Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = multiferroic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3121 KiB  
Article
Influence of Niobium Substitution on the Properties of Pb2Fe2O5 Thin Films Synthesized via Reactive Magnetron Sputtering
by Benas Beklešovas, Vytautas Stankus and Aleksandras Iljinas
Coatings 2025, 15(8), 863; https://doi.org/10.3390/coatings15080863 - 23 Jul 2025
Viewed by 202
Abstract
Lead ferrite (Pb2Fe2O5) is a promising multiferroic material that exhibits both ferroelectric and magnetic properties at room temperature. This study investigates how substituting niobium and adjusting the synthesis temperature affect the structural, morphological, and ferroelectric properties of [...] Read more.
Lead ferrite (Pb2Fe2O5) is a promising multiferroic material that exhibits both ferroelectric and magnetic properties at room temperature. This study investigates how substituting niobium and adjusting the synthesis temperature affect the structural, morphological, and ferroelectric properties of lead ferrite thin films deposited via reactive magnetron sputtering. Niobium-substituted PFO films (Pb2Fe2(1−x)Nb2xO5), where x corresponds to Nb2O5 contents of 3 wt.%, 5 wt.% and 10 wt.%, were prepared for this study, and denoted as PFONb3, PFONb5 and PFONb10, respectively. X-ray diffraction analysis confirmed the formation of Nb-substituted PFO phases, while polarization–electric field measurements demonstrated an increase in remnant polarization (Pr), with higher Nb content reaching a maximum Pr of 65 µC/cm2 at 10 wt.% Nb and a substrate temperature of 500 °C. Scanning electron microscopy and energy-dispersive spectroscopy revealed a uniform distribution of elements and a well-defined surface structure. These results highlight the need to fine tune synthesis parameters, such as temperature and substitution concentrations, to achieve optimal ferroelectric characteristics. Full article
(This article belongs to the Special Issue Advances in Novel Coatings)
Show Figures

Figure 1

12 pages, 309 KiB  
Article
Theoretical Study of the Impact of Al, Ga and In Doping on Magnetization, Polarization, and Band Gap Energy of CuFeO2
by A. T. Apostolov, I. N. Apostolova and J. M. Wesselinowa
Appl. Sci. 2025, 15(14), 8097; https://doi.org/10.3390/app15148097 - 21 Jul 2025
Viewed by 226
Abstract
We have conducted a first-time investigation into the multiferroic properties and band gap behavior of CuFeO2 doped with Al, Ga, and In ions at the Fe site, employing a microscopic model and Green’s function formalism. The tunability of the band gap across [...] Read more.
We have conducted a first-time investigation into the multiferroic properties and band gap behavior of CuFeO2 doped with Al, Ga, and In ions at the Fe site, employing a microscopic model and Green’s function formalism. The tunability of the band gap across a broad energy spectrum highlights the potential of perovskite materials for advanced applications, including photovoltaics, photodetectors, lasers, light-emitting diodes, and high-energy particle sensors. The disparity in ionic radii between the dopant and host ions introduces local lattice distortions, leading to modifications in the exchange interaction parameters. As a result, the influence of ion doping on various properties of CuFeO2 has been elucidated at microscopic level. Our findings indicate that Al doping enhances magnetization and reduces the band gap energy. In contrast, doping with Ga or In results in a decrease in magnetization and an increase in band gap energy. Additionally, it is demonstrated that ferroelectric polarization can be induced either via external magnetic fields or by Al substitution at the Fe site. The theoretical results show good qualitative agreement with experimental data, confirming the validity of the proposed model and method. Full article
Show Figures

Figure 1

16 pages, 2296 KiB  
Article
Magnetoelectric Effects in Bilayers of PZT and Co and Ti Substituted M-Type Hexagonal Ferrites
by Sujoy Saha, Sabita Acharya, Sidharth Menon, Rao Bidthanapally, Michael R. Page, Menka Jain and Gopalan Srinivasan
J. Compos. Sci. 2025, 9(7), 336; https://doi.org/10.3390/jcs9070336 - 27 Jun 2025
Viewed by 276
Abstract
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization [...] Read more.
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization in an applied magnetic field. The focus here is the nature of magnetoelectric (ME) interactions in the bilayers of ferroelectric PZT and Co and Ti substituted BaM and SrM. The ME coupling in the ferrite-PZT bilayers arise due to the transfer of magnetostriction-induced mechanical deformation in a magnetic field in the ferrite resulting in an induced electric field in PZT. Polycrystalline Co and Ti doped ferrites, Ba (CoTi)x Fe12−2xO19, (BCTx), and Sr (CoTi)x Fe12−2xO19 (SCTx) (x = 0–4) were found to be free of impurity phases for all x-values except for SCTx, which had a small amount of α-Fe2O3 in the X-ray diffraction patterns for x ≤ 2.0. The magnetostriction for the ferrites increased with applied filed H to a maximum value of around 2 to 6 ppm for H~5 kOe. BCTx/SCTx samples showed ferromagnetic resonance (FMR) for x = 1.5–2.0, and the estimated anisotropy field was on the order of 5 kOe. The magnetization increased with the amount of Co and Ti doping, and it decreased rapidly with x for x > 1.0. Measurements of ME coupling strengths were conducted on the bilayers of BCTx/SCTx platelets bonded to PZT. The bilayer was subjected to an AC and DC magnetic field H, and the magnetoelectric voltage coefficient (MEVC) was measured as a function of H and frequency of the AC field. For BCTx-PZT, the maximum value of MEVC at low frequency was ~5 mV/cm Oe, and a 40-fold increase at electromechanical resonance (EMR). SCTx–PZT composites also showed a similar behavior with the highest MEVC value of ~14 mV/cm Oe at low frequencies and ~200 mV/cm Oe at EMR. All the bilayers showed ME coupling for zero magnetic bias due to the magnetocrystalline anisotropy field in the ferrite that provided a built-in bias field. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

18 pages, 3622 KiB  
Article
Insights into the Crystal Structure and Magnetodielectric Properties of High-Energy Ball Milled Sr Substituted LaFeO3
by Julio C. Aguirre-Espinosa, Félix Sánchez-De Jesús, Claudia A. Cortés-Escobedo and Ana M. Bolarín-Miró
Materials 2025, 18(13), 3014; https://doi.org/10.3390/ma18133014 - 25 Jun 2025
Viewed by 328
Abstract
The effect of strontium substitution on the crystal tructure, as well as the magnetic, and electrical properties of lanthanum ferrite (LaFeO3) synthesized by high-energy ball milling, is studied, with an emphasis on magnetodielectric coupling. X-ray diffraction (XRD) confirmed the successful synthesis [...] Read more.
The effect of strontium substitution on the crystal tructure, as well as the magnetic, and electrical properties of lanthanum ferrite (LaFeO3) synthesized by high-energy ball milling, is studied, with an emphasis on magnetodielectric coupling. X-ray diffraction (XRD) confirmed the successful synthesis of orthorhombic La1−xSrxFeO3 for doping levels up to 0.2 mol. At 0.3 mol Sr2+, two phases appear: La0.6Sr0.4FeO2.976 and La0.8Sr1.2FeO3.714, the latter being metastable. This phase vanishes at 0.5 mol. The Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis confirmed these results using a vibrating sample magnetometer (VSM), whose measurements show ferromagnetism at 0.1 and 0.3 mol Sr2+, attributed to crystal distortion, magnetic spin rearrangement, and as consequence, modifications in the double-exchange interactions. Dielectric tests reveal that higher Sr2+ concentrations lead to increased relative permittivity, dielectric losses, and conductivity, linked to oxygen vacancy formation. This study demonstrates a room-temperature magnetodielectric coupling of 32% in Sr-doped lanthanum ferrite, highlighting its potential for technological applications. Full article
Show Figures

Graphical abstract

20 pages, 4520 KiB  
Article
Bandgap Tuning in Cobalt-Doped BiFeO3/Bi25FeO40 Heterostructured Nanopowders via Sol–Gel Phase Engineering
by Dhouha Baghdedi, Asma Dahri, Mohamed Tabellout, Najmeddine Abdelmoula and Zohra Benzarti
Nanomaterials 2025, 15(12), 918; https://doi.org/10.3390/nano15120918 - 12 Jun 2025
Viewed by 403
Abstract
Bismuth ferrite (BiFeO3, BFO) is a promising multiferroic material, but its optoelectronic potential is limited by a wide bandgap and charge recombination. Here, we report the sol–gel synthesis of Co-doped BiFeO3/Bi25FeO40 heterostructured nanopowders (x = 0.07, [...] Read more.
Bismuth ferrite (BiFeO3, BFO) is a promising multiferroic material, but its optoelectronic potential is limited by a wide bandgap and charge recombination. Here, we report the sol–gel synthesis of Co-doped BiFeO3/Bi25FeO40 heterostructured nanopowders (x = 0.07, 0.15) alongside pristine BFO to explore Co doping and phase engineering as strategies to enhance their functional properties. Using X-ray diffraction (XRD) with Rietveld refinement, Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), UV-Vis spectroscopy, and dielectric analysis, we reveal a biphasic structure (rhombohedral R3c and cubic I23 phases) with tuned phase ratios (~73:27 for x = 0.07; ~76:24 for x = 0.15). Co doping induces lattice strain and oxygen vacancies, reducing the bandgap from 1.78 eV in BFO to 1.31 eV in BFO0.15 and boosting visible light absorption. Dielectric measurements show reduced permittivity and altered conduction, driven by [Co2+-V0••] defect dipoles. These synergistic modifications, including phase segregation, defect chemistry, and nanoscale morphology, significantly enhance optoelectronic performance, making these heterostructures compelling for photocatalytic and photovoltaic applications. Full article
Show Figures

Figure 1

15 pages, 7502 KiB  
Article
Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin
by Xuan Liu, Jie Chao, Feifei Guo, Liangliang Chang, Xinyang Zhang, Wei Long and Zengzhe Xi
Nanomaterials 2025, 15(11), 792; https://doi.org/10.3390/nano15110792 - 24 May 2025
Viewed by 507
Abstract
Addressing the limitations of poor piezoelectric photocatalytic activity and insufficient magnetic recovery in pure BiFeO3 nanoparticles, Gd and Zr co-doped BiFeO3 nanoparticles were synthesized via the sol-gel method. The structural characterization revealed a rhombohedral-to-orthorhombic phase transition with reduced grain size (~35 [...] Read more.
Addressing the limitations of poor piezoelectric photocatalytic activity and insufficient magnetic recovery in pure BiFeO3 nanoparticles, Gd and Zr co-doped BiFeO3 nanoparticles were synthesized via the sol-gel method. The structural characterization revealed a rhombohedral-to-orthorhombic phase transition with reduced grain size (~35 nm) and lattice distortion due to dopant incorporation. An XPS analysis confirmed Fe3+ dominance and oxygen vacancy enrichment, while optimized BGFZ9 exhibited enhanced remanent magnetization (0.1753 emu/g, 14.14 increase) compared to undoped BFO. The synergistic piezo-photocatalytic system achieved 81.08% Ofloxacin degradation within 120 min (rate constant: 0.0136 min−1, 1.26 higher than BFO) through stress-induced piezoelectric fields that promoted electron transfer for ·O2/·OH radical generation via O2 reduction. The Ofloxacin degradation efficiency decreased to 24.36% after four cycles, with structural integrity confirmed by XRD phase stability. This work demonstrates a triple-optimization mechanism (crystal phase engineering, defect modulation, and magnetic enhancement) for designing magnetically recoverable multiferroic catalysts in pharmaceutical wastewater treatment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

16 pages, 2966 KiB  
Article
Finite Element Analysis of Strain-Mediated Direct Magnetoelectric Coupling in Multiferroic Nanocomposites for Material Jetting Fabrication of Tunable Devices
by William Paul Flynn, Sean Garnsey, Amar S. Bhalla and Ruyan Guo
J. Compos. Sci. 2025, 9(5), 228; https://doi.org/10.3390/jcs9050228 - 1 May 2025
Viewed by 722
Abstract
Magnetoelectric composites enable strain-mediated coupling between magnetic and electric fields, supporting applications in sensors, actuators, and tunable devices. This study presents a finite element modeling framework for simulating the direct magnetoelectric effect in core–shell and layered nanocomposites fabricated by material jetting (inkjet printing). [...] Read more.
Magnetoelectric composites enable strain-mediated coupling between magnetic and electric fields, supporting applications in sensors, actuators, and tunable devices. This study presents a finite element modeling framework for simulating the direct magnetoelectric effect in core–shell and layered nanocomposites fabricated by material jetting (inkjet printing). The model incorporates nonlinear magnetostrictive behavior of cobalt ferrite nanoparticles and size-dependent piezoelectric properties of barium titanate, allowing efficient simulation of complex interfacial strain transfer. Results show a strong dependence of coupling on field orientation, particle arrangement, and interfacial geometry. Simulations of printed droplet geometries, including coffee ring droplet morphologies, reveal enhanced performance through increased surface area and directional alignment. These findings highlight the potential of material jetting for customizable, high-performance magnetoelectric devices and provide a foundation for simulation-guided design. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

14 pages, 3299 KiB  
Article
Enhancement of Magnetoelectric Effect in Layered Polymer Composites by Zn2+ and Ni2+ Substitution in CoFe2O4 Nanoparticles
by Liudmila A. Makarova, Michail T. Musaev, Margarita R. Kalandiia, Sergey A. Kostrov, Elena Yu. Kramarenko, Vitalii D. Salnikov, Damir E. Gavrilov, Aleksander S. Omelyanchik, Valeria V. Rodionova and Nikolai S. Perov
Polymers 2025, 17(9), 1183; https://doi.org/10.3390/polym17091183 - 26 Apr 2025
Viewed by 557
Abstract
Two-layered structures consisting of piezopolymer and magnetic elastomer were investigated as magnetoelectric material. Three types of magnetic elastomer based on cobalt ferrite (CoFe2O4) and Ni- or Zn-substituted CoFe2O4 nanoparticles were used as magnetically sensitive layers. Cobalt [...] Read more.
Two-layered structures consisting of piezopolymer and magnetic elastomer were investigated as magnetoelectric material. Three types of magnetic elastomer based on cobalt ferrite (CoFe2O4) and Ni- or Zn-substituted CoFe2O4 nanoparticles were used as magnetically sensitive layers. Cobalt ferrite nanoparticles are considered one of the most promising metal-oxide nanomaterials because of their favorable magnetic properties, such as high saturation magnetization and magnetic anisotropy. The substitution of Co2+ in cobalt ferrite with other transition metals allows for additional tailoring of these properties. The modified magnetic behavior of the substituted CoFe2O4 nanoparticles directly influenced the magnetic properties of magnetic elastomers and, consequently, the magnetoelectric response of composite structures. In this case, the resonant frequency of the magnetoelectric effect remained largely independent of the type of magnetic nanoparticles in the magnetic elastomer layer but its magnitude increased upon Zn substitution up to ~107 mV·cm−1·Oe−1. These findings highlight the potential of chemically engineered magnetic properties of CoFe2O4 nanoparticles for manufacturing magnetoelectric composites to expand their applications in energy harvesting and sensors. Full article
(This article belongs to the Special Issue Challenges and Trends in Polymer Composites—2nd Edition)
Show Figures

Figure 1

29 pages, 10332 KiB  
Review
Basic Aspects of Ferroelectricity Induced by Noncollinear Alignment of Spins
by I. V. Solovyev
Condens. Matter 2025, 10(2), 21; https://doi.org/10.3390/condmat10020021 - 11 Apr 2025
Viewed by 986
Abstract
Basic principles of ferroelectric activity induced by the noncollinear alignment of spins are reviewed. There is a fundamental reason why the inversion symmetry can be broken by certain magnetic order. This situation occurs when the magnetic order simultaneously involves ferromagnetic (F) [...] Read more.
Basic principles of ferroelectric activity induced by the noncollinear alignment of spins are reviewed. There is a fundamental reason why the inversion symmetry can be broken by certain magnetic order. This situation occurs when the magnetic order simultaneously involves ferromagnetic (F) and antiferromagnetic (A) counterparts, transforming under the spatial inversion I and time reversal T as IF=F and ITA=A, respectively. The incompatibility of these two conditions results in breaking the inversion symmetry, which manifests itself in the electric polarization P. The noncollinear alignment of spins is one of examples of such coexistence of F and A. This coexistence principle imposes a constraint on possible dependencies of P on the directions of spins, which can include only “antisymmetric coupling” in the bond, Pij·[ei×ej], and “single-ion anisotropy”, ei· Π ei. Microscopically, Pij can be evaluated in the framework of superexchange theory. For the single Kramers doublet, this theory yields Pijrij0, where rij0 is the spin-dependent part of the position operator induced by the relativistic spin-orbit coupling. rij0 remains invariant under spatial inversion, providing the microscopic reason why noncollinear alignment of spins can induce P even in centrosymmetric crystals. The symmetry properties of rij0 can be rationalized from the viewpoint of symmetry of Kramers states. Particularly, the commonly used Katsura–Nagaosa–Balatsky (KNB) rule Pϵji×[ei×ej] (ϵji being the direction of the bond ij) can be justified only for relatively high symmetry of the bonds. The single-ion anisotropy vanishes for the spin 12 or if magnetic ions are located in inversion centers, thus severely restricting the applicability of this microscopic mechanism. The properties of multiferroic materials are reconsidered from the viewpoint of these principles. A particular attention is paid to complications caused by possible deviations from the KNB rule. Full article
Show Figures

Figure 1

16 pages, 3316 KiB  
Article
Synthesis, Structural and Magnetic Properties of BiFeO3 Substituted with Ag
by Maria Čebela, Pavla Šenjug, Dejan Zagorac, Igor Popov, Jelena Zagorac, Milena Rosić and Damir Pajić
Materials 2025, 18(7), 1453; https://doi.org/10.3390/ma18071453 - 25 Mar 2025
Viewed by 657
Abstract
Here, we report the hydrothermal synthesis of BFO (bismuth ferrite) and Bi1−xAgxFeO3 (x = 0.01, 0.02) ultrafine nanopowders. The diffraction patterns show that all obtained particles belong to the R3c space group. On top of that, crystal structure [...] Read more.
Here, we report the hydrothermal synthesis of BFO (bismuth ferrite) and Bi1−xAgxFeO3 (x = 0.01, 0.02) ultrafine nanopowders. The diffraction patterns show that all obtained particles belong to the R3c space group. On top of that, crystal structure prediction has been accomplished using bond valence calculations (BVCs). Several promising perovskite structures have been proposed together with experimentally observed modifications of BFO as a function of silver doping. Magnetization measurements were performed on BFO, both pure and substituted with 1% and 2% of Ag. The addition of Ag in BFO did not affect the Neel temperature, TN = 630 K for all samples; instead, the influence of Ag was observed in the increase in the value and irreversibility of magnetization, which are usual characteristics of weak ferromagnetism. Our calculations based on density functional theory (DFT) are in agreement with the experimental finding of enhanced magnetization upon Ag doping of antiferromagnetic BFO, which is assigned to the perturbation of magnetic-type interactions between Fe atoms by Ag substitutional doping. Additionally, electronic and magnetic properties were studied for all phases predicted by the BVCs study. DFT predicted half-metallicity in the γ phase of BFO, which may be of great interest for further study and potential applications. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

20 pages, 4358 KiB  
Article
The Conversion Polymorphism of Perovskite Phases in the BiCrO3–BiFeO3 System
by Alexei A. Belik
Inorganics 2025, 13(3), 91; https://doi.org/10.3390/inorganics13030091 - 18 Mar 2025
Viewed by 802
Abstract
Perovskite-type materials containing Bi3+ cations at A sites are interesting from the viewpoints of applications and fundamental science as the lone pair of Bi3+ cations often stabilizes polar, ferroelectric structures. This can be illustrated by a lot of discoveries of different [...] Read more.
Perovskite-type materials containing Bi3+ cations at A sites are interesting from the viewpoints of applications and fundamental science as the lone pair of Bi3+ cations often stabilizes polar, ferroelectric structures. This can be illustrated by a lot of discoveries of different new functionalities in bulk and thin films of BiFeO3 and its derivatives. In this work, we investigated solid solutions of BiCr1−xFexO3 with 0.1 ≤ x ≤ 0.4 prepared by a high-pressure (HP) method and post-synthesis annealing at ambient pressure (AP). HP-BiCr1−xFexO3 modifications with 0.1 ≤ x ≤ 0.3 were mixtures of two phases with space groups C2/c and Pbam, and the amount of the C2/c phase decreased with increasing x. The amount of the C2/c phase was also significantly decreased in AP-BiCr1−xFexO3 modifications, and the C2/c phase almost disappeared in AP-BiCr1−xFexO3 with 0.2 ≤ x ≤ 0.3. Fundamental, strong reflections of HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 were almost unchanged; on the other hand, weak superstructure reflections were different and showed clear signs of strong anisotropic broadening and incommensurate positions. These structural features prevented us from determining their room-temperature structures. On the other hand, HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 showed high-temperature structural phase transitions to the GdFeO3-type Pnma modification at Tsrt = 450 K (x = 0.1), Tsrt = 480 K (x = 0.2), Tsrt = 510 K (x = 0.3), and Tsrt = 546 K (x = 0.4). Crystal structures of the GdFeO3-type Pnma modifications of all the samples were investigated by synchrotron powder X-ray diffraction. Magnetic properties of HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 were quite close to each other (HP vs. AP), and the x = 0.2 samples demonstrated negative magnetization phenomena without signs of the exchange bias effect. Full article
(This article belongs to the Special Issue Photoelectric Research in Advanced Energy Materials)
Show Figures

Graphical abstract

37 pages, 9890 KiB  
Review
Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals
by Rosa M. F. Baptista, Etelvina de Matos Gomes, Michael Belsley and Bernardo Almeida
Nanomaterials 2025, 15(5), 409; https://doi.org/10.3390/nano15050409 - 6 Mar 2025
Viewed by 1305
Abstract
In recent decades, substantial progress has been made in embedding molecules, nanocrystals, and nanograins into nanofibers, resulting in a new class of hybrid functional materials with exceptional physical properties. Among these materials, functional nanofibers exhibiting ferroelectric, piezoelectric, pyroelectric, multiferroic, and nonlinear optical characteristics [...] Read more.
In recent decades, substantial progress has been made in embedding molecules, nanocrystals, and nanograins into nanofibers, resulting in a new class of hybrid functional materials with exceptional physical properties. Among these materials, functional nanofibers exhibiting ferroelectric, piezoelectric, pyroelectric, multiferroic, and nonlinear optical characteristics have attracted considerable attention and undergone substantial improvements. This review critically examines these developments, focusing on strategies for incorporating diverse compounds into nanofibers and their impact on enhancing their physical properties, particularly ferroelectric behavior and nonlinear optical conversion. These developments have transformative potential across electronics, photonics, biomaterials, and energy harvesting. By synthesizing recent advancements in the design and application of nanofiber-embedded materials, this review seeks to highlight their potential impact on scientific research, technological innovation, and the development of next-generation devices. Full article
Show Figures

Figure 1

15 pages, 4184 KiB  
Article
Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films
by Abderrahmane Boughelout, Abdelmadjid Khiat and Roberto Macaluso
Materials 2025, 18(4), 887; https://doi.org/10.3390/ma18040887 - 18 Feb 2025
Viewed by 734
Abstract
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol–gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline [...] Read more.
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol–gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline rhombohedral phase structure (space group R3c) with a tolerance factor of 0.892. By using Rietveld refinement of diffractogram XRD data, crystallographic parameters, such as bond angle, bond length, atom position, unit cell parameters, and electron density measurements were computed. Scanning electron microscopy (SEM) allowed us to assess the homogeneous and smooth surface morphology of the films with a small degree of porosity, while chemical surface composition characterization by X-ray photoelectron spectroscopy (XPS) showed the presence of Bi, Fe, O and the doping element Ba. Absorption measurements allowed us to determine the energy band gap of the films, while photoluminescence measurements have shown the presence of oxygen vacancies, which are responsible for the enhanced photocatalytic activity of the material. Photocatalytic degradation experiments of Methylene Blue (MB), Methyl orange (MO), orange G (OG), Violet and Rhodamine B (RhB) performed on top of BBFO2 thin films under solar light showed the degradation of all pollutants in varying discoloration efficiencies, ranging from 81% (RhB) to 54% (OG), 53% (Violet), 47% (MO) and 43% (MB). Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Figure 1

13 pages, 3309 KiB  
Article
Improved Ferroelectric and Magnetic Properties of Bismuth Ferrite-Based Ceramics by Introduction of Non-Isovalent Ions and Grain Engineering
by Ting Wang, Huojuan Ye, Xiaoling Wang, Yuhan Cui, Haijuan Mei, Shenhua Song, Zhenting Zhao, Meng Wang, Pitcheri Rosaiah and Qing Ma
Nanomaterials 2025, 15(3), 215; https://doi.org/10.3390/nano15030215 - 29 Jan 2025
Cited by 2 | Viewed by 1193
Abstract
Single-phase multiferroics exhibiting ferroelectricity and ferromagnetism are considered pivotal for advancing next-generation multistate memories, spintronic devices, sensors, and logic devices. In this study, the magnetic and electric characteristics of bismuth ferrite (BiFeO3) ceramics were enhanced through compositional design and grain engineering. [...] Read more.
Single-phase multiferroics exhibiting ferroelectricity and ferromagnetism are considered pivotal for advancing next-generation multistate memories, spintronic devices, sensors, and logic devices. In this study, the magnetic and electric characteristics of bismuth ferrite (BiFeO3) ceramics were enhanced through compositional design and grain engineering. BiFeO3 ceramic was co-substituted by neodymium (Nd) and niobium (Nb), two non-isovalent elements, via the spark plasma sintering process using phase-pure powder prepared via sol-gel as the precursor. The symmetry of the sintered Nd–Nb co-doped samples changed from R3c to Pnma, accompanied by a decrease in the loss tangent, grain size, and leakage current density. The reduction in the leakage current density of the co-doped samples was ~three orders of magnitude. Moreover, ferroelectric, dielectric, and magnetic properties were substantially improved. The remanent polarization and magnetization values of the optimized Nd–Nb co-doped BiFeO3 sample were 3.12 μC cm−2 and 0.15 emu g−1, respectively. The multiferroic properties were enhanced based on multiple factors such as structural distortion caused by co-doping, grain size reduction, suppression of defect charges via donor doping, space-modulated spin structure disruption, and an increase in magnetic ions. The synergistic approach of composition design and grain engineering sets a paradigm for the advancement of multiferroic materials. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

10 pages, 2464 KiB  
Article
The Multiferroic, Magnetic Exchange Bias Effect, and Photodetection Multifunction Characteristics in MnSe/Ga0.6Fe1.4O3 Heterostructure
by Ye Zhao, Ruilong Yang, Ke Yang, Jiarui Dou, Jinzhong Guo, Xiaoting Yang, Guowei Zhou and Xiaohong Xu
Materials 2025, 18(3), 586; https://doi.org/10.3390/ma18030586 - 27 Jan 2025
Viewed by 834
Abstract
Artificial heterostructures are typically created by layering distinct materials, thereby giving rise to unique characteristics different from their individual components. Herein, two-dimensional α-MnSe nanosheets with a non-layered structure were fabricated on Ga0.6Fe1.4O3 (GFO) films. The superior crystalline properties [...] Read more.
Artificial heterostructures are typically created by layering distinct materials, thereby giving rise to unique characteristics different from their individual components. Herein, two-dimensional α-MnSe nanosheets with a non-layered structure were fabricated on Ga0.6Fe1.4O3 (GFO) films. The superior crystalline properties of MnSe/GFO heterostructures were confirmed through structural and morphological analyses. The remanent polarization is around 1.5 μC/cm2 and the leakage current density can reach 2 × 10−3 A/cm2 under 4 V. In addition, the piezo-response force microscopy amplitude and phase images further supported the ferroelectric property. The significant improvement of coercive field and saturated magnetization, along with the antiparallel signals of Mn and Fe ions observed through synchrotron X-ray analyses, suggest the presence of magnetic interaction within the MnSe/GFO heterostructure. Finally, the excellent photodetector with a photo detectivity of 6.3 × 108 Jones and a photoresponsivity of 2.8 × 10−3 A·W−1 was obtained under 532 nm in the MnSe/GFO heterostructure. The characteristics of this heterostructure, which include multiferroic, magnetic exchange bias effect, and photodetection capabilities, are highly beneficial for multifunctional devices. Full article
Show Figures

Graphical abstract

Back to TopTop