oceanpal®: Monitoring sea state with a GNSS-R coastal instrument. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Yang, D.K.; Zhang, Y.G.; Zhang, Q.S.; Li, Z.W. Airborne ocean wind-field retrieval system based on GPS scattering signals. Acta Aeronaut. Astronaut. Sin. 2006, 27, 310–313. [Google Scholar]
- Hobiger, T.; Haas, R.; Löfgren, J.S. GLONASS-R: GNSS reflectometry with a frequency division multiple access-based satellite navigation system. Radio Sci. 2014, 49, 271–282. [Google Scholar] [CrossRef]
- Ribó, S.; Arco-Fernández, J.C.; Cardellach, E.; Fabra, F.; Li, W.; Nogués-Correig, O.; Martín-Neira, M. A software-defined GNSS reflectometry recording receiver with wide-bandwidth, multi-band capability and digital beam-forming. Remote Sens. 2017, 9, 450. [Google Scholar] [CrossRef]
- Lestarquit, L.; Peyrezabes, M.; Darrozes, J.; Motte, E.; Roussel, N.; Wautelet, G.; Frappart, F.; Ramillien, G.; Biancale, R.; Zribi, M. Reflectometry with an open-source software GNSS receiver: Use case with carrier phase altimetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4843–4853. [Google Scholar] [CrossRef]
- Munoz-Martin, J.F.; Capon, L.F.; Ruiz-de-Azua, J.A.; Camps, A. The flexible microwave payload-2: A SDR-based GNSS-reflectometer and L-band radiometer for CubeSats. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1298–1311. [Google Scholar] [CrossRef]
- Guruprasad, S. FPGA-Based GNSS Receiver Design for Reflectometry Applications. Ph.D. Thesis, York University, Toronto, ON, Canada, 2023. [Google Scholar]
- Kurum, M.; Farhad, M.M.; Gurbuz, A.C. Integration of smartphones into small unmanned aircraft systems to sense water in soil by using reflected GPS signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1048–1059. [Google Scholar] [CrossRef]
- Farhad, M.M.; Kurum, M.; Gurbuz, A.C. A Ubiquitous GNSS-R Methodology to Estimate Surface Reflectivity Using Spinning Smartphone Onboard a Small UAS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6568–6578. [Google Scholar] [CrossRef]
- Martín-Neira, M.; D’Addio, S.; Buck, C.; Floury, N.; Prieto-Cerdeira, R. The PARIS ocean altimeter in-orbit demonstrator. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2209–2237. [Google Scholar] [CrossRef]
- Cardellach, E.; Wickert, J.; Baggen, R.; Benito, J.; Camps, A.; Catarino, N.; Chapron, B.; Dielacher, A.; Fabra, F.; Flato, G.; et al. GNSS transpolar earth reflectometry explori Ng system (G-TERN): Mission concept. IEEE Access 2018, 6, 13980–14018. [Google Scholar] [CrossRef]
- Martín-Neira, M.; Li, W.; Andres-Beivide, A.; Ballesteros-Sels, X. Cookie: A satellite concept for GNSS remote sensing constellations. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2016, 9, 4593–4610. [Google Scholar] [CrossRef]
- Rius, A.; Cardellach, E.; Martín-Neira, M. Altimetric analysis of the sea surface GPS reflected signals. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2119–2127. [Google Scholar] [CrossRef]
- Park, H.; Valencia, E.; Camps, A.; Rius, A.; Ribo, S.; Martín-Neira, M. Delay tracking in spaceborne GNSS-R ocean altimetry. IEEE Geosci. Remote Sens. Lett. 2013, 10, 57–61. [Google Scholar] [CrossRef]
- Park, H.; Pascual, D.; Camps, A.; Martin, F.; Alonso-Arroyo, A.; Carreno-Luengo, H. Analysis of spaceborne GNSS-R delay-Doppler tracking. IEEE J. Sel. Topics Appl. 2017, 7, 1481–1492. [Google Scholar] [CrossRef]
- Cardellach, E.; Rius, A.; Martín-Neira, M.; Fabra, F.; Nogues-Correig, O.; Ribo, S.; Kainulainen, J.; Camps, A.; D’Addio, S. Consolidating the precision of interferometric GNSS-R ocean altimetry using airborne experimental data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4992–5004. [Google Scholar] [CrossRef]
- Fabra, F.; Cardellach, E.; Ribó, S.; Li, W.; Rius, A.; Arco-Fernández, J.; Nogués-Correig, O.; Praks, J.; Rouhe, E.; Seppänen, J.; et al. Is accurate synoptic altimetry achievable by means of inter ometric GNSS-R? Remote Sens. 2019, 11, 505. [Google Scholar] [CrossRef]
- Li, W.; Yang, D.; D’Addio, S.; Martín-Neira, M. Partial interferometric processing of reflected GNSS signals for ocean altimetry. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1509–1513. [Google Scholar]
- He, Y.; Gao, F.; Xu, T.; Meng, X.; Wang, N.; Ning, B. Coastal GNSS-R phase altimetry based on the combination of L1 and L5 signals under high sea states. J. Geod. 2023, 97, 19. [Google Scholar] [CrossRef]
- Wang, N.; He, K.; Gao, F.; Chu, T.; Hou, J.; Xu, T. Analysis of GNSS-R Code-Level Altimetry using QZSS C/A, L1C, and BDS B1C signals and their Combinations in a Coastal Experiment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4549–4564. [Google Scholar] [CrossRef]
- Wang, N.; Gao, F.; Kong, Y.; Xu, T.; Jing, L.; Yang, L.; He, Y.; Yang, W.; Meng, X.; Ning, B. Soil Moisture Estimation Based on GNSS-R Using L5 Signals From a Quasi-Zenith Satellite System. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2505005. [Google Scholar] [CrossRef]
- Meng, X.; Gao, F.; Xu, T.; He, Y.; Wang, N.; Ning, B. Design of realtime GNSS-R software-defined receiver for coastal altimetry using GPS/BDS/QZSS signals. GPS Solut. 2024, 28, 20. [Google Scholar] [CrossRef]
- He, Y.; Xu, T.; Gao, F.; Wang, N.; Meng, X.; Ning, B. Analysis and Mitigation of Crosstalk Effect on Coastal GNSS-R Code-Level Altimetry Using L5 Signals from QZSS GEO. Remote Sens. 2021, 13, 4553. [Google Scholar] [CrossRef]
- Ning, B.; Wang, N.; Jing, L.; Gao, F.; Kong, Y.; He, Y. Research on the retrieval model of shore-based GNSS-R code altimetry. J. Beijing Univ. Aeronaut. Astronaut. 2023. [Google Scholar]
- He, Y.; Gao, F.; Xu, T.; Meng, X.; Wang, N. Coastal Altimetry Using Interferometric Phase from GEO Satellite in Quasi-Zenith Satellite System. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3002505. [Google Scholar] [CrossRef]
Model | Main Formulas * | References |
---|---|---|
SNR | [35] | |
SSI | [37] | |
Combinations of code and phase | [36] [36] [34] [35] [36] |
Reference | Platform | Signal | Reflection Surface | Precision |
---|---|---|---|---|
Treuhaft et al., 2001 [49] | From a 480 m Cloudcap Lookout point | GPS code | lake | 2 cm |
Zhang et al., 2015 [50] | Ground-based | BDS code | lake; ocean | 0.11 m for GEO and 1.61 m for IGSO; 0.37 m |
Gao et al., 2018 [51] | Ship-borne | GPS and BDS code | ocean | Sub-meter-level |
Gao et al., 2021 [52] | Ground-based | BDS-3 B1C and B2a | ocean | Centimeter-level after using moving average |
Wu et al., 2020 [53] | Ground-based | BDS GEO code | ocean | Decimeter-level |
Lowe et al., 2002 [14] | Air-borne | GPS C/A and P(Y) | ocean | 14 cm for C/A and 5 cm for P(Y) |
Ruffini et al., 2004 [15] | Air-borne | GPS L1 | ocean | 10 cm |
Semmling et al., 2014 [55] | Air-borne | GPS carrier phase | ocean | 8 of 65 tracks with centimeter precision |
Mashburn et al., 2016 [56] | Air-borne | GPS L1 P-code | ocean | Std: 0.6 m |
Clarizia et al., 2016 [66] | Space-borne: TDS-1 | GPS group delay | ocean | Meter-level |
Mashburn et al., 2016 [74] | Space-borne: TDS-1 | GPS L1 C/A | ocean | A mean height residual of 6.4 m |
Li et al., 2020 [78] | Space-borne: CYGNSS | GPS and Galileo group delay | ocean | 3.9 and 2.5 m for the 1 s GPS and Galileo group measurements |
Zhang et al., 2021 [81] | Space-borne: TDS-1 | group delay | ocean | |
Cardellach et al., 2004 [82] | CHAMP satellite mission | phase delay | sea ice | 0.7 m for 1 km sampling |
Li et al., 2017 [78] | Space-borne: TDS-1 | phase delay | sea surface | RMS: 4.7 cm |
Li et al., 2018 [84] | Space-borne: CYGNSS | group delay; carrier phase delay | lake | RMS: 0.68 m The difference between the derived results and the geoid model is ~15–20 cm |
Cardellach et al., 2020 [19] | Space-borne: CYGNSS | grazing angle phase delay | ocean | 3/4.1 cm (median/mean) at 20 Hz sampling |
Nguyen and Roesler, 2022 [88] | Space-borne: Spire constellation | carrier phase | sea ice | Centimeter level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Wang, N.; He, Y.; Li, Y.; Meng, X.; Gao, F.; Lopez-Baeza, E. GNSS Reflectometry-Based Ocean Altimetry: State of the Art and Future Trends. Remote Sens. 2024, 16, 1754. https://doi.org/10.3390/rs16101754
Xu T, Wang N, He Y, Li Y, Meng X, Gao F, Lopez-Baeza E. GNSS Reflectometry-Based Ocean Altimetry: State of the Art and Future Trends. Remote Sensing. 2024; 16(10):1754. https://doi.org/10.3390/rs16101754
Chicago/Turabian StyleXu, Tianhe, Nazi Wang, Yunqiao He, Yunwei Li, Xinyue Meng, Fan Gao, and Ernesto Lopez-Baeza. 2024. "GNSS Reflectometry-Based Ocean Altimetry: State of the Art and Future Trends" Remote Sensing 16, no. 10: 1754. https://doi.org/10.3390/rs16101754
APA StyleXu, T., Wang, N., He, Y., Li, Y., Meng, X., Gao, F., & Lopez-Baeza, E. (2024). GNSS Reflectometry-Based Ocean Altimetry: State of the Art and Future Trends. Remote Sensing, 16(10), 1754. https://doi.org/10.3390/rs16101754