Rolling Circle Amplification as a Molecular Tool for Spatially Resolved Signal Amplification in Single Molecule Counting Assay
Abstract
1. Introduction
2. RCA-Based Single Molecule Assay for Protein and Nucleic Acid Detection from Clinical Specimen
2.1. Protein Detection
2.2. Nucleic Acid Detection
3. RCA for Single Molecule Analysis of Single Cells
3.1. Protein and RNA
3.2. Genomic Material of Sub-Cellular Organelle
3.3. Secreted Molecules
4. RCA for Single Molecule Analysis of Single EVs
4.1. Surface Protein
4.2. Internal Transcriptome
5. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RCA | Rolling circle amplification |
FACS | Fluorescence activated cell sorting |
HA | Hyaluronic acid |
LAMP | Loop-mediated isothermal amplification |
mtDNA | Mitochondrial DNA |
NASBA | Nucleic acid sequence-based amplification |
PCR | Polymerase chain reaction |
RPA | Recombinase polymerase amplification |
SNV | Single nucleotide variation |
EV | Extracellular vesicle |
AI | Artificial intelligence |
APTES | (3-Aminopropyl)triethoxysilane |
N | Nucleocapsid |
CITE-seq | Cellular indexing of transcriptomes and epitopes by sequencing |
Ig | Immunoglobulin |
References
- Shahid, A.; Nazir, F.; Khan, M.J.; Sabahat, S.; Naeem, A. A concise overview of advancements in ultrasensitive biosensor development. Front. Bioeng. Biotechnol. 2023, 11, 1288049. [Google Scholar] [CrossRef]
- Jackman, J.A.; Ferhan, A.R.; Cho, N.-J. Nanoplasmonic sensors for biointerfacial science. Chem. Soc. Rev. 2017, 46, 3615–3660. [Google Scholar] [CrossRef]
- Neettiyath, A.; Chung, K.; Liu, W.; Lee, L.P. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. Nano Converg. 2024, 11, 1–15. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, R.; Bansal, D.; Bhateria, R.; Sharma, M. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS Omega 2024, 9, 7336–7356. [Google Scholar] [CrossRef]
- Iyer, V.; Yang, Z.; Ko, J.; Weissleder, R.; Issadore, D. Advancing microfluidic diagnostic chips into clinical use: A review of current challenges and opportunities. Lab a Chip 2022, 22, 3110–3121. [Google Scholar] [CrossRef]
- Duffy, D.C. Digital detection of proteins. Lab a Chip 2023, 23, 818–847. [Google Scholar] [CrossRef]
- Dong, R.; Yi, N.; Jiang, D. Advances in single molecule arrays (SIMOA) for ultra-sensitive detection of biomolecules. Talanta 2023, 270, 125529. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Ashton, N.J.; Brum, W.S.; Di Molfetta, G.; Benedet, A.L.; Arslan, B.; Jonaitis, E.; Langhough, R.E.; Cody, K.; Wilson, R.; Carlsson, C.M.; et al. Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology. JAMA Neurol. 2024, 81, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, I.; Mir, S.; Giri, S. Profiling Blood-Based Neural Biomarkers and Cytokines in Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Using Single-Molecule Array Technology. Int. J. Mol. Sci. 2025, 26, 3258. [Google Scholar] [CrossRef] [PubMed]
- Morasso, C.; Ricciardi, A.; Sproviero, D.; Truffi, M.; Albasini, S.; Piccotti, F.; Sottotetti, F.; Mollica, L.; Cereda, C.; Sorrentino, L.; et al. Fast quantification of extracellular vesicles levels in early breast cancer patients by Single Molecule Detection Array (SiMoA). Breast Cancer Res. Treat. 2021, 192, 65–74. [Google Scholar] [CrossRef]
- Cohen, L.; Cui, N.; Cai, Y.; Garden, P.M.; Li, X.; Weitz, D.A.; Walt, D.R. Single Molecule Protein Detection with Attomolar Sensitivity Using Droplet Digital Enzyme-Linked Immunosorbent Assay. ACS Nano 2020, 14, 9491–9501. [Google Scholar] [CrossRef] [PubMed]
- Yelleswarapu, V.; Buser, J.R.; Haber, M.; Baron, J.; Inapuri, E.; Issadore, D. Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins. Proc. Natl. Acad. Sci. USA 2019, 116, 4489–4495. [Google Scholar] [CrossRef]
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 2013, 10, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Gao, Y.; Yu, B.; Ren, H.; Qiu, L.; Han, S.; Jin, W.; Jin, Q.; Mu, Y. Self-priming compartmentalization digital LAMP for point-of-care. Lab a Chip 2012, 12, 4755–4763. [Google Scholar] [CrossRef]
- Lin, X.; Huang, X.; Urmann, K.; Xie, X.; Hoffmann, M.R. Digital Loop-Mediated Isothermal Amplification on a Commercial Membrane. ACS Sensors 2019, 4, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kreutz, J.E.; Thompson, A.M.; Qin, Y.; Sheen, A.M.; Wang, J.; Wu, L.; Xu, S.; Chang, M.; Raugi, D.N.; et al. SD-chip enabled quantitative detection of HIV RNA using digital nucleic acid sequence-based amplification (dNASBA). Lab a Chip 2018, 18, 3501–3506. [Google Scholar] [CrossRef]
- Seder, I.; Coronel-Tellez, R.; Helalat, S.H.; Sun, Y. Fully integrated sample-in-answer-out platform for viral detection using digital reverse transcription recombinase polymerase amplification (dRT-RPA). Biosens. Bioelectron. 2023, 237, 115487. [Google Scholar] [CrossRef]
- Politza, A.J.; Nouri, R.; Guan, W. Digital CRISPR systems for the next generation of nucleic acid quantification. TrAC Trends Anal. Chem. 2023, 159, 116917. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Ye, F.; Zou, J.; Qu, J.; Jiang, X. An Integrated Amplification-Free Digital CRISPR/Cas-Assisted Assay for Single Molecule Detection of RNA. ACS Nano 2023, 17, 7250–7256. [Google Scholar] [CrossRef]
- Basu, A.S. Digital Assays Part I: Partitioning Statistics and Digital PCR. JALA J. Assoc. Lab. Autom. 2017, 22, 369–386. [Google Scholar] [CrossRef]
- Obayashi, Y.; Iino, R.; Noji, H. A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate. Analyst 2015, 140, 5065–5073. [Google Scholar] [CrossRef]
- Ko, J.; Wang, Y.; Carlson, J.C.T.; Marquard, A.; Gungabeesoon, J.; Charest, A.; Weitz, D.; Pittet, M.J.; Weissleder, R. Single Extracellular Vesicle Protein Analysis Using Immuno-Droplet Digital Polymerase Chain Reaction Amplification. Adv. Biosyst. 2020, 4, e1900307. [Google Scholar] [CrossRef]
- Whale, A.S.; Huggett, J.F.; Tzonev, S. Fundamentals of multiplexing with digital PCR. Biomol. Detect. Quantif. 2016, 10, 15–23. [Google Scholar] [CrossRef]
- Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.-K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014, 43, 3324–3341. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Hu, R.; Zhu, G.; Zhang, X.; Mei, L.; Liu, Q.; Qiu, L.; Wu, C.; Tan, W. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers. Nat. Protoc. 2015, 10, 1508–1524. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Dong, Y.; Gu, Z.; Yang, D. Programmable DNA Nanoflowers for Biosensing, Bioimaging, and Therapeutics. Chem.–A Eur. J. 2020, 26, 14512–14524. [Google Scholar] [CrossRef]
- Jain, S.; Dandy, D.S.; Geiss, B.J.; Henry, C.S. Padlock probe-based rolling circle amplification lateral flow assay for point-of-need nucleic acid detection. Analyst 2021, 146, 4340–4347. [Google Scholar] [CrossRef]
- Takahashi, H.; Okamura, Y.; Kobori, T. Use of DNA CircLigase for Direct Isothermal Detection of Microbial mRNAs by RNA-Primed Rolling Circle Amplification and Preparation of ø29 DNA Polymerase Not Contaminated by Amplifiable DNA. In Rolling Circle Amplification (RCA): Toward New Clinical Diagnostics and Therapeutics; Springer: Berlin, Germany, 2016; pp. 37–46. [Google Scholar]
- Johne, R.; Müller, H.; Rector, A.; van Ranst, M.; Stevens, H. Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol. 2009, 17, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Duan, J.; Chen, J.; Ding, S.; Cheng, W. Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal. Chim. Acta 2021, 1148, 238187. [Google Scholar] [CrossRef]
- Bialy, R.M.; Mainguy, A.; Li, Y.; Brennan, J.D. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem. Soc. Rev. 2022, 51, 9009–9067. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.R.G.; Madaboosi, N.; Nilsson, M. Rolling Circle Amplification in Integrated Microsystems: An Uncut Gem toward Massively Multiplexed Pathogen Diagnostics and Genotyping. Accounts Chem. Res. 2021, 54, 3979–3990. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, N.K.; Finn, M.G. Introduction: Click Chemistry. Chem. Rev. 2021, 121, 6697–6698. [Google Scholar] [CrossRef]
- Björkesten, J.; Patil, S.; Fredolini, C.; Lönn, P.; Landegren, U. A multiplex platform for digital measurement of circular DNA reaction products. Nucleic Acids Res. 2020, 48, e73. [Google Scholar] [CrossRef]
- Joffroy, B.; O Uca, Y.; Prešern, D.; Doye, J.P.K.; Schmidt, T.L. Rolling circle amplification shows a sinusoidal template length-dependent amplification bias. Nucleic Acids Res. 2017, 46, 538–545. [Google Scholar] [CrossRef]
- Park, J.; Park, M.; Kim, J.; Heo, Y.; Han, B.H.; Choi, N.; Park, C.; Lee, R.; Lee, D.-G.; Chung, S.; et al. Beads- and oil-free single molecule assay with immuno-rolling circle amplification for detection of SARS-CoV-2 from saliva. Biosens. Bioelectron. 2023, 232, 115316. [Google Scholar] [CrossRef]
- Schweitzer, B.; Wiltshire, S.; Lambert, J.; O’Malley, S.; Kukanskis, K.; Zhu, Z.; Kingsmore, S.; Lizardi, P.M.; Ward, D.C. Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. USA 2000, 97, 10113–10119. [Google Scholar] [CrossRef]
- Chang, L.; Rissin, D.M.; Fournier, D.R.; Piech, T.; Patel, P.P.; Wilson, D.H.; Duffy, D.C. Single molecule enzyme-linked immunosorbent assays: Theoretical considerations. J. Immunol. Methods 2012, 378, 102–115. [Google Scholar] [CrossRef]
- Wu, C.; Dougan, T.J.; Walt, D.R. High-Throughput, High-Multiplex Digital Protein Detection with Attomolar Sensitivity. ACS Nano 2022, 16, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Garden, P.M.; Walt, D.R. Ultrasensitive Detection of Attomolar Protein Concentrations by Dropcast Single Molecule Assays. J. Am. Chem. Soc. 2020, 142, 12314–12323. [Google Scholar] [CrossRef] [PubMed]
- Kühnemund, M.; Hernández-Neuta, I.; Sharif, M.I.; Cornaglia, M.; Gijs, M.A.; Nilsson, M. Sensitive and inexpensive digital DNA analysis by microfluidic enrichment of rolling circle amplified single-molecules. Nucleic Acids Res. 2017, 45, e59. [Google Scholar] [CrossRef]
- Ciftci, S.; Neumann, F.; Abdurahman, S.; Appelberg, K.S.; Mirazimi, A.; Nilsson, M.; Madaboosi, N. Digital Rolling Circle Amplification–Based Detection of Ebola and Other Tropical Viruses. J. Mol. Diagn. 2020, 22, 272–283. [Google Scholar] [CrossRef]
- Hwang, B.; Lee, J.H.; Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018, 50, 96. [Google Scholar] [CrossRef]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.; et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D.A.; Kirschner, M.W. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell 2015, 161, 1187–1201. [Google Scholar] [CrossRef] [PubMed]
- Stoeckius, M.; Hafemeister, C.; Stephenson, W.; Houck-Loomis, B.; Chattopadhyay, P.K.; Swerdlow, H.; Satija, R.; Smibert, P. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 2017, 14, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.G.; Lee, H.J.; Asatsuma, T.; Vento-Tormo, R.; Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022, 14, 1–18. [Google Scholar] [CrossRef]
- Moses, L.; Pachter, L. Museum of spatial transcriptomics. Nat. Methods 2022, 19, 534–546. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, K.; Teng, X.; Li, J. Rolling circle amplification for single cell analysis and in situ sequencing. TrAC Trends Anal. Chem. 2019, 121, 115700. [Google Scholar] [CrossRef]
- Deng, R.; Zhang, K.; Wang, L.; Ren, X.; Sun, Y.; Li, J. DNA-Sequence-Encoded Rolling Circle Amplicon for Single-Cell RNA Imaging. Chem 2018, 4, 1373–1386. [Google Scholar] [CrossRef]
- Shin, S.; Kim, Y.-J.; Yun, H.G.; Chung, H.; Cho, H.; Choi, S. 3D Amplified Single-Cell RNA and Protein Imaging Identifies Oncogenic Transcript Subtypes in B-Cell Acute Lymphoblastic Leukemia. ACS Nano 2024, 18, 5457–5469. [Google Scholar] [CrossRef]
- Ren, X.; Deng, R.; Zhang, K.; Sun, Y.; Teng, X.; Li, J. SpliceRCA: In Situ Single-Cell Analysis of mRNA Splicing Variants. ACS Central Sci. 2018, 4, 680–687. [Google Scholar] [CrossRef]
- Brower, K.K.; Carswell-Crumpton, C.; Klemm, S.; Cruz, B.; Kim, G.; Calhoun, S.G.K.; Nichols, L.; Fordyce, P.M. Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery. Lab a Chip 2020, 20, 2062–2074. [Google Scholar] [CrossRef]
- Park, J.; Kadam, P.S.; Atiyas, Y.; Chhay, B.; Tsourkas, A.; Eberwine, J.H.; Issadore, D.A. High-Throughput Single-Cell, Single-Mitochondrial DNA Assay Using Hydrogel Droplet Microfluidics. Angew. Chem. Int. Ed. 2024, 63, e202401544. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, C.J. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Accounts Chem. Res. 2016, 50, 22–31. [Google Scholar] [CrossRef]
- Cowell, T.W.; Jing, W.; Noh, H.; Han, H. Drop-by-Drop Addition of Reagents to a Double Emulsion. Small 2024, 20, e2404121. [Google Scholar] [CrossRef] [PubMed]
- Al Sulaiman, D.; Juthani, N.; Doyle, P.S. Quantitative and Multiplex Detection of Extracellular Vesicle-Derived MicroRNA via Rolling Circle Amplification within Encoded Hydrogel Microparticles. Adv. Heal. Mater. 2022, 11, e2102332. [Google Scholar] [CrossRef]
- Chapin, S.C.; Doyle, P.S. Ultrasensitive Multiplexed MicroRNA Quantification on Encoded Gel Microparticles Using Rolling Circle Amplification. Anal. Chem. 2011, 83, 7179–7185. [Google Scholar] [CrossRef] [PubMed]
- Rakszewska, A.; Stolper, R.J.; Kolasa, A.B.; Piruska, A.; Huck, W.T.S. Quantitative Single-Cell mRNA Analysis in Hydrogel Beads. Angew. Chem. Int. Ed. 2016, 55, 6698–6701. [Google Scholar] [CrossRef] [PubMed]
- Dovedytis, M.; Liu, Z.J.; Bartlett, S. Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 2020, 1, 102–113. [Google Scholar] [CrossRef]
- Schon, E.A.; DiMauro, S.; Hirano, M. Human mitochondrial DNA: Roles of inherited and somatic mutations. Nat. Rev. Genet. 2012, 13, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005, 6, 389–402. [Google Scholar] [CrossRef]
- Zhang, K.; Deng, R.; Teng, X.; Li, Y.; Sun, Y.; Ren, X.; Li, J. Direct Visualization of Single-Nucleotide Variation in mtDNA Using a CRISPR/Cas9-Mediated Proximity Ligation Assay. J. Am. Chem. Soc. 2018, 140, 11293–11301. [Google Scholar] [CrossRef]
- Horta, S.; Neumann, F.; Yeh, S.-H.; Langseth, C.M.; Kangro, K.; Breukers, J.; Madaboosi, N.; Geukens, N.; Vanhoorelbeke, K.; Nilsson, M.; et al. Evaluation of Immuno-Rolling Circle Amplification for Multiplex Detection and Profiling of Antigen-Specific Antibody Isotypes. Anal. Chem. 2021, 93, 6169–6177. [Google Scholar] [CrossRef]
- Bordanaba-Florit, G.; Royo, F.; Kruglik, S.G.; Falcón-Pérez, J.M. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat. Protoc. 2021, 16, 3163–3185. [Google Scholar] [CrossRef]
- Su, Y.; He, W.; Zheng, L.; Fan, X.; Hu, T.Y. Toward Clarity in Single Extracellular Vesicle Research: Defining the Field and Correcting Missteps. ACS Nano 2025, 19, 16193–16203. [Google Scholar] [CrossRef]
- Choi, D.; Montermini, L.; Jeong, H.; Sharma, S.; Meehan, B.; Rak, J. Mapping Subpopulations of Cancer Cell-Derived Extracellular Vesicles and Particles by Nano-Flow Cytometry. ACS Nano 2019, 13, 10499–10511. [Google Scholar] [CrossRef]
- Liu, H.; Tian, Y.; Xue, C.; Niu, Q.; Chen, C.; Yan, X. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. J. Extracell. Vesicles 2022, 11, e12206. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Kang, H.; Yi, J.; Kang, M.; Lee, H.; Kwon, Y.; Jung, J.; Lee, J.; Park, J. Single-vesicle imaging and co-localization analysis for tetraspanin profiling of individual extracellular vesicles. J. Extracell. Vesicles 2021, 10, e12047. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, J.; Zhang, H.; Zhu, Y.; Liu, W.; Zhang, K.; Zhang, Z. Localized fluorescent imaging of multiple proteins on individual extracellular vesicles using rolling circle amplification for cancer diagnosis. J. Extracell. Vesicles 2020, 10, e12025. [Google Scholar] [CrossRef]
- Roh, Y.H.; Morales, R.T.; Huynh, E.; Chintapula, U.; Reynolds, D.E.; Agosto-Nieves, R.J.; Oh, D.; Seiner, A.J.; Lim, J.; Rodell, C.B.; et al. Squeezable Hydrogel Microparticles for Single Extracellular Vesicle Protein Profiling. Small 2024, 21, e2407809. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Hou, M.; He, J.; Jiang, J.-H. Dual Rolling Circle Amplification-Assisted Single-Particle Fluorescence Profiling of Exosome Heterogeneity for Discriminating Lung Adenocarcinoma from Pulmonary Nodules. CCS Chem. 2023, 5, 947–957. [Google Scholar] [CrossRef]
- Park, J.; Feng, M.; Yang, J.; Shen, H.; Qin, Z.; Guo, W.; Issadore, D.A. Agarose Microgel-Based In Situ Cleavable Immuno-Rolling Circle Amplification for Multiplexed Single-Molecule Quantitation on Single Extracellular Vesicles. ACS Nano 2025, 19, 17884–17899. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, K.; Gao, Z.; Chen, J.; Ye, Z.; Cao, M.; Wang, S.E.; Yin, Y.; Zhong, W. Colocalization of protein and microRNA markers reveals unique extracellular vesicle subpopulations for early cancer detection. Sci. Adv. 2024, 10, eadh8689. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.D.; Liu, Y.; Zahid, M.U.; Canady, T.D.; Wang, L.; Kohli, M.; Cunningham, B.T.; Smith, A.M. High-Fidelity Single Molecule Quantification in a Flow Cytometer Using Multiparametric Optical Analysis. ACS Nano 2020, 14, 2324–2335. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, Y.; Hu, J.; Peng, A.; Hu, W. Deep learning-assisted multicolor fluorescent probes for image and spectral dual-modal identification of illicit drugs. Sens. Actuators B Chem. 2023, 394, 134348. [Google Scholar] [CrossRef]
- Han, S.; You, J.Y.; Eom, M.; Ahn, S.; Cho, E.; Yoon, Y. From Pixels to Information: Artificial Intelligence in Fluorescence Microscopy. Adv. Photon.-Res. 2024, 5, 2300308. [Google Scholar] [CrossRef]
- Kohabir, K.A.V.; Sistermans, E.A.; Wolthuis, R.M.F. Recent advances in CRISPR-based single-nucleotide fidelity diagnostics. Commun. Med. 2025, 5, 252. [Google Scholar] [CrossRef]
- Antson, D.-O. PCR-generated padlock probes detect single nucleotide variation in genomic DNA. Nucleic Acids Res. 2000, 28, E58. [Google Scholar] [CrossRef]
- Krzywkowski, T.; Nilsson, M. Padlock Probes to Detect Single Nucleotide Polymorphisms. Methods Mol. Biol. 2018, 1649, 209–229. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wan, K.; Shi, X. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Han, D.H.; Park, J.-K. Towards practical sample preparation in point-of-care testing: User-friendly microfluidic devices. Lab a Chip 2020, 20, 1191–1203. [Google Scholar] [CrossRef]
Applications | Analysis Target | Target Molecules | Multiplex Capability | Substrate | Ref. |
---|---|---|---|---|---|
Clinical specimen | Protein | N protein of SARS-CoV-2 | 1 | Antibody coated glass slide | [37] |
Protein | Brachyury (T-box transcription factor) | 1 | Antibody coated microbeads | [41] | |
Protein | Cytokines (IFN-γ, IL-1β, IL-5, IL-6, IL-10, IL-12p70, IL-18, VEGF) | 8 | Antibody coated multi-fluorescent microbeads | [40] | |
Nucleic acid | Virus (Ebola, Zika, Dengue) RNA | 3 | In solution (without substrate) | [43] | |
Single cells | Nucleic acid | mRNA (Tk1, MYC, STK15, ER, HER2, PR, Ki67, BCL2, VEGF) | 9 | Coverslip | [52] |
Protein + Nucleic acid | Protein (CD10, CD19, CD45), mRNA (e1a2, e13a2, e14a2) | 6 | Coverslip | [53] | |
Nucleic acid | mRNA splicing variant (CD45RA, CD45RB, CD45RO) | 3 | Gelatin coated cover glass | [54] | |
Nucleic acid | mRNA (ACTB, MYC) | 1 | Thiolated carboxymethyl HA microgel | [61] | |
Nucleic acid | SNV of mtDNA | 2 | Collagen coated glass slide | [65] | |
Nucleic acid | Large area deletion region of mtDNA | 2 | Agarose microgel | [56] | |
Protein | Secreted antibody (IgG, IgM, IgA) | 3 | Coverslip | [66] | |
Single EVs | Protein | CD63, EpCAM, MUC1 | 3 | Coverslip | [72] |
Protein | CD9, EGFR, EpCAM, MUC1 | 4 | MeHA hydrogel microparticles | [73] | |
Protein | CD63, PTK7 | 2 | In solution (without substrate) | [74] | |
Protein | Tetraspanin (CD9, CD63, CD81), PVR, PD-L1, TYRP-1 | 3 | Agarose microgel | [75] | |
Protein + Nucleic acid | CD63, miR-122 | 2 | Antibody coated magnetic nanostirbar | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J. Rolling Circle Amplification as a Molecular Tool for Spatially Resolved Signal Amplification in Single Molecule Counting Assay. Biosensors 2025, 15, 628. https://doi.org/10.3390/bios15090628
Park J. Rolling Circle Amplification as a Molecular Tool for Spatially Resolved Signal Amplification in Single Molecule Counting Assay. Biosensors. 2025; 15(9):628. https://doi.org/10.3390/bios15090628
Chicago/Turabian StylePark, Juhwan. 2025. "Rolling Circle Amplification as a Molecular Tool for Spatially Resolved Signal Amplification in Single Molecule Counting Assay" Biosensors 15, no. 9: 628. https://doi.org/10.3390/bios15090628
APA StylePark, J. (2025). Rolling Circle Amplification as a Molecular Tool for Spatially Resolved Signal Amplification in Single Molecule Counting Assay. Biosensors, 15(9), 628. https://doi.org/10.3390/bios15090628