Bandgap Tuning in Cobalt-Doped BiFeO3/Bi25FeO40 Heterostructured Nanopowders via Sol–Gel Phase Engineering
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis Procedure
2.2. Characterization Techniques
3. Results and Discussion
3.1. XRD Analysis
3.2. FTIR Analysis
3.3. Microstructural Analysis
3.4. UV–Visible Analysis
3.5. Dielectric Analysis
- The intrinsic dielectric behaviour of the (I23) sillenite phase (~27% in BFCO0.07, Table 1), which exhibits a markedly lower permittivity (~60–100 at 1 kHz) compared to pristine BFO (~200–300) due to its cubic symmetry and reduced ionic/polarization activity [52]. The sillenite phase dilutes the overall ε′ and suppresses oxygen vacancy migration, aligning with the diminished low-frequency permittivity.
- Reduced VO•• density due to Co3+ substitution and new defect dipoles from residual Co2+ [53].
- Tensile strain from the sillenite phase enhances dipolar polarization in the perovskite lattice [32], and the slight increase in perovskite content (73% (BFCO0.07) vs. 76.32% (BFCO0.15)) amplifies its contribution to ε′.
- Perovskite-dominated conduction: Low n = 0.42 in BFO indicates small-polaron hopping (Fe2+/Fe3+ pairs) [55].
- Defect dipole and sillenite effects: n = 1.05 in BFCO0.07 reflects suppressed polaron hopping (Co3+-mediated VO•• reduction) and the sillenite phase’s low ionic conductivity, which limits bulk conduction [56].
- Mixed mechanisms in BFCO0.15: Intermediate n = 0.81 signifies tensile strain-enhanced delocalization in the perovskite phase and residual Co2+-induced localized hopping [57].
3.6. Impedance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and Prospects in Thin Films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Dutta, D.P.; Mandal, B.P.; Naik, R.; Lawes, G.; Tyagi, A.K. Magnetic, Ferroelectric, and Magnetocapacitive Properties of Sonochemically Synthesized Sc-Doped BiFeO3 Nanoparticles. J. Phys. Chem. C 2013, 117, 2382–2389. [Google Scholar] [CrossRef]
- Wani, W.A.; Kundu, S.; Ramaswamy, K.; Venkataraman, H. Structural, Morphological, Optical and Dielectric Investigations in Cobalt Doped Bismuth Ferrite Nanoceramics Prepared Using the Sol-Gel Citrate Precursor Method. J. Alloys Compd. 2020, 846, 156334. [Google Scholar] [CrossRef]
- Rhaman, M.M.; Matin, M.A.; Hossain, M.N.; Mozahid, F.A.; Hakim, M.A.; Islam, M.F. Bandgap Engineering of Cobalt-Doped Bismuth Ferrite Nanoparticles for Photovoltaic Applications. Bull. Mater. Sci. 2019, 42, 190. [Google Scholar] [CrossRef]
- Khajonrit, J.; Wongpratat, U.; Kidkhunthod, P.; Pinitsoontorn, S.; Maensiri, S. Effects of Co Doping on Magnetic and Electrochemical Properties of BiFeO3 Nanoparticles. J. Magn. Magn. Mater. 2018, 449, 423–434. [Google Scholar] [CrossRef]
- Xiao, X.H.; Zhu, J.; Li, Y.R.; Luo, W.B.; Yu, B.F.; Fan, L.X.; Ren, F.; Liu, C.; Jiang, C.Z. Greatly Reduced Leakage Current in BiFeO3 Thin Film by Oxygen Ion Implantation. J. Phys. D Appl. Phys. 2007, 40, 5775. [Google Scholar] [CrossRef]
- Yang, C.; Lv, P.; Qian, J.; Han, Y.; Ouyang, J.; Lin, X.; Huang, S.; Cheng, Z. Fatigue-Free and Bending-Endurable Flexible Mn-Doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3 Film Capacitor with an Ultrahigh Energy Storage Performance. Adv. Energy Mater. 2019, 9, 1803949. [Google Scholar] [CrossRef]
- Rashad, M.M. Effect of Synthesis Conditions on the Preparation of BiFeO3 Nanopowders Using Two Different Methods. J. Mater. Sci. Mater. Electron. 2012, 23, 882–888. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y.; Wang, Q.; Li, J.; Yan, L. Phase Transformation and Heterojunction Nanostructures of Bismuth Iron Oxide. J. Mater. Sci. Mater. Electron. 2023, 34, 2236. [Google Scholar] [CrossRef]
- Hu, B.; Wang, J.-F.; Zhang, J.; Gu, Z.-B.; Zhang, S.-T. Synthesis, Structures and Properties of Single Phase BiFeO3 and Bi2Fe4O9 Powders by Hydrothermal Method. J. Mater. Sci. Mater. Electron. 2015, 26, 6887–6891. [Google Scholar] [CrossRef]
- Wang, X.; Mao, W.; Wang, Q.; Zhu, Y.; Min, Y.; Zhang, J.; Yang, T.; Yang, J.; Li, X.; Huang, W. Low-Temperature Fabrication of Bi25FeO40/rGO Nanocomposites with Efficient Photocatalytic Performance under Visible Light Irradiation. RSC Adv. 2017, 7, 10064–10069. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Yan, L.; Li, J. Synthesis of BiFeO3/Bi25FeO40 Heterojunction Structure and Precise Adjustment of Forbidden Band Width. Mater. Chem. Phys. 2023, 305, 127935. [Google Scholar] [CrossRef]
- Zhu, J.C.; Hu, X.; Mao, X.Y.; Wang, W.; Chen, X.B. Properties of Co Substituted Bismuth Ferrite System by Rapid Liquid Phase Sintering. Mater. Sci. Forum 2010, 636, 356–360. [Google Scholar] [CrossRef]
- Pan, C.; Wang, Z.; Lou, Y.; Zhang, Y.; Dong, Y.; Zhu, Y. The Construction of a Wide-Spectrum-Responsive and High-Activity Photocatalyst, Bi25CoO40, via the Creation of Large External Dipoles. J. Mater. Chem. A 2021, 9, 3616–3627. [Google Scholar] [CrossRef]
- Zhu, C.; Niu, X.; Fu, Y.; Li, N.; Hu, C.; Chen, Y.; He, X.; Na, G.; Liu, P.; Zai, H.; et al. Strain Engineering in Perovskite Solar Cells and Its Impacts on Carrier Dynamics. Nat. Commun. 2019, 10, 815. [Google Scholar] [CrossRef]
- Zak, A.K.; Majid, W.A.; Abrishami, M.E.; Yousefi, R. X-Ray Analysis of ZnO Nanoparticles by Williamson–Hall and Size–Strain Plot Methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar] [CrossRef]
- Liu, T.; Yang, C.; Si, J.; Sun, W.; Su, D.; Li, C.; Yuan, X.; Huang, S.; Cheng, X.; Cheng, Z. Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers. Adv. Mater. 2025, 37, 2414711. [Google Scholar] [CrossRef]
- Bai, L.; Sun, M.; Ma, W.; Yang, J.; Zhang, J.; Liu, Y. Enhanced Magnetic Properties of Co-Doped BiFeO3 Thin Films via Structural Progression. Nanomaterials 2020, 10, 1798. [Google Scholar] [CrossRef]
- Baiyee, Z.M.; Chen, C.; Ciucci, F. A DFT+U Study of A-Site and B-Site Substitution in BaFeO3−δ. Phys. Chem. Chem. Phys. 2015, 17, 23511–23520. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-J.; Bi, X.-Y.; Xia, P.; Sun, F.; Chen, Z.-X.; Zhang, X.-Y.; Zhang, T. A Simple One-Pot Method for the Synthesis of BiFeO3/Bi25FeO40 Heterojunction for High-Performance Photocatalytic Degradation Applications. Int. J. Mol. Sci. 2025, 26, 196. [Google Scholar] [CrossRef]
- Yao, R.; Cao, C.; Zheng, C.; Lei, Q. Lattice Mismatch Induced Strained Phase for Magnetization, Exchange Bias and Polarization in Multiferroic BiFeO3. RSC Adv. 2013, 3, 24231–24236. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, J.; Yu, S.; Che, L.; Meng, Z. Hydrothermal Synthesis of Perovskite Bismuth Ferrite Crystallites. J. Cryst. Growth 2006, 291, 135–139. [Google Scholar] [CrossRef]
- Hemanta Singh, H.; Basantakumar Sharma, H. Investigation on Electrical, Magnetic and Magneto-Dielectric Properties of Yttrium and Cobalt Co-Doped Bismuth Ferrite Nanoparticles. Indian J. Phys. 2020, 94, 1561–1572. [Google Scholar] [CrossRef]
- Verma, R.; Chauhan, A.; Batoo, K.M.; Kumar, R.; Hadhi, M.; Raslan, E.H. Effect of Calcination Temperature on Structural and Morphological Properties of Bismuth Ferrite Nanoparticles. Ceram. Int. 2021, 47, 3680–3691. [Google Scholar] [CrossRef]
- Dhanya, S.R.; Nair, S.G.; Satapathy, J.; Kumar, N.P. Structural and Spectroscopic Characterization of Bismuth-Ferrites. AIP Conf. Proc. 2019, 2166, 020017. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Sarkar, I.; Shirolkar, M.M.; Jeng, U.-S.; Yeh, Y.-Q.; Rajendra, R.; Ballav, N.; Kulkarni, S. Probing Bismuth Ferrite Nanoparticles by Hard X-Ray Photoemission: Anomalous Occurrence of Metallic Bismuth. Appl. Phys. Lett. 2014, 105, 102910. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Wu, Y.; Hu, J. Hydrothermal Synthesis and Mechanism and Property Study of La-Doped BiFeO3 Crystallites. J. Mater. Sci. Mater. Electron. 2012, 23, 1402–1408. [Google Scholar] [CrossRef]
- Lotey, G.S.; Verma, N.K. Multiferroic Properties of Tb-Doped BiFeO3 Nanowires. J. Nanopart. Res. 2013, 15, 1553. [Google Scholar] [CrossRef]
- Safari-Naderi, M.-H.; Shakouri, M.; Ghasemi-Ghalebahman, A. A Bond-Based Peridynamics Model Based on Variable Material Properties for Modeling Elastoplastic Behavior. Mater. Today Commun. 2023, 35, 105890. [Google Scholar] [CrossRef]
- Sando, D.; Agbelele, A.; Daumont, C.; Rahmedov, D.; Ren, W.; Infante, I.C.; Lisenkov, S.; Prosandeev, S.; Fusil, S.; Jacquet, E.; et al. Control of Ferroelectricity and Magnetism in Multi-Ferroic BiFeO3 by Epitaxial Strain. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120438. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cheng, D.; He, T.; Hu, Y.; Deng, Q.; Mao, Y.; Wang, S. Enhanced Visible-Light Responsive Photocatalytic Activity of Bi25FeO40/Bi2Fe4O9 Composites and Mechanism Investigation. J. Mater. Sci. Mater. Electron. 2019, 30, 10923–10933. [Google Scholar] [CrossRef]
- Gupta, S.; Tomar, M.; James, A.R.; Gupta, V. Ce-Doped Bismuth Ferrite Thin Films with Improved Electrical and Functional Properties. J. Mater. Sci. 2014, 49, 5355–5364. [Google Scholar] [CrossRef]
- Sinha, A.K.; Bhushan, B.; Gupta, N.; Sen, S.; Prajapat, C.L.; Nuwad, J.; Bhatt, P.; Mishra, S.K.; Meena, S.S.; Priyam, A. Effect of Cobalt-Doping on Dielectric, Magnetic and Optical Properties of BiFeO3 Nanocrystals Synthesized by Sol–Gel Technique. Solid State Sci. 2020, 102, 106168. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phy. Status Solidi b 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Sahoo, P.; Dixit, A. Interband Electronic Transitions and Optical Phonon Modes in Size-Dependent Multiferroic BiFeO3 Nanoparticles. Phys. Chem. Chem. Phys. 2024, 26, 9675–9686. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, H.; King, S.W.; Afanas’ev, V.V.; Baklanov, M.R.; de Marneffe, J.-F.; Nishi, Y.; Shohet, J.L. Publisher’s Note: “Defect-Induced Bandgap Narrowing in Low-k Dielectrics” [Appl. Phys. Lett. 107, 082903 (2015)]. Appl. Phys. Lett. 2015, 107, 139903. [Google Scholar] [CrossRef]
- Yang, W.; Yu, Y.; Starr, M.B.; Yin, X.; Li, Z.; Kvit, A.; Wang, S.; Zhao, P.; Wang, X. Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2–BaTiO3 Core–Shell Nanowire Photoanodes. Nano Lett. 2015, 15, 7574–7580. [Google Scholar] [CrossRef]
- Liu, S.; Luo, Z.; Li, L.; Li, H.; Chen, M.; Wang, T.; Gong, J. Multifunctional TiO2 Overlayer for P-Si/n-CdS Heterojunction Photocathode with Improved Efficiency and Stability. Nano Energy 2018, 53, 125–129. [Google Scholar] [CrossRef]
- Cody, G.D.; Tiedje, T.; Abeles, B.; Brooks, B.; Goldstein, Y. Disorder and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon. Phys. Rev. Lett. 1981, 47, 1480–1483. [Google Scholar] [CrossRef]
- Kharandiuk, T.; Hussien, E.J.; Cameron, J.; Petrina, R.; Findlay, N.J.; Naumov, R.; Klooster, W.T.; Coles, S.J.; Ai, Q.; Goodlett, S.; et al. Noncovalent Close Contacts in Fluorinated Thiophene–Phenylene–Thiophene Conjugated Units: Understanding the Nature and Dominance of O···H versus S···F and O···F Interactions with Respect to the Control of Polymer Conformation. Chem. Mater. 2019, 31, 7070–7079. [Google Scholar] [CrossRef]
- Sharmila, M.; Abdul Kader, S.M.; Jain Ruth, D.E.; Veera Gajendra Babu, M.; Bagyalakshmi, B.; Ananth Kumar, R.T.; Pathinettam Padiyan, D.; Sundarakannan, B. Effect of Cobalt Substitution on the Optical Properties of Bismuth Ferrite Thin Films. Mater. Sci. Semicond. Process. 2015, 34, 109–113. [Google Scholar] [CrossRef]
- Li, Y.; Adamo, C.; Rowland, C.E.; Schaller, R.D.; Schlom, D.G.; Walko, D.A. Nanoscale Excitonic Photovoltaic Mechanism in Ferroelectric BiFeO3 Thin Films. APL Mater. 2018, 6, 084905. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jang, J.-W.; Youn, D.H.; Magesh, G.; Lee, J.S. A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water Splitting: Towards Stability Engineering. Adv. Energy Mater. 2014, 4, 1400476. [Google Scholar] [CrossRef]
- Damodaran, A.R.; Liang, C.-W.; He, Q.; Peng, C.-Y.; Chang, L.; Chu, Y.-H.; Martin, L.W. Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly-Strained BiFeO3 Thin Films. arXiv 2011, arXiv:1105.4001. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Yang, H.G.; Cheng, H.-M.; Lu, G.Q. (Max) Titania-Based Photocatalysts—Crystal Growth, Doping and Heterostructuring. J. Mater. Chem. 2010, 20, 831–843. [Google Scholar] [CrossRef]
- Pradhan, A.; Zhang, K.; Hunter, D.; Dadson, J.B.; Loiutts, G.B.; Bhattacharya, P.; Katiyar, R.; Zhang, J.; Sellmyer, D.; Roy, U.N.; et al. Magnetic and Electrical Properties of Single-Phase Multiferroic BiFeO3. J. Appl. Phys. 2005, 97, 093903. [Google Scholar] [CrossRef]
- Kusunose, T.; Sekino, T.; Niihara, K. Contact Damage of Silicon Carbide/Boron Nitride Nanocomposites. J. Am. Ceram. Soc. 2007, 90, 3341–3344. [Google Scholar] [CrossRef]
- Chandel, S.; Thakur, P.; Tomar, M.; Gupta, V.; Thakur, A. Investigation of Structural, Optical, Dielectric and Magnetic Studies of Mn Substituted BiFeO3 Multiferroics. Ceram. Int. 2017, 43, 13750–13758. [Google Scholar] [CrossRef]
- Gul, I.H.; Maqsood, A.; Naeem, M.; Ashiq, M.N. Optical, Magnetic and Electrical Investigation of Cobalt Ferrite Nanoparticles Synthesized by Co-Precipitation Route. J. Alloys Compd. 2010, 507, 201–206. [Google Scholar] [CrossRef]
- Leng, S.; Cheng, H.; Zhang, R.; Gao, C.; Li, Z. Electrical Properties of La-Mn-Codoped BaTiO3-(Bi0.5Na0.5)TiO3 Lead-Free PTCR Ceramics. Ceram. Int. 2021, 47, 30963–30968. [Google Scholar] [CrossRef]
- Sharma, A.D.; Hemanta, H.; Sharma, H.B. Effect of Mn Substitution on Structural and Dielectric Properties of Bismuth Ferrite. Ferroelectrics 2017, 519, 187–193. [Google Scholar] [CrossRef]
- Dhanalakshmi, B.; Pratap, K.; Rao, B.P.; Rao, P.S.V.S. Effects of Mn Doping on Structural, Dielectric and Multiferroic Properties of BiFeO3 Nanoceramics. J. Alloys Compd. 2016, 676, 193–201. [Google Scholar] [CrossRef]
- Jonscher, A.K. The ‘Universal’ Dielectric Response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Zhang, Z.; Hao, H.; Yang, H.; Hu, Y.; Min, J.; Zhang, G.; Bi, J.; Yan, S.; Li, H.; Hou, H. Direct Z-Scheme Ba0.8Sr0.2TiO3/Ag/Ag2O Heterostructural Nanotube with Pyroelectric and Photocatalytic Synergy for Enhanced Catalytic Performance. Mater. Sci. Eng. B 2022, 279, 115678. [Google Scholar] [CrossRef]
- Mazumdar, S.C.; Khan, M.N.I.; Islam, M.d.F.; Hossain, A.K.M.A. Tuning of Magnetoelectric Coupling in (1−y)Bi0.8Dy0.2FeO3–yNi0.5Zn0.5Fe2O4 Multiferroic Composites. J. Magn. Magn. Mater. 2016, 401, 443–454. [Google Scholar] [CrossRef]
- Rhaman, M.M.; Matin, M.A.; Hakim, M.A.; Islam, M.F. Dielectric, Ferroelectric and Ferromagnetic Properties of Samarium Doped Multiferroic Bismuth Ferrite. Mater. Res. Express 2019, 6, 125080. [Google Scholar] [CrossRef]
Material | BFO | BFCO0.07 | BFCO0.15 | ||
---|---|---|---|---|---|
Space Group | R3c | R3c | I23 | R3c | I23 |
a (Å) | 5.583 | 5.573 | 10.203 | 5.572 | 10.194 |
b (Å) | 5.583 | 5.573 | 10.203 | 5.572 | 10.194 |
c (Å) | 13.865 | 13.844 | 10.203 | 13.845 | 10.194 |
V (Å3) | 374.382 | 372.484 | 1062.237 | 372.361 | 1059.604 |
Phase % | 100% | 73.00% | 27.00% | 76.32% | 23.68% |
Rwp | 18.2 | 21.3 | 19.9 | ||
Re | 13.5 | 16.5 | 14.9 | ||
Χ2 | 1.805 | 1.662 | 1.784 |
Material | BFO | BFCO0.07 | BFCO0.15 |
---|---|---|---|
Distance Fe-O (Å) | 3 × Fe-O = 2.315 3 × Fe-O = 1.712 <Fe-O> = 2.013 | 3 × Fe-O = 2.128 3 × Fe-O = 1.860 <Fe-O> = 1.994 | 3 × Fe-O = 2.099 3 × Fe-O = 1.919 <Fe-O>=2.009 |
Angle Fe-O-Fe (°) | Fe-O-Fe = 159.83° | Fe-O-Fe = 166.09° | Fe-O-Fe = 160.23° |
Strain (e) × 10−3 | Crystallite Size (D) (nm) | |
---|---|---|
BFO | 3.74 | 60.02 |
BFCO0.07 | 1.01 | 23.99 |
BFCO0.15 | 4.14 | 22.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghdedi, D.; Dahri, A.; Tabellout, M.; Abdelmoula, N.; Benzarti, Z. Bandgap Tuning in Cobalt-Doped BiFeO3/Bi25FeO40 Heterostructured Nanopowders via Sol–Gel Phase Engineering. Nanomaterials 2025, 15, 918. https://doi.org/10.3390/nano15120918
Baghdedi D, Dahri A, Tabellout M, Abdelmoula N, Benzarti Z. Bandgap Tuning in Cobalt-Doped BiFeO3/Bi25FeO40 Heterostructured Nanopowders via Sol–Gel Phase Engineering. Nanomaterials. 2025; 15(12):918. https://doi.org/10.3390/nano15120918
Chicago/Turabian StyleBaghdedi, Dhouha, Asma Dahri, Mohamed Tabellout, Najmeddine Abdelmoula, and Zohra Benzarti. 2025. "Bandgap Tuning in Cobalt-Doped BiFeO3/Bi25FeO40 Heterostructured Nanopowders via Sol–Gel Phase Engineering" Nanomaterials 15, no. 12: 918. https://doi.org/10.3390/nano15120918
APA StyleBaghdedi, D., Dahri, A., Tabellout, M., Abdelmoula, N., & Benzarti, Z. (2025). Bandgap Tuning in Cobalt-Doped BiFeO3/Bi25FeO40 Heterostructured Nanopowders via Sol–Gel Phase Engineering. Nanomaterials, 15(12), 918. https://doi.org/10.3390/nano15120918