The Application of DNA Origami in Biosensing
Abstract
1. Introduction
2. DNA Origami-Based Biosensors
2.1. Microscopy-Based Biosensors
2.2. Nanopore Biosensors
2.3. Electrochemical Biosensors
2.4. Fluorescent Biosensors
2.5. SERS Biosensors
2.6. Other Optical Biosensors
3. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
4-MBA | 4-Mercaptobenzoic Acid |
AFM | Atomic Force Microscopy |
ATP | Adenosine Triphosphate |
AuNP | Gold Nanoparticle |
AuNR | Gold Nanorod |
CD | Circular Dichroism |
ctDNA | Circulating Tumor DNA |
CV | Coefficient of Variation |
DES | Diethylstilbestrol |
DHP | Dihydropyridine |
EIS | Electrochemical Impedance Spectroscopy |
FO-SPR | Fiber Optic Surface Plasmon Resonance |
FRET | Fluorescence Resonance Energy Transfer |
GOx | Glucose Oxidase |
HCV | Hepatitis C Virus |
HRP | Horseradish Peroxidase |
LFIA | Lateral Flow Immunoassay |
MB | Methylene Blue |
PDGF-BB | Platelet-Derived Growth Factor BB |
PEG | Polyethylene Glycol |
PNA | Peptide Nucleic Acid |
PSA | Prostate-Specific Antigen |
RCA | Rolling Circle Amplification |
RCT | Charge Transfer Resistance |
SEM | Scanning Electron Microscopy |
SERS | Surface-Enhanced Raman Spectroscopy |
SLE | Systemic Lupus Erythematosus |
SNP | Single-Nucleotide Polymorphism |
Spd3+ | Spermidine |
SPR | Surface Plasmon Resonance |
SWV | Square Wave Voltammetry |
TEM | Transmission Electron Microscopy |
References
- Yang, Z.; Mao, S.; Wang, L.; Fu, S.; Dong, Y.; Jaffrezic-Renault, N.; Guo, Z. CRISPR/Cas and Argonaute-Based Biosensors for Pathogen Detection. ACS Sens. 2023, 8, 3623–3642. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, J.; Salena, B.J.; Li, Y. Aptamer and Dnazyme Based Colorimetric Biosensors for Pathogen Detection. Angew. Chem. Int. Ed. 2025, 64, e202418725. [Google Scholar] [CrossRef]
- Hwang, M.T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A.M.; et al. Ultrasensitive Detection of Nucleic Acids Using Deformed Graphene Channel Field Effect Biosensors. Nat. Commun. 2020, 11, 1543. [Google Scholar] [CrossRef]
- Osman, D.I.; El-Sheikh, S.M.; Sheta, S.M.; Ali, O.I.; Salem, A.M.; Shousha, W.G.; El-Khamisy, S.F.; Shawky, S.M. Nucleic Acids Biosensors Based on Metal-Organic Framework (Mof): Paving the Way to Clinical Laboratory Diagnosis. Biosens. Bioelectron. 2019, 141, 111451. [Google Scholar] [CrossRef]
- Zhao, S.; Qiao, X.; Chen, M.; Li, Y.; Wang, X.; Xu, Z.; Wu, Y.; Luo, X. D-Amino Acid-Based Antifouling Peptides for the Construction of Electrochemical Biosensors Capable of Assaying Proteins in Serum with Enhanced Stability. ACS Sens. 2022, 7, 1740–1746. [Google Scholar] [CrossRef]
- Han, X.; Shen, X.; Zhou, Y.; Wang, L.; Ren, Q.; Cai, Y.; Abdi-Ghaleh, R. Terahertz Vibrational Fingerprints Detection of Molecules with Particularly Designed Graphene Biosensors. Nanomaterials 2022, 12, 3422. [Google Scholar] [CrossRef]
- Lin, A.; Che, C.; Jiang, A.; Qi, C.; Glaviano, A.; Zhao, Z.; Zhang, Z.; Liu, Z.; Zhou, Z.; Cheng, Q.; et al. Protein Spatial Structure Meets Artificial Intelligence: Revolutionizing Drug Synergy-Antagonism in Precision Medicine. Adv. Sci. 2025, 12, e07764. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, J.; Sun, A.; Zhang, H.; Yu, X.; Qin, W.; Ying, W.; Li, Y.; Chang, C.; Wang, X.; et al. The Coming Era of Proteomics-Driven Precision Medicine. Natl. Sci. Rev. 2025, 12, nwaf278. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Updike, S.J.; Hicks, G.P. The Enzyme Electrode. Nature 1967, 214, 986–988. [Google Scholar] [CrossRef]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [PubMed]
- Pullano, S.A.; Greco, M.; Bianco, M.G.; Foti, D.; Brunetti, A.; Fiorillo, A.S. Glucose Biosensors in Clinical Practice: Principles, Limits and Perspectives of Currently Used Devices. Theranostics 2022, 12, 493–511. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Friedman, A.K.; Baker, L.A. Nanopore Sensing. Anal. Chem. 2017, 89, 157–188. [Google Scholar] [CrossRef]
- Singh, S.L.; Chauhan, K.; Bharadwaj, A.S.; Kishore, V.; Laux, P.; Luch, A.; Singh, A.V. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int. J. Mol. Sci. 2023, 24, 6153. [Google Scholar] [CrossRef] [PubMed]
- Rothemund, P.W. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef]
- Zhan, P.; Peil, A.; Jiang, Q.; Wang, D.; Mousavi, S.; Xiong, Q.; Shen, Q.; Shang, Y.; Ding, B.; Lin, C.; et al. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem. Rev. 2023, 123, 3976–4050. [Google Scholar] [CrossRef]
- He, Z.; Shi, K.; Li, J.; Chao, J. Self-Assembly of DNA Origami for Nanofabrication, Biosensing, Drug Delivery, and Computational Storage. iScience 2023, 26, 106638. [Google Scholar] [CrossRef]
- Marras, A.E.; Zhou, L.; Su, H.J.; Castro, C.E. Programmable Motion of DNA Origami Mechanisms. Proc. Natl. Acad. Sci. USA 2015, 112, 713–718. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization Techniques for Nanoparticles: Comparison and Complementarity Upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef]
- Heath, G.R.; Kots, E.; Robertson, J.L.; Lansky, S.; Khelashvili, G.; Weinstein, H.; Scheuring, S. Localization Atomic Force Microscopy. Nature 2021, 594, 385–390. [Google Scholar] [CrossRef]
- Collins, L.; Liu, Y.; Ovchinnikova, O.S.; Proksch, R. Quantitative Electromechanical Atomic Force Microscopy. ACS Nano 2019, 13, 8055–8066. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhang, L.; Baumann, D.; Mei, L.; Yao, Y.; Duan, X.; Shi, Y.; Huang, J.; Huang, Y.; Duan, X. In Situ Transmission Electron Microscopy for Energy Materials and Devices. Adv. Mater. 2019, 31, 1900608. [Google Scholar] [CrossRef]
- Guo, H.; Yulaev, A.; Strelcov, E.; Tselev, A.; Arble, C.; Vladar, A.E.; Villarrubia, J.S.; Kolmakov, A. Probing Electrified Liquid-Solid Interfaces with Scanning Electron Microscopy. ACS Appl. Mater. Interfaces 2020, 12, 56650–56657. [Google Scholar] [CrossRef] [PubMed]
- Lazic, I.; Sachse, C. Obtaining Cryo-Em Structures by Scanning Transmission Electron Microscopy. Nat. Methods 2022, 19, 1179–1180. [Google Scholar] [CrossRef]
- Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M. Nanomechanical DNA Origami ‘Single-Molecule Beacons’ Directly Imaged by Atomic Force Microscopy. Nat. Commun. 2011, 2, 449. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Y.; Xu, D.; Pang, L. Aptamer-Tagged DNA Origami for Spatially Addressable Detection of Aflatoxin B1. Chem. Comm. 2013, 53, 941–944. [Google Scholar] [CrossRef]
- Liu, K.; Pan, D.; Wen, Y.; Zhang, H.; Chao, J.; Wang, L.; Song, S.; Fan, C.; Shi, Y. Identifying the Genotypes of Hepatitis B Virus (Hbv) with DNA Origami Label. Small 2017, 14, 1701718. [Google Scholar] [CrossRef]
- Godonoga, M.; Lin, T.Y.; Oshima, A.; Sumitomo, K.; Tang, M.S.L.; Cheung, Y.W.; Kinghorn, A.B.; Dirkzwager, R.M.; Zhou, C.; Kuzuya, A.; et al. A DNA Aptamer Recognising a Malaria Protein Biomarker Can Function as Part of a DNA Origami Assembly. Sci. Rep. 2016, 6, 21266. [Google Scholar] [CrossRef]
- Wang, K.; Huang, Q.; Elshaer, M.R.; Knorr, B.; Chaikin, P.; Zhu, G. Tri-State Logic Computation by Activating DNA Origami Chains. Nanoscale 2024, 16, 11991–11998. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Kim, J.; Wang, K.; Vecchioni, S.; Ohayon, Y.P.; Seeman, N.C.; Jonoska, N.; Sha, R. Environmentally Controlled Oscillator with Triplex Guided Displacement of DNA Duplexes. Nano Lett. 2023, 23, 7593–7598. [Google Scholar] [CrossRef]
- Ke, Y.; Lindsay, S.; Chang, Y.; Liu, Y.; Yan, H. Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays. Science 2008, 319, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fu, Y.; Yan, J.; Zhao, B.; Dai, B.; Chao, J.; Liu, H.; He, D.; Zhang, Y.; Fan, C.; et al. Molecular Logic Gates on DNA Origami Nanostructures for Microrna Diagnostics. Anal. Chem. 2014, 86, 1932–1936. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Feng, X.; Lou, J.; Li, W.; Li, S.; Zhu, H.; Yang, L.; Zhang, A.; He, L.; Li, C. Accurate Quantification of Microrna Via Single Strand Displacement Reaction on DNA Origami Motif. PLoS ONE 2013, 8, e69856. [Google Scholar] [CrossRef] [PubMed]
- Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Yamanaka, Y.; Ohya, Y.; Komiyama, M. Allosteric Control of Nanomechanical DNA Origami Pinching Devices for Enhanced Target Binding. Chem. Comm. 2017, 53, 8276–8279. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Fan, C.; Li, C.; Li, Y.; Qian, L.; Fu, Y.; Shi, Y.; Hu, J.; He, L. Asymmetric DNA Origami for Spatially Addressable and Index-Free Solution-Phase DNA Chips. Adv. Mater. 2010, 22, 2672–2675. [Google Scholar] [CrossRef]
- Torelli, E.; Marini, M.; Palmano, S.; Piantanida, L.; Polano, C.; Scarpellini, A.; Lazzarino, M.; Firrao, G. A DNA Origami Nanorobot Controlled by Nucleic Acid Hybridization. Small 2014, 10, 2918–2926. [Google Scholar] [CrossRef]
- Xiong, J.; He, Z.; Wang, L.; Fan, C.; Chao, J. DNA Origami-Enabled Gene Localization of Repetitive Sequences. J. Am. Chem. Soc. 2024, 146, 6317–6325. [Google Scholar] [CrossRef]
- Hosseini Aghouzi, S.M.; Yildiz, E.; Mordogan, F.; Erdem, A. Biosensing of Single-Nucleotide Polymorphism: Technological Advances and Their Transformative Applications on Health. Biosens. Bioelectron. 2025, 279, 117385. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, D.; Ma, H.; Feng, G.; Hu, J.; He, L.; Li, C.; Fan, C. A DNA-Origami Chip Platform for Label-Free Snp Genotyping Using Toehold-Mediated Strand Displacement. Small 2010, 6, 1854–1858. [Google Scholar] [CrossRef]
- Subramanian, H.K.; Chakraborty, B.; Sha, R.; Seeman, N.C. The Label-Free Unambiguous Detection and Symbolic Display of Single Nucleotide Polymorphisms on DNA Origami. Nano Lett. 2011, 11, 910–913. [Google Scholar] [CrossRef]
- Zhang, H.; Chao, J.; Pan, D.; Liu, H.; Qiang, Y.; Liu, K.; Cui, C.; Chen, J.; Huang, Q.; Hu, J.; et al. DNA Origami-Based Shape Ids for Single-Molecule Nanomechanical Genotyping. Nat. Commun. 2017, 8, 14738. [Google Scholar] [CrossRef]
- Kuzuya, A.; Watanabe, R.; Yamanaka, Y.; Tamaki, T.; Kaino, M.; Ohya, Y. Nanomechanical DNA Origami Ph Sensors. Sensors 2014, 14, 19329–19335. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, L.; Guo, R.; Zhang, Y.; Li, F.; Li, M.; Li, J.; Shi, J.; Qu, F.; Zuo, X.; et al. DNA Origami Nanocalipers for Ph Sensing at the Nanoscale. Chem. Comm. 2022, 58, 3673–3676. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Niu, D.; Sha, R.; Seeman, N.C.; Canary, J.W. Construction of a DNA Origami Based Molecular Electro-Optical Modulator. Nano Lett. 2018, 18, 2112–2115. [Google Scholar] [CrossRef] [PubMed]
- Voigt, N.V.; Torring, T.; Rotaru, A.; Jacobsen, M.F.; Ravnsbaek, J.B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F.; et al. Single-Molecule Chemical Reactions on DNA Origami. Nat. Nanotechnol. 2010, 5, 200–203. [Google Scholar] [CrossRef]
- Tintore, M.; Gallego, I.; Manning, B.; Eritja, R.; Fabrega, C. DNA Origami as a DNA Repair Nanosensor at the Single-Molecule Level. Angew. Chem. Int. Ed. 2013, 52, 7747–7750. [Google Scholar] [CrossRef]
- Endo, M.; Sugiyama, H. Single-Molecule Imaging of Dynamic Motions of Biomolecules in DNA Origami Nanostructures Using High-Speed Atomic Force Microscopy. Acc. Chem. Res. 2014, 47, 1645–1653. [Google Scholar] [CrossRef]
- Prakash, P.S.; Joshi, F.M.; Vogelsberg, E.; Cremers, G.A.O.; Gur, F.N.; Sato, Y.; de Greef, T.F.A.; Ader, M.; Kurth, T.; Nunes Goncalves, D.P.; et al. DNA Origami Barcodes for Immunostaining. ACS Appl. Mater. Interfaces 2025, 17, 15813–15823. [Google Scholar] [CrossRef] [PubMed]
- Spitzberg, J.D.; Zrehen, A.; van Kooten, X.F.; Meller, A. Plasmonic-Nanopore Biosensors for Superior Single-Molecule Detection. Adv. Mater. 2019, 31, e1900422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, T.; Huang, P.; Wang, Q.; Tang, H.; Chu, X.; Jiang, J. Spatiotemporally Resolved Protein Detection in Live Cells Using Nanopore Biosensors. ACS Nano 2022, 16, 5752–5763. [Google Scholar] [CrossRef]
- Bell, N.A.; Engst, C.R.; Ablay, M.; Divitini, G.; Ducati, C.; Liedl, T.; Keyser, U.F. DNA Origami Nanopores. Nano Lett. 2012, 12, 512–517. [Google Scholar] [CrossRef]
- Wei, R.; Martin, T.G.; Rant, U.; Dietz, H. DNA Origami Gatekeepers for Solid-State Nanopores. Angew. Chem. Int. Ed. 2012, 51, 4864–4867. [Google Scholar] [CrossRef]
- Barati Farimani, A.; Dibaeinia, P.; Aluru, N.R. DNA Origami-Graphene Hybrid Nanopore for DNA Detection. ACS Appl. Mater. Interfaces 2017, 9, 92–100. [Google Scholar] [CrossRef]
- Hernandez-Ainsa, S.; Bell, N.A.; Thacker, V.V.; Gopfrich, K.; Misiunas, K.; Fuentes-Perez, M.E.; Moreno-Herrero, F.; Keyser, U.F. DNA Origami Nanopores for Controlling DNA Translocation. ACS Nano 2013, 7, 6024–6030. [Google Scholar] [CrossRef]
- Raveendran, M.; Lee, A.J.; Sharma, R.; Walti, C.; Actis, P. Rational Design of DNA Nanostructures for Single Molecule Biosensing. Nat. Commun. 2020, 11, 4384. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Johnson, J.A.; Ren, R.; Michele, L.D.; Edel, J.B.; Ivanov, A.P. Reconfigurable DNA Origami Hinges for Nanopore Detection of Microrna. Nano Res. 2025, 18, 94907604. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Chen, W.; Ma, B.; Ju, H. Device Integration of Electrochemical Biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Z.; Zheng, X.; Zhang, H.; Dong, D.; Zhang, Z.; Liu, M.; Zhou, J. An Electrochemical Biosensor for the Detection of Epithelial-Mesenchymal Transition. Nat. Commun. 2020, 11, 192. [Google Scholar] [CrossRef]
- Han, S.; Liu, W.; Yang, S.; Wang, R. Facile and Label-Free Electrochemical Biosensors for Microrna Detection Based on DNA Origami Nanostructures. ACS Omega 2019, 4, 11025–11031. [Google Scholar] [CrossRef] [PubMed]
- Williamson, P.; Piskunen, P.; Ijas, H.; Butterworth, A.; Linko, V.; Corrigan, D.K. Signal Amplification in Electrochemical DNA Biosensors Using Target-Capturing DNA Origami Tiles. ACS Sens. 2023, 8, 1471–1480. [Google Scholar] [CrossRef]
- Qin, W.; Gong, X.; Duan, X.; Hao, J.; Ren, H.; ShenTu, X.; Ye, Z.; Yu, X. Supercharged DNA Origami Enhanced Signal Amplification for Ultrasensitive Detection of Nucleic Acid. Biosens. Bioelectron. 2025, 287, 117692. [Google Scholar] [CrossRef]
- Jeon, B.J.; Guareschi, M.M.; Stewart, J.M.; Wu, E.; Gopinath, A.; Arroyo-Curras, N.; Dauphin-Ducharme, P.; Plaxco, K.W.; Lukeman, P.S.; Rothemund, P.W.K. Modular DNA Origami-Based Electrochemical Detection of DNA and Proteins. Proc. Natl. Acad. Sci. USA 2025, 122, e2311279121. [Google Scholar] [CrossRef]
- Ge, Z.; Fu, J.; Liu, M.; Jiang, S.; Andreoni, A.; Zuo, X.; Liu, Y.; Yan, H.; Fan, C. Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways. ACS Appl. Mater. Interfaces 2019, 11, 13881–13887. [Google Scholar] [CrossRef]
- Metternich, J.T.; Wartmann, J.A.C.; Sistemich, L.; Nissler, R.; Herbertz, S.; Kruss, S. Near-Infrared Fluorescent Biosensors Based on Covalent DNA Anchors. J. Am. Chem. Soc. 2023, 145, 14776–14783. [Google Scholar] [CrossRef]
- Guisan-Ceinos, S.; Rivero, A.R.; Romeo-Gella, F.; Simon-Fuente, S.; Gomez-Pastor, S.; Calvo, N.; Orrego, A.H.; Guisan, J.M.; Corral, I.; Sanz-Rodriguez, F.; et al. Turn-on Fluorescent Biosensors for Imaging Hypoxia-Like Conditions in Living Cells. J. Am. Chem. Soc. 2022, 144, 8185–8193. [Google Scholar] [CrossRef]
- Krause, S.; Ploetz, E.; Bohlen, J.; Schuler, P.; Yaadav, R.; Selbach, F.; Steiner, F.; Kaminska, I.; Tinnefeld, P. Graphene-on-Glass Preparation and Cleaning Methods Characterized by Single-Molecule DNA Origami Fluorescent Probes and Raman Spectroscopy. ACS Nano 2021, 15, 6430–6438. [Google Scholar] [CrossRef]
- Mathur, D.; Henderson, E.R. Programmable DNA Nanosystem for Molecular Interrogation. Sci. Rep. 2016, 6, 27413. [Google Scholar] [CrossRef]
- Selnihhin, D.; Sparvath, S.M.; Preus, S.; Birkedal, V.; Andersen, E.S. Multifluorophore DNA Origami Beacon as a Biosensing Platform. ACS Nano 2018, 12, 5699–5708. [Google Scholar] [CrossRef] [PubMed]
- Zadegan, R.M.; Jepsen, M.D.; Thomsen, K.E.; Okholm, A.H.; Schaffert, D.H.; Andersen, E.S.; Birkedal, V.; Kjems, J. Construction of a 4 Zeptoliters Switchable 3D DNA Box Origami. ACS Nano 2012, 6, 10050–10053. [Google Scholar] [CrossRef] [PubMed]
- Domljanovic, I.; Loretan, M.; Kempter, S.; Acuna, G.P.; Kocabey, S.; Ruegg, C. DNA Origami Book Biosensor for Multiplex Detection of Cancer-Associated Nucleic Acids. Nanoscale 2022, 14, 15432–15441. [Google Scholar] [CrossRef] [PubMed]
- Domljanovic, I.; Carstens, A.; Okholm, A.; Kjems, J.; Nielsen, C.T.; Heegaard, N.H.H.; Astakhova, K. Complexes of DNA with Fluorescent Dyes Are Effective Reagents for Detection of Autoimmune Antibodies. Sci. Rep. 2017, 7, 1925. [Google Scholar] [CrossRef]
- Tang, M.S.L.; Shiu, S.C.; Godonoga, M.; Cheung, Y.W.; Liang, S.; Dirkzwager, R.M.; Kinghorn, A.B.; Fraser, L.A.; Heddle, J.G.; Tanner, J.A. An Aptamer-Enabled DNA Nanobox for Protein Sensing. Nanomedicine 2018, 14, 1161–1168. [Google Scholar] [CrossRef]
- Ke, Y.; Meyer, T.; Shih, W.M.; Bellot, G. Regulation at a Distance of Biomolecular Interactions Using a DNA Origami Nanoactuator. Nat. Commun. 2016, 7, 10935. [Google Scholar] [CrossRef] [PubMed]
- Domljanovic, I.; Rexen Ulven, E.; Ulven, T.; Thomsen, R.P.; Okholm, A.H.; Kjems, J.; Voss, A.; Taskova, M.; Astakhova, K. Dihydropyridine Fluorophores Allow for Specific Detection of Human Antibodies in Serum. ACS Omega 2018, 3, 7580–7586. [Google Scholar] [CrossRef]
- Wang, X.; Mao, Z.; Chen, R.; Li, S.; Ren, S.; Liang, J.; Gao, Z. Self-Assembled DNA Origami-Based Duplexed Aptasensors Combined with Centrifugal Filters for Efficient and Rechargeable Atp Detection. Biosens. Bioelectron. 2022, 211, 114336. [Google Scholar] [CrossRef] [PubMed]
- Walter, H.K.; Bauer, J.; Steinmeyer, J.; Kuzuya, A.; Niemeyer, C.M.; Wagenknecht, H.A. “DNA Origami Traffic Lights” with a Split Aptamer Sensor for a Bicolor Fluorescence Readout. Nano Lett. 2017, 17, 2467–2472. [Google Scholar] [CrossRef]
- Marras, A.E.; Shi, Z.; Lindell, M.G., 3rd; Patton, R.A.; Huang, C.M.; Zhou, L.; Su, H.J.; Arya, G.; Castro, C.E. Cation-Activated Avidity for Rapid Reconfiguration of DNA Nanodevices. ACS Nano 2018, 12, 9484–9494. [Google Scholar] [CrossRef] [PubMed]
- Grabenhorst, L.; Pfeiffer, M.; Schinkel, T.; Kummerlin, M.; Bruggenthies, G.A.; Maglic, J.B.; Selbach, F.; Murr, A.T.; Tinnefeld, P.; Glembockyte, V. Engineering Modular and Tunable Single-Molecule Sensors by Decoupling Sensing from Signal Output. Nat. Nanotechnol. 2025, 20, 303–310. [Google Scholar] [CrossRef]
- Choi, Y.; Kotthoff, L.; Olejko, L.; Resch-Genger, U.; Bald, I. DNA Origami-Based Forster Resonance Energy-Transfer Nanoarrays and Their Application as Ratiometric Sensors. ACS Appl. Mater. Interfaces 2018, 10, 23295–23302. [Google Scholar] [CrossRef]
- Kaminska, I.; Bohlen, J.; Rocchetti, S.; Selbach, F.; Acuna, G.P.; Tinnefeld, P. Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners. Nano Lett. 2019, 19, 4257–4262. [Google Scholar] [CrossRef]
- Vietz, C.; Schütte, M.L.; Wei, Q.; Richter, L.; Lalkens, B.; Ozcan, A.; Tinnefeld, P.; Acuna, G.P. Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity. ACS Omega 2019, 4, 637–642. [Google Scholar] [CrossRef]
- Hudoba, M.W.; Luo, Y.; Zacharias, A.; Poirier, M.G.; Castro, C.E. Dynamic DNA Origami Device for Measuring Compressive Depletion Forces. ACS Nano 2017, 11, 6566–6573. [Google Scholar] [CrossRef]
- Ijas, H.; Hakaste, I.; Shen, B.; Kostiainen, M.A.; Linko, V. Reconfigurable DNA Origami Nanocapsule for Ph-Controlled Encapsulation and Display of Cargo. ACS Nano 2019, 13, 5959–5967. [Google Scholar] [CrossRef]
- Hemmig, E.A.; Fitzgerald, C.; Maffeo, C.; Hecker, L.; Ochmann, S.E.; Aksimentiev, A.; Tinnefeld, P.; Keyser, U.F. Optical Voltage Sensing Using DNA Origami. Nano Lett. 2018, 18, 1962–1971. [Google Scholar] [CrossRef]
- Ochmann, S.E.; Schroder, T.; Schulz, C.M.; Tinnefeld, P. Quantitative Single-Molecule Measurements of Membrane Charges with DNA Origami Sensors. Anal. Chem. 2022, 94, 2633–2640. [Google Scholar] [CrossRef]
- Buber, E.; Schroder, T.; Scheckenbach, M.; Dass, M.; Franquelim, H.G.; Tinnefeld, P. DNA Origami Curvature Sensors for Nanoparticle and Vesicle Size Determination with Single-Molecule Fret Readout. ACS Nano 2023, 17, 3088–3097. [Google Scholar] [CrossRef]
- Vietz, C.; Lalkens, B.; Acuna, G.P.; Tinnefeld, P. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes. Nano Lett. 2017, 17, 6496–6500. [Google Scholar] [CrossRef]
- Ochmann, S.E.; Vietz, C.; Trofymchuk, K.; Acuna, G.P.; Lalkens, B.; Tinnefeld, P. Optical Nanoantenna for Single Molecule-Based Detection of Zika Virus Nucleic Acids without Molecular Multiplication. Anal. Chem. 2017, 89, 13000–13007. [Google Scholar] [CrossRef] [PubMed]
- Trofymchuk, K.; Glembockyte, V.; Grabenhorst, L.; Steiner, F.; Vietz, C.; Close, C.; Pfeiffer, M.; Richter, L.; Schutte, M.L.; Selbach, F.; et al. Addressable Nanoantennas with Cleared Hotspots for Single-Molecule Detection on a Portable Smartphone Microscope. Nat. Commun. 2021, 12, 950. [Google Scholar] [CrossRef] [PubMed]
- Ghamari, S.; Chiarelli, G.; Kolataj, K.; Subramanian, S.; Acuna, G.P.; Vollmer, F. Label-Free (Fluorescence-Free) Sensing of a Single DNA Molecule on DNA Origami Using a Plasmon-Enhanced Wgm Sensor. Nanophotonics 2025, 14, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Yaadav, R.; Trofymchuk, K.; Dass, M.; Behrendt, V.; Hauer, B.; Schutz, J.; Close, C.; Scheckenbach, M.; Ferrari, G.; Maurer, L.; et al. Bringing Attomolar Detection to the Point-of-Care with Nanopatterned DNA Origami Nanoantennas. Adv. Mater. 2025, e07407. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguie, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef]
- Sharma, M.; Kaur, C.; Singhmar, P.; Rai, S.; Sen, T. DNA Origami-Templated Gold Nanorod Dimer Nanoantennas: Enabling Addressable Optical Hotspots for Single Cancer Biomarker Sers Detection. Nanoscale 2024, 16, 15128–15140. [Google Scholar] [CrossRef] [PubMed]
- Kanehira, Y.; Kogikoski, S., Jr.; Titov, E.; Tapio, K.; Mostafa, A.; Bald, I. Watching a Single Enzyme at Work Using Single-Molecule Surface-Enhanced Raman Scattering and DNA Origami-Based Plasmonic Antennas. ACS Nano 2024, 18, 20191–20200. [Google Scholar] [CrossRef]
- Mostafa, A.; Kanehira, Y.; Tapio, K.; Bald, I. From Bulk to Single Molecules: Surface-Enhanced Raman Scattering of Cytochrome C Using Plasmonic DNA Origami Nanoantennas. Nano Lett. 2024, 24, 6916–6923. [Google Scholar] [CrossRef] [PubMed]
- Tapio, K.; Mostafa, A.; Kanehira, Y.; Suma, A.; Dutta, A.; Bald, I. A Versatile DNA Origami-Based Plasmonic Nanoantenna for Label-Free Single-Molecule Surface-Enhanced Raman Spectroscopy. ACS Nano 2021, 15, 7065–7077. [Google Scholar] [CrossRef]
- Tanwar, S.; Kaur, V.; Kaur, G.; Sen, T. Broadband Sers Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing. J. Phys. Chem. Lett. 2021, 12, 8141–8150. [Google Scholar] [CrossRef]
- Dutta, A.; Tapio, K.; Suma, A.; Mostafa, A.; Kanehira, Y.; Carnevale, V.; Bussi, G.; Bald, I. Molecular States and Spin Crossover of Hemin Studied by DNA Origami Enabled Single-Molecule Surface-Enhanced Raman Scattering. Nanoscale 2022, 14, 16467–16478. [Google Scholar] [CrossRef]
- Kaur, C.; Kaur, V.; Rai, S.; Sharma, M.; Sen, T. Selective Recognition of the Amyloid Marker Single Thioflavin T Using DNA Origami-Based Gold Nanobipyramid Nanoantennas. Nanoscale 2023, 15, 6170–6178. [Google Scholar] [CrossRef] [PubMed]
- Heck, C.; Kanehira, Y.; Kneipp, J.; Bald, I. Placement of Single Proteins within the Sers Hot Spots of Self-Assembled Silver Nanolenses. Angew. Chem. Int. Ed. 2018, 57, 7444–7447. [Google Scholar] [CrossRef] [PubMed]
- Schuknecht, F.; Kolataj, K.; Steinberger, M.; Liedl, T.; Lohmueller, T. Accessible Hotspots for Single-Protein Sers in DNA-Origami Assembled Gold Nanorod Dimers with Tip-to-Tip Alignment. Nat. Commun. 2023, 14, 7192. [Google Scholar] [CrossRef]
- Heck, C.; Kanehira, Y.; Kneipp, J.; Bald, I. Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures. Molecules 2019, 24, 2324. [Google Scholar] [CrossRef]
- Li, S.; Shi, B.; He, D.; Zhou, H.; Gao, Z. DNA Origami-Mediated Plasmonic Dimer Nanoantenna-Based Sers Biosensor for Ultrasensitive Determination of Trace Diethylstilbestrol. J. Hazard. Mater. 2023, 458, 131874. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Nguyen, M.K.; Natarajan, A.K.; Nguyen, V.H.; Kuzyk, A. A DNA Origami-Based Chiral Plasmonic Sensing Device. ACS Appl. Mater. Interfaces 2018, 10, 44221–44225. [Google Scholar] [CrossRef]
- Funck, T.; Liedl, T.; Bae, W. Dual Aptamer-Functionalized 3D Plasmonic Metamolecule for Thrombin Sensing. Appl. Sci. 2019, 9, 3006. [Google Scholar] [CrossRef]
- Funck, T.; Nicoli, F.; Kuzyk, A.; Liedl, T. Sensing Picomolar Concentrations of RNA Using Switchable Plasmonic Chirality. Angew. Chem. Int. Ed. 2018, 57, 13495–13498. [Google Scholar] [CrossRef]
- Kuzyk, A.; Urban, M.J.; Idili, A.; Ricci, F.; Liu, N. Selective Control of Reconfigurable Chiral Plasmonic Metamolecules. Sci. Adv. 2017, 3, e1602803. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Xin, L.; Duan, X.; Urban, M.J.; Liu, N. Dynamic Plasmonic System That Responds to Thermal and Aptamer-Target Regulations. Nano Lett. 2018, 18, 7395–7399. [Google Scholar] [CrossRef] [PubMed]
- Daems, D.; Pfeifer, W.; Rutten, I.; Sacca, B.; Spasic, D.; Lammertyn, J. Three-Dimensional DNA Origami as Programmable Anchoring Points for Bioreceptors in Fiber Optic Surface Plasmon Resonance Biosensing. ACS Appl. Mater. Interfaces 2018, 10, 23539–23547. [Google Scholar] [CrossRef]
- Yan, J.; Hu, C.; Wang, P.; Liu, R.; Zuo, X.; Liu, X.; Song, S.; Fan, C.; He, D.; Sun, G. Novel Rolling Circle Amplification and DNA Origami-Based DNA Belt-Involved Signal Amplification Assay for Highly Sensitive Detection of Prostate-Specific Antigen (Psa). ACS Appl. Mater. Interfaces 2014, 6, 20372–20377. [Google Scholar] [CrossRef]
- Daems, D.; Rutten, I.; Bath, J.; Decrop, D.; Van Gorp, H.; Ruiz, E.P.; De Feyter, S.; Turberfield, A.J.; Lammertyn, J. Controlling the Bioreceptor Spatial Distribution at the Nanoscale for Single Molecule Counting in Microwell Arrays. ACS Sens. 2019, 4, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Rutten, I.; Daems, D.; Lammertyn, J. Boosting Biomolecular Interactions through DNA Origami Nano-Tailored Biosensing Interfaces. J. Mater. Chem. B 2020, 8, 3606–3615. [Google Scholar] [CrossRef]
- Ijas, H.; Trommler, J.; Nguyen, L.; van Rest, S.; Nickels, P.C.; Liedl, T.; Urban, M.J. DNA Origami Signal Amplification in Lateral Flow Immunoassays. Nat. Commun. 2025, 16, 3216. [Google Scholar] [CrossRef]
- Jia, Y.L.; Chen, L.M.; Liu, J.; Li, W.; Gu, H.Z. DNA-Catalyzed Efficient Production of Single-Stranded DNA Nanostructures. Chem 2021, 7, 959–981. [Google Scholar] [CrossRef]
- Ling, Y.F.; Qin, X.; Sun, W.J.; Yue, F.; Wang, Y.W.; Fan, D.; Xu, H.Y.; Xie, R.O.; Zhang, J.W.; Li, J.W.; et al. Precision-Arranged DNA Origami Plasmonic Nanoantennas for Multidimensional Smart-Warning of Weightlessness Induced Bone Loss. Adv. Sci. 2025, e07189. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Kielar, C.; Zhu, S.Q.; Sikeler, C.; Xu, X.D.; Moser, C.; Grundmeier, G.; Liedl, T.; Heuer-Jungemann, A.; Smith, D.M.; et al. Cryopreservation of DNA Origami Nanostructures. Small 2020, 16, 1905959. [Google Scholar] [CrossRef] [PubMed]
- Schon, J.C. Enhancing Synthesis Prediction Via Machine Learning. Nat. Comput. Sci. 2025, 5, 95–96. [Google Scholar] [CrossRef]
- Hur, J.; Chung, A.J. Microfluidic and Nanofluidic Intracellular Delivery. Adv. Sci. 2021, 8, e2004595. [Google Scholar] [CrossRef]
Types | Target | Limit of Detection | Linear Range | Sample Matrix | Ref. |
---|---|---|---|---|---|
Microscopy-Based Biosensors | RNA | 200 pM | / | RNA extract (mouse pro-B cells); buffer | [31] |
miRNA-133 | / | miRNA/Origami (0–16,000) | synthetic miRNA samples in buffer | [33] | |
pH | / | pH 5.0–8.0 | buffer; CNT microenvironment | [43] | |
Nanopore Biosensors | dsDNA, ssDNA | / | ssDNA; 500 nM; λ-DNA: 1 nM | KCl/MgCl2; TBE | [54] |
CRP | 3 nM in buffer; 9 nM in 5% human plasma | 3 nM–90 nM | KCl; 5% human plasma | [55] | |
miRNA-141-3p | nanomolar range | 0–200 nM | KCl/MgCl2 buffer; 2% human serum | [56] | |
Electrochemical Biosensors | miRNA-21 | 79.8 fM | 0.1 pM–10.0 nM | 1% human serum | [59] |
blaOXA-1 β-lactamase gene | 8.86 pM | 10 pM–1 nM | buffer; origami folding mix | [60] | |
ctDNA | 0.26 fM | 1 fM–10 pM | 10% human serum | [61] | |
streptavidin | <1 pM | 5 pM–1 nM | TAE/Mg2+ buffer | [62] | |
Fluorescent Biosensors | ATP | 0.10 mM | 0.10 mM–1.00 mM ATP | experimental buffer | [76] |
Compressive depletion forces | ~40 fN | 0–0.61 pN | 0.5 × TBE; MgCl2 | [82] | |
voltage | / | 100–600 mV | electrolyte solution | [84] | |
pH | 0.5 pH unit difference | pH 6.0–8.0 | buffer; 1–10% plasma | [83] | |
Membrane charges | / | 0–80% DOPG | large unilamellar vesicles; 50% plasma | [85] | |
miRNA-21, let-7a | 1–10 pM | 10 pM–1 μM | buffer; miRNA (MCF–7 cells) | [70] | |
nanoparticle and vesicle size | 36 nm–300 nm | 50–300 nm (silica particles); 50–200 nm (lipid vesicles) | buffer; lipid vesicle suspension | [86] | |
151-nucleotide sequence | 5 aM (buffer); 10 aM (human plasma) | 1 aM–5 nM | buffer; untreated human plasma | [91] | |
SERS Biosensors | diethylstilbestrol | 0.217 nM | 100 pM–10 μM | Spiked milk; anhydrous methanol | [103] |
streptavidin, thrombin | single-molecule level | / | water; TE buffer; PBS buffer | [101] | |
Chirality-based biosensors | pH | / | pH 5.5–9.5 | different pH buffer systems | [107] |
ATP | / | 0.05–1 mM | buffer | [108] | |
RNA | 100 pM | 0–100 nM | buffer; serum | [106] | |
SPR biosensors | human α-thrombin | 11.2 nM | 15.5–248 nM | buffer | [109] |
ELISA combined with DNA origami | PSA | 50 aM | 50 aM–5 pM | serum | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, R.; Tao, M.; Chao, J. The Application of DNA Origami in Biosensing. Chemistry 2025, 7, 165. https://doi.org/10.3390/chemistry7050165
Niu R, Tao M, Chao J. The Application of DNA Origami in Biosensing. Chemistry. 2025; 7(5):165. https://doi.org/10.3390/chemistry7050165
Chicago/Turabian StyleNiu, Renjie, Mengyao Tao, and Jie Chao. 2025. "The Application of DNA Origami in Biosensing" Chemistry 7, no. 5: 165. https://doi.org/10.3390/chemistry7050165
APA StyleNiu, R., Tao, M., & Chao, J. (2025). The Application of DNA Origami in Biosensing. Chemistry, 7(5), 165. https://doi.org/10.3390/chemistry7050165