Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = multiplexed biosensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2047 KB  
Review
Advanced Technologies in Extracellular Vesicle Biosensing: Platforms, Standardization, and Clinical Translation
by Seong-Jun Choi, Jaewon Choi, Jin Kim, Si-Hoon Kim, Hyung-Geun Cho, Min-Yeong Lim, Sehyun Chae, Kwang Suk Lim, Suk-Jin Ha and Hyun-Ouk Kim
Molecules 2026, 31(2), 227; https://doi.org/10.3390/molecules31020227 - 9 Jan 2026
Viewed by 166
Abstract
Recently, extracellular vesicles (EVs) have emerged as pivotal mediators of intercellular communication that reflect physiological homeostasis and pathological alterations. By encapsulating diverse biomolecules, including proteins, nucleic acids, and lipids, EVs mirror the molecular signatures of their parent cells, thereby positioning EV-based biosensing as [...] Read more.
Recently, extracellular vesicles (EVs) have emerged as pivotal mediators of intercellular communication that reflect physiological homeostasis and pathological alterations. By encapsulating diverse biomolecules, including proteins, nucleic acids, and lipids, EVs mirror the molecular signatures of their parent cells, thereby positioning EV-based biosensing as a transformative platform for noninvasive diagnostics, prognostic prediction, and therapeutic monitoring. This review provides a comprehensive overview of the current state and clinical translation of EV biosensing technologies. Herein, we have discussed ongoing efforts toward standardization and analytical validation (e.g., MISEV2023 and EV-TRACK) and evaluated advances in sensing modalities such as surface plasmon resonance (SPR), electrochemical, fluorescence, and magnetic detection systems, which have significantly improved analytical performance in terms of sensitivity and specificity. Furthermore, we highlight recent developments in multiplexed and multiomics integration at the single-EV level and the application of machine learning to enhance diagnostic accuracy and interpret biological heterogeneity. The clinical relevance of EV biosensing has been explored across multiple disease domains, including oncology, neurology, and cardiometabolic and infectious diseases, with an emphasis on translational progress toward standardized, regulatory-compliant, and scalable platforms. Finally, this review identifies key challenges in manufacturing scale-up, quality control, and point-of-care deployment and proposes a unified framework to accelerate the adoption of EV biosensing as a cornerstone of next-generation precision diagnostics and personalized medicine. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials for Bioapplications, 2nd Edition)
Show Figures

Figure 1

43 pages, 1898 KB  
Review
Advances in Colorectal Cancer: Epidemiology, Gender and Sex Differences in Biomarkers and Their Perspectives for Novel Biosensing Detection Methods
by Konstantina K. Georgoulia, Vasileios Tsekouras and Sofia Mavrikou
Pharmaceuticals 2026, 19(1), 13; https://doi.org/10.3390/ph19010013 - 20 Dec 2025
Viewed by 724
Abstract
Colorectal cancer (CRC) remains a major cause of morbidity and mortality worldwide, with its incidence and biological behavior influenced by both genetic and environmental factors. Emerging evidence highlights notable sex differences in CRC, with men generally exhibiting higher incidence rates and poorer prognoses, [...] Read more.
Colorectal cancer (CRC) remains a major cause of morbidity and mortality worldwide, with its incidence and biological behavior influenced by both genetic and environmental factors. Emerging evidence highlights notable sex differences in CRC, with men generally exhibiting higher incidence rates and poorer prognoses, while women often display stronger immune responses and distinct molecular profiles. Traditional screening tools, such as colonoscopy and fecal-based tests, have improved survival through early detection but are limited by invasiveness, cost, and adherence issues. In this context, biosensors have emerged as innovative diagnostic platforms capable of rapid, sensitive, and non-invasive detection of CRC-associated biomarkers, including genetic, epigenetic, and metabolic alterations. These technologies integrate biological recognition elements with nanomaterials, microfluidics, and digital systems, enabling the analysis of biomarkers such as proteins, nucleic acids, autoantibodies, epigenetic marks, and metabolic or VOC signatures from blood, stool, or breath and supporting point-of-care applications. Electrochemical, optical, piezoelectric, and FET platforms enable label-free or ultrasensitive multiplexed readouts and align with liquid biopsy workflows. Despite challenges related to standardization, robustness in complex matrices, and clinical validation, advances in nanotechnology, multi-analyte biosensing with artificial intelligence are enhancing biosensor performance. Integrating biosensor-based diagnostics with knowledge of sex-specific molecular and hormonal pathways may lead to more precise and equitable approaches in CRC detection, selection of therapeutic regimes and management. Full article
(This article belongs to the Special Issue Application of Biosensors in Pharmaceutical Research)
Show Figures

Graphical abstract

21 pages, 1251 KB  
Review
Gold Nanoparticles in Biomedical Applications: Synthesis, Functionalization, and Recent Advances
by Massa Zahdeh and Rafik Karaman
Molecules 2026, 31(1), 17; https://doi.org/10.3390/molecules31010017 - 20 Dec 2025
Viewed by 684
Abstract
Background: Gold nanoparticles (AuNPs) are metallic nanoparticles with strong biomedical potential and have FDA approval. Their nanoscale size, optical tunability, and biocompatibility allow them to be used for tumor-targeted delivery, photothermal therapy, imaging contrast, radiosensitization, gene transfection, biosensing, personalized medicine and AI-supported healthcare [...] Read more.
Background: Gold nanoparticles (AuNPs) are metallic nanoparticles with strong biomedical potential and have FDA approval. Their nanoscale size, optical tunability, and biocompatibility allow them to be used for tumor-targeted delivery, photothermal therapy, imaging contrast, radiosensitization, gene transfection, biosensing, personalized medicine and AI-supported healthcare solutions. These properties made AuNPs a game-changing tool in nanomedicine. Methods: Google Scholar, PubMed, Scopus and ScienceDirect were used to search the literature with keywords related to gold nanoparticles, synthesis, functionalization and advanced applications in biomedicine. The search mainly focused on studies published between 2018–2025, and older landmark papers were only included when needed to describe classical synthesis. Results: Standard AuNP synthesis and functionalization approaches were compared with advanced methods such as green synthesis, microfluidic synthesis, polymer functionalization and AI-supported synthesis optimization. AuNPs moved from traditional drug administration and basic diagnostics into multiplex imaging, targeted therapy, hybrid theranostics, spectral CT imaging, gene delivery and CRISPR-related applications. Conclusions: This review demonstrates the evolution of AuNPs in biomedicine from traditional nanoparticles to sophisticated multifunctional nanosystems. To the best of our knowledge, this is the first assessment that explicitly contrasts sophisticated AuNP techniques with conventional procedures in biomedical applications. Full article
Show Figures

Graphical abstract

25 pages, 1379 KB  
Review
From Aerosol to Signal: Advances in Biosensor Technologies for Airborne Biothreat Detection
by Samuel De Penning, Md Sadiqul Islam, Kawkab Ahasan, Todd A. Kingston and Pranav Shrotriya
Biosensors 2025, 15(12), 764; https://doi.org/10.3390/bios15120764 - 21 Nov 2025
Viewed by 2582
Abstract
The growing threat of airborne biological agents necessitates rapid, sensitive, and portable detection systems to mitigate risks to public health and national security. We present a comprehensive overview of biosensor technologies developed for airborne biothreat detection, with a focus on aptamer-based electrochemical sensors. [...] Read more.
The growing threat of airborne biological agents necessitates rapid, sensitive, and portable detection systems to mitigate risks to public health and national security. We present a comprehensive overview of biosensor technologies developed for airborne biothreat detection, with a focus on aptamer-based electrochemical sensors. These sensors offer key advantages in portability, chemical stability, and adaptability for multiplexed detection in field settings. The urgency for real-time surveillance tools capable of identifying viral, bacterial, and toxin-based agents is discussed, particularly in the context of biodefense. Aerosolized particle capture strategies are reviewed, focusing on microfluidics for micron-sized particles and condensation-based systems for submicron-sized particles, which are preferred for their small-volume operation and seamless integration with biosensors. Key biosensor components are described, including recognition elements—such as aptamers—and transduction mechanisms like electrochemical impedance spectroscopy. EIS is highlighted for its label-free, miniaturizable, and real-time readout capabilities, making it well-suited for portable biosensors. Advances in sensing strategies for both viral and bacterial targets are explored, featuring innovations in nanoporous membrane platforms, nanomaterials, and multiplexed assay formats. Recent developments demonstrate improved sensitivity through nanopore-based signal amplification and enhanced selectivity using engineered aptamer libraries. The review concludes by addressing current limitations, including environmental stability, system integration, and the need for validation with complex real-world samples. Future directions point toward the development of fully integrated, field-deployable biosensing platforms that combine effective aerosol capture with robust and selective biosensing technologies. Full article
(This article belongs to the Special Issue Nucleic Acid Aptamer-Based Bioassays)
Show Figures

Figure 1

16 pages, 1997 KB  
Article
A 3D-Printed PMMA Microneedle-Based TSA-ELISA Platform for Noninvasive Inflammatory Biomarker Detection
by Minghui Xu, Qingyu Ruan and Yukun Ren
Micromachines 2025, 16(11), 1286; https://doi.org/10.3390/mi16111286 - 14 Nov 2025
Viewed by 594
Abstract
Inflammatory cytokines and proteins are essential indicators of immune status and disease progression; however, conventional assays rely on invasive sampling and complex processing, restricting their use in real-time monitoring. Here, we present a 3D-printed poly(methyl methacrylate) (PMMA) microneedle-based biosensing platform integrated with a [...] Read more.
Inflammatory cytokines and proteins are essential indicators of immune status and disease progression; however, conventional assays rely on invasive sampling and complex processing, restricting their use in real-time monitoring. Here, we present a 3D-printed poly(methyl methacrylate) (PMMA) microneedle-based biosensing platform integrated with a tyramide signal amplification–enhanced enzyme-linked immunosorbent assay (TSA–ELISA) for noninvasive and highly sensitive detection of inflammatory biomarkers in interstitial fluid. The microneedles exhibit precise geometry, adequate mechanical strength, and excellent biocompatibility, facilitating efficient skin penetration and biomarker capture. Stepwise chemical functionalization ensured stable antibody immobilization, while TSA significantly amplified detection signals. The platform achieved reliable, reproducible, and multiplex detection of cytokines and albumin in both healthy individuals and patients with inflammatory skin conditions. Notably, the measured cytokine level in lesional skin of eczema patients was 97.7 pg/mL, showing a significant difference from the 62.8 pg/mL observed in healthy subjects. This MN-based TSA–ELISA system offers a robust and minimally invasive strategy for monitoring inflammation-related biomarkers, holding great potential for clinical diagnostics and personalized healthcare applications. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

11 pages, 3075 KB  
Communication
Highly Sensitive Si-Based Electrolyte-Gated Transistor Array for Multiplexed Detection of Arboviruses
by Seonghwan Shin, Jeonghyeon Do, Jongmin Son and Jeong-Soo Lee
Micromachines 2025, 16(11), 1279; https://doi.org/10.3390/mi16111279 - 13 Nov 2025
Viewed by 508
Abstract
Multiplexed detection of arboviruses using a 4 × 4 Si-based electrolyte-gated transistor (EGT) array functionalized with specific aptamers has been investigated. The Si-based EGTs were fabricated using conventional Si microfabrication processes. The EGTs showed excellent intrinsic electrical characteristics, including a low threshold voltage [...] Read more.
Multiplexed detection of arboviruses using a 4 × 4 Si-based electrolyte-gated transistor (EGT) array functionalized with specific aptamers has been investigated. The Si-based EGTs were fabricated using conventional Si microfabrication processes. The EGTs showed excellent intrinsic electrical characteristics, including a low threshold voltage of 0.8 V, a sub-threshold swing of 75 mV/dec, and a gate leakage of <10 pA, ensuring uniform device performance with low device-to-device variation. Aptamers specific to the yellow fever virus nonstructural protein 1 (YF), dengue virus nonstructural protein 1 (DN), and chikungunya virus envelope protein 2 (CHK) were functionalized on EGT arrays to evaluate individual and multiplexed detection. In individual-target detections, concentration-dependent negative shifts in threshold voltage were observed, and relevant limits of detection (LOD) as low as 38.6 pg/mL, 95.2 pg/mL, and 1.6 ng/mL were extracted for YF, DN, and CHK, respectively. In multiplexed detections, sensitivities decreased and variations increased relative to the individual responses, resulting in higher LODs. The extracted LODs were 0.2 ng/mL, 0.6 ng/mL, and 2.8 ng/mL for YF, DN, and CHK, respectively, which are lower than those reported for other methods. These results suggest that Si-based EGT arrays are promising as a scalable, low-cost, and highly sensitive biosensing platform for multiplexed arbovirus detection and point-of-care diagnostics. Full article
(This article belongs to the Special Issue Microsystems for Point-of-Care Testing and Diagnostics)
Show Figures

Figure 1

38 pages, 4752 KB  
Review
Aptamer-Based Strategies for Colorectal Cancer Detection: Emerging Technologies and Future Directions
by María Jesús Lobo-Castañón and Ana Díaz-Fernández
Biosensors 2025, 15(11), 726; https://doi.org/10.3390/bios15110726 - 1 Nov 2025
Viewed by 1645
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide, with patient outcomes highly dependent on early and accurate diagnosis. However, existing diagnostic methods, such as colonoscopy, fecal occult blood testing, and imaging, are often invasive, costly, or lack sufficient [...] Read more.
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide, with patient outcomes highly dependent on early and accurate diagnosis. However, existing diagnostic methods, such as colonoscopy, fecal occult blood testing, and imaging, are often invasive, costly, or lack sufficient sensitivity and specificity, particularly in early-stage disease. In this context, aptamers, which are synthetic single-stranded oligonucleotides capable of binding to specific targets with high affinity, have emerged as a powerful alternative to antibodies for biosensing applications. This review provides a comprehensive overview of aptamer-based strategies for CRC detection, spanning from biomarker discovery to clinical translation. We first examine established and emerging CRC biomarkers, including those approved by regulatory agencies, described in patents, and shared across multiple cancer types. We then discuss recent advances in aptamer selection and design, with a focus on SELEX variants and in silico optimization approaches tailored to CRC-relevant targets. The integration of aptamers into cutting-edge sensing platforms, such as electrochemical, optical, and nanomaterial-enhanced aptasensors, is highlighted, with emphasis on recent innovations that enhance sensitivity, portability, and multiplexing capabilities. Furthermore, we explore the convergence of aptasensing with microfluidics, and wearable technologies to enable intelligent, miniaturized diagnostic systems. Finally, we consider the clinical and regulatory pathways for point-of-care implementation, as well as current challenges and opportunities for advancing the field. By outlining the technological and translational trajectory of aptamer-based CRC diagnostics, this review aims to provide a roadmap for future research and interdisciplinary collaboration in precision oncology. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Figure 1

38 pages, 7558 KB  
Review
A Review on ZnO Nanostructures for Optical Biosensors: Morphology, Immobilization Strategies, and Biomedical Applications
by Amauri Serrano-Lázaro, Karina Portillo-Cortez, María Beatriz de la Mora Mojica and Juan C. Durán-Álvarez
Nanomaterials 2025, 15(21), 1627; https://doi.org/10.3390/nano15211627 - 25 Oct 2025
Viewed by 1402
Abstract
ZnO nanostructures have attracted attention as transducer materials in optical biosensing platforms due to their wide bandgap, defect-mediated photoluminescence, high surface-to-volume ratio, and tunable morphology. This review examines how the dimensionality of ZnO nanostructures affects biosensor performance, particularly in terms of charge transport, [...] Read more.
ZnO nanostructures have attracted attention as transducer materials in optical biosensing platforms due to their wide bandgap, defect-mediated photoluminescence, high surface-to-volume ratio, and tunable morphology. This review examines how the dimensionality of ZnO nanostructures affects biosensor performance, particularly in terms of charge transport, signal transduction, and biomolecule immobilization. The synthesis approaches are discussed, highlighting how they influence crystallinity, defect density, and surface functionalization potential. The impact of immobilization strategies on sensor stability and sensitivity is also assessed. The role of ZnO in various optical detection schemes, including photoluminescence, surface plasmon resonance (SPR), localized (LSPR), fluorescence, and surface-enhanced Raman scattering (SERS), is reviewed, with emphasis on label-free and real-time detection. Representative case studies demonstrate the detection of clinically and environmentally relevant targets, such as glucose, dopamine, cancer biomarkers, and SARS-CoV-2 antigens, with limits of detection in the pico- to femtomolar range. Recent developments in ZnO-based hybrid systems and their integration into fiber-optic and microfluidic platforms are explored as scalable solutions for portable, multiplexed diagnostics. The review concludes by outlining current challenges related to reproducibility, long-term operational stability, and surface modification standardization. This work provides a framework for understanding structure–function relationships in ZnO-based biosensors and highlights future directions for their development in biomedical and environmental monitoring applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

30 pages, 2370 KB  
Review
Nanobiosensors for Single-Molecule Diagnostics: Toward Integration with Super-Resolution Imaging
by Seungah Lee, Sobia Rafiq and Seong Ho Kang
Biosensors 2025, 15(10), 705; https://doi.org/10.3390/bios15100705 - 21 Oct 2025
Viewed by 2108
Abstract
Recent advances in nanotechnology and optical imaging have transformed molecular diagnostics, enabling the detection and analysis of individual biomolecules with unprecedented precision. Nanobiosensors provide ultrasensitive molecular detection, and super-resolution microscopy (SRM) exceeds the diffraction limit of conventional optics to achieve nanometer-scale resolution. Although [...] Read more.
Recent advances in nanotechnology and optical imaging have transformed molecular diagnostics, enabling the detection and analysis of individual biomolecules with unprecedented precision. Nanobiosensors provide ultrasensitive molecular detection, and super-resolution microscopy (SRM) exceeds the diffraction limit of conventional optics to achieve nanometer-scale resolution. Although their integration remains in its infancy, with only a handful of proof-of-concept studies reported, the convergence of nanobiosensors and SRM holds significant promise for next-generation diagnostics. In this review, we first outline nanobiosensor-based single-molecule detection strategies and highlight representative implementations. These include plasmonic–SRM hybrids, electrochemical–optical correlatives, and SRM-enabled immunoassays, with a focus on their applications in oncology, infectious diseases, and neurodegenerative disorders. Then, we discuss emerging studies at the interface of nanobiosensors and SRM, including nanostructure-assisted SRM. Despite not being true biosensing approaches, these studies provide valuable insights into how engineered nanomaterials can improve imaging performance. Finally, we evaluate current challenges, including reproducibility, multiplexing, and clinical translation, and outline future opportunities, such as the development of photostable probes, artificial intelligence-assisted image reconstruction, microfluidic integration, and regulatory strategies. This review highlights the synergistic potential of nanobiosensors and SRM, outlining a roadmap toward clinically translatable next-generation single-molecule diagnostic platforms. Full article
Show Figures

Figure 1

17 pages, 2060 KB  
Article
Continuous Optical Biosensing of IL-8 Cancer Biomarker Using a Multimodal Platform
by A. L. Hernandez, K. Mandal, B. Santamaria, S. Quintero, M. R. Dokmeci, V. Jucaud and M. Holgado
Bioengineering 2025, 12(10), 1115; https://doi.org/10.3390/bioengineering12101115 - 17 Oct 2025
Viewed by 954
Abstract
In this work, we used a label-free biosensor that provides optical readouts to perform continuous detection of human interleukin 8 (IL-8), which is especially overexpressed in certain cancers and, thus, could be an effective biomarker for cancer prognosis estimation and therapy evaluation. For [...] Read more.
In this work, we used a label-free biosensor that provides optical readouts to perform continuous detection of human interleukin 8 (IL-8), which is especially overexpressed in certain cancers and, thus, could be an effective biomarker for cancer prognosis estimation and therapy evaluation. For this purpose, we engineered a compact, portable, and easy-to-assemble biosensing module device. It combines a fluidic chip for reagent flow, a biosensing chip for signal transduction, and an optical readout head based on fiber optics in a single module. The biosensing chip is based on independent arrays of resonant nanopillar transducer (RNP) networks. We integrated the biosensing chip with the RNPs facing down in a simple and rapidly fabricated polydimethyl siloxane (PDMS) microfluidic chip, with inlet and outlet channels for the sample flowing through the RNPs. The RNPs were vertically oriented from the backside through an optical fiber mounted on a holder head fabricated ad hoc on polytetrafluoroethylene (PTFE). The optical fiber was connected to a visible spectrometer for optical response analysis and consecutive biomolecule detection. We obtained a sensogram showing anti-IL-8 immobilization and the specific recognition of IL-8. This unique portable and easy-to-handle module can be used for biomolecule detection within minutes and is particularly suitable for in-line sensing of physiological and biomimetic organ-on-a-chip systems. Cancer biomarkers’ continuous monitoring arises as an efficient and non-invasive alternative to classical tools (imaging, immunohistology) for determining clinical prognostic factors and therapeutic responses to anticancer drugs. In addition, the multiplexed layout of the optical transducers and the simplicity of the monolithic sensing module yield potential high-throughput screening of a combination of different biomarkers, which, together with other medical exams (such as imaging and/or patient history), could become a cutting-edge technology for further and more accurate diagnosis and prediction of cancer and similar diseases. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

22 pages, 7772 KB  
Review
The Application of DNA Origami in Biosensing
by Renjie Niu, Mengyao Tao and Jie Chao
Chemistry 2025, 7(5), 165; https://doi.org/10.3390/chemistry7050165 - 10 Oct 2025
Viewed by 2810
Abstract
Biosensing plays a vital role in medical diagnostics, environmental monitoring, and food safety, enabling highly sensitive and specific detection of diverse biological and chemical targets. However, conventional biosensing platforms still suffer from limited sensitivity, poor nanoscale resolution, and restricted multiplexed or dynamic detection [...] Read more.
Biosensing plays a vital role in medical diagnostics, environmental monitoring, and food safety, enabling highly sensitive and specific detection of diverse biological and chemical targets. However, conventional biosensing platforms still suffer from limited sensitivity, poor nanoscale resolution, and restricted multiplexed or dynamic detection capabilities. DNA origami, as an emerging bottom-up nanofabrication strategy, enables the construction of programmable nanostructures with high spatial precision. This capability allows the rational arrangement of functional molecules at the nanoscale, thereby offering significant advantages for biosensing applications. Specifically, DNA origami can enhance signal amplification, improve spatial resolution, and enable multiplexed detection under complex conditions. In this review, we provide a systematic overview of recent advances in the application of DNA origami across various classes of biosensors, including microscopy-based biosensors, nanopore biosensors, electrochemical biosensors, fluorescent biosensors, SERS biosensors, and other related biosensors. We aim for this review to advance the development of DNA origami-based biosensing and to provide new insights for researchers working in related fields. Full article
Show Figures

Figure 1

17 pages, 2088 KB  
Review
Rolling Circle Amplification as a Molecular Tool for Spatially Resolved Signal Amplification in Single Molecule Counting Assay
by Juhwan Park
Biosensors 2025, 15(9), 628; https://doi.org/10.3390/bios15090628 - 21 Sep 2025
Viewed by 1868
Abstract
There have been rising interests in ultra-sensitive biosensing technologies for early diagnosis and prognosis monitoring of infectious diseases, cancers, and neurodegenerative diseases. Digital signal readout strategy represented by digital ELISA or digital PCR, advanced biosensing field enormously, which enables detection of biomolecules under [...] Read more.
There have been rising interests in ultra-sensitive biosensing technologies for early diagnosis and prognosis monitoring of infectious diseases, cancers, and neurodegenerative diseases. Digital signal readout strategy represented by digital ELISA or digital PCR, advanced biosensing field enormously, which enables detection of biomolecules under the detection limit of conventional biosensing methods. However, due to the need for compartmentalization and limited multiplex capability, it has been hurdled for utilization in applications requiring hierarchical resolution analysis such as sub-cellular molecules or molecular cargo of single cells or single extracellular vesicles (EVs). Rolling circle amplification (RCA), an isothermal DNA amplification method enabling localization of an amplified signal, can eliminate the need for compartmentalization and increase multiplex capability. It also has potential to expand applications of single molecule counting assay for understanding hierarchy of biological systems. In this review, recent advances in RCA-based single molecule counting assay are overviewed and their applications in single cells and single EVs quantitative analysis are discussed. Furthermore, the limitations and outlook of RCA-based single molecule counting assay are highlighted. Full article
(This article belongs to the Special Issue Point-of-Care Testing: Advances and Perspectives)
Show Figures

Figure 1

16 pages, 4244 KB  
Article
Mode-Enhanced Surface Plasmon Resonance in Few-Mode Fibers via Dual-Groove Architecture
by Qin Wu, Xiao Liang, Zhaoxin Geng, Shuo Liu and Jia Liu
Photonics 2025, 12(9), 925; https://doi.org/10.3390/photonics12090925 - 17 Sep 2025
Viewed by 684
Abstract
We propose a dual-groove few-mode fiber surface plasmon resonance sensor that exploits the LP11 mode for enhanced plasmonic sensing. The device incorporates two physically separated grooves with distinct metallic coatings, enabling dual-channel operation via wavelength-division multiplexing. Finite element method simulations show that [...] Read more.
We propose a dual-groove few-mode fiber surface plasmon resonance sensor that exploits the LP11 mode for enhanced plasmonic sensing. The device incorporates two physically separated grooves with distinct metallic coatings, enabling dual-channel operation via wavelength-division multiplexing. Finite element method simulations show that the optimized design achieves a maximum sensitivity of 14,800 nm/RIU within the RI range of 1.33–1.40. The introduction of a TiO2–Au bilayer enhances mode coupling and ensures complete spectral separation, thereby improving stability and reducing environmental interference. Biosensing simulations at 37 °C further confirm the practicality of the proposed architecture. Channel 1, filled with ethanol as a temperature-sensitive medium, provides temperature monitoring, while Channel 2 successfully distinguishes between normal and tumor cells, reaching a sensitivity of up to 9428.57 nm/RIU for Jurkat cells. Overall, the TiO2-enhanced dual-channel FMF-SPR sensor combines ultra-high sensitivity, spectral independence, and biosensing capability, demonstrating strong potential for next-generation fiber-optic sensing and biomedical applications. Full article
(This article belongs to the Special Issue Novel Biomedical Optical Spectroscopy, Microscopy and Imaging)
Show Figures

Figure 1

16 pages, 1616 KB  
Review
Decoding Molecular Network Dynamics in Cells: Advances in Multiplexed Live Imaging of Fluorescent Biosensors
by Qiaowen Chen, Yichu Xu, Jhen-Wei Wu, Jr-Ming Yang and Chuan-Hsiang Huang
Biosensors 2025, 15(9), 614; https://doi.org/10.3390/bios15090614 - 17 Sep 2025
Cited by 2 | Viewed by 2245
Abstract
Genetically encoded fluorescent protein (FP)-based biosensors have revolutionized cell biology research by enabling real-time monitoring of molecular activities in live cells with exceptional spatial and temporal resolution. Multiplexed biosensing advances this capability by allowing the simultaneous tracking of multiple signaling pathways to uncover [...] Read more.
Genetically encoded fluorescent protein (FP)-based biosensors have revolutionized cell biology research by enabling real-time monitoring of molecular activities in live cells with exceptional spatial and temporal resolution. Multiplexed biosensing advances this capability by allowing the simultaneous tracking of multiple signaling pathways to uncover network interactions and dynamic coordination. However, challenges in spectral overlap limit broader implementation. Innovative strategies have been devised to address these challenges, including spectral separation through FP palette expansion and novel biosensor designs, temporal differentiation using photochromic or reversibly switching FPs, and spatial segregation of biosensors to specific subcellular regions or through cell barcoding techniques. Combining multiplexed biosensors with artificial intelligence-driven analysis holds great potential for uncovering cellular decision-making processes. Continued innovation in this field will deepen our understanding of molecular networks in cells, with implications for both fundamental biology and therapeutic development. Full article
Show Figures

Figure 1

40 pages, 3625 KB  
Review
Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review
by John Paolo Ramoso, Manoochehr Rasekh and Wamadeva Balachandran
Biosensors 2025, 15(9), 586; https://doi.org/10.3390/bios15090586 - 6 Sep 2025
Cited by 4 | Viewed by 8374
Abstract
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse [...] Read more.
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse surface functionalisation through bio-interfacing. This review highlights the core detection mechanisms in graphene-based biosensors. Optical sensing techniques, such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), benefit significantly from graphene’s strong light–matter interaction, which enhances signal sensitivity. Although graphene itself lacks intrinsic piezoelectricity, its integration with piezoelectric substrates can augment the performance of piezoelectric biosensors. In electrochemical sensing, graphene-based electrodes support rapid electron transfer, enabling fast response times across a range of techniques, including impedance spectroscopy, amperometry, and voltammetry. Graphene field-effect transistors (GFETs), which leverage graphene’s high carrier mobility, offer real-time, label-free, and highly sensitive detection of biomolecules. In addition, the review also explores multiplexed detection strategies vital for point-of-care diagnostics. Graphene’s nanoscale dimensions and tunable surface chemistry facilitate both array-based configurations and the simultaneous detection of multiple biomarkers. This adaptability makes graphene an ideal material for compact, scalable, and accurate biosensor platforms. Continued advancements in graphene biofunctionalisation, sensing modalities, and integrated multiplexing are driving the development of next-generation biosensors with superior sensitivity, selectivity, and diagnostic reliability. Full article
(This article belongs to the Special Issue Novel Graphene-Based Biosensors for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop