Influence of Niobium Substitution on the Properties of Pb2Fe2O5 Thin Films Synthesized via Reactive Magnetron Sputtering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Analysis
3.2. Ferroelectric Properties
3.3. Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, H.; Ahmad, T. Perspectives and Scope of Abo3 Type Multiferroic Rare-Earth Perovskites. Chin. J. Phys. 2024, 91, 199–219. [Google Scholar] [CrossRef]
- Cao, J.; Yang, B.; Smith, G.; Mahajan, A.; Zhang, H.; Lin, Y.; Yu, C.; Koval, V.; Zhang, D.; Shi, Y.; et al. Establishing Room-Temperature Multiferroic Behaviour in Bismuth-Based Perovskites. Mater. Des. 2024, 248, 113498. [Google Scholar] [CrossRef]
- Palneedi, H.; Annapureddy, V.; Priya, S.; Ryu, J. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. Actuators 2016, 5, 9. [Google Scholar] [CrossRef]
- Sharma, S.; Hernández, M.A.; Siqueiros, J.; Herrera, O.R. Recent Advances in Electric Field-Controlled Magnetism Using Perovskite Multiferroic Heterostructures for Spintronics Applications. Mater. Lett. 2024, 371, 136974. [Google Scholar] [CrossRef]
- Wu, J.; Fan, Z.; Xiao, D.; Zhu, J.; Wang, J. Multiferroic Bismuth Ferrite-Based Materials for Multifunctional Applications: Ceramic Bulks, Thin Films and Nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef]
- Dedi; Idayanti, N.; Kristiantoro, T.; Alam, G.F.N.; Sudrajat, N. Magnetic Properties of Cobalt Ferrite Synthesized by Mechanical Alloying. AIP Conf. Proc. 2018, 1964, 20003. [Google Scholar]
- Hanif, S.; Hassan, M.; Riaz, S.; Atiq, S.; Hussain, S.S.; Naseem, S.; Murtaza, G. Structural, Magnetic, Dielectric and Bonding Properties of Bimno3 Grown by Co-Precipitation Technique. Results Phys. 2017, 7, 3190–3195. [Google Scholar] [CrossRef]
- López-Alvarez, M.Á.; Silva-Jara, J.M.; Silva-Galindo, J.G.; Reyes-Becerril, M.; Velázquez-Carriles, C.A.; Macías-Rodríguez, M.E.; Macías-Lamas, A.M.; García-Ramírez, M.A.; de Alba, C.A.L.; Reynoso-García, C.A. Determining the Photoelectrical Behavior and Photocatalytic Activity of an H-Ymno3 New Type of Obelisk-Like Perovskite in the Degradation of Malachite Green Dye. Molecules 2023, 28, 3932. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Nishikawa, M.; Sakaguchi, H.; Veis, M.; Ishibashi, T. Preparation and Characterization of Ymno3 Thin Films by Metal–Organic Decomposition. Jpn. J. Appl. Phys. 2023, 62, SB1005. [Google Scholar] [CrossRef]
- Rahul, M.T.; Chacko, S.K.; Vinodan, K.; Raneesh, B.; Philip, K.A.; Bhadrapriya, B.C.; Bose, B.A.; Kalarikkal, N.; Rouxel, D.; Viswanathan, P.; et al. Multiferroic and Energy Harvesting Characteristics of P(Vdf-Trfe)-Cufe2o4 Flexible Films. Polymer 2022, 252, 124910. [Google Scholar] [CrossRef]
- Shah, J.; Verma, K.C.; Agarwal, A.; Kotnala, R.K. Novel Application of Multiferroic Compound for Green Electricity Generation Fabricated as Hydroelectric Cell. Mater. Chem. Phys. 2020, 239, 122068. [Google Scholar] [CrossRef]
- Singh Pawar, M.; Raj, A.; Singh, A.K.; Tuli, V.; Anshul, A.; Kumar, M. Lead-Free ‘Ca’ Doped Bi0.80la0.20feo3 Multiferroic Material for Solar Cell Applications. Mater. Today Proc. 2022, 67, 713–718. [Google Scholar] [CrossRef]
- Kumar, A.; Ortega, N.; Dussan, S.; Kumari, S.; Sanchez, D.; Scott, J.; Katiyar, R. Multiferroic Memory: A Disruptive Technology or Future Technology? Solid State Phenom. 2012, 189, 1–14. [Google Scholar] [CrossRef]
- Ozawa, K.; Nagase, Y.; Katsumata, M.; Shigematsu, K.; Azuma, M. Single or Vortex Ferroelectric and Ferromagnetic Domain Nanodot Array of Magnetoelectric Bife0.9co0.1o3. ACS Appl. Mater. Interfaces 2024, 16, 20930–20936. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Cong, J.; Shang, D.; Chai, Y.; Shen, S.; Zhai, K.; Sun, Y. A Multilevel Nonvolatile Magnetoelectric Memory. Sci. Rep. 2016, 6, 34473. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Shankar, S.; Kumar, A.; Anshul, A.; Jayasimhadri, M.; Thakur, O.P. Progress in Multiferroic and Magnetoelectric Materials: Applications, Opportunities and Challenges. J. Mater. Sci. Mater. Electron. 2020, 31, 19487–19510. [Google Scholar] [CrossRef]
- Beklešovas, B.; Stankus, V.; Abakevičienė, B.; Link, J.; Stern, R.; Plyushch, A.; Banys, J.; Čyvienė, J.; Girčys, R.; Bašinskas, M.; et al. Synthesis and Characterization of Cr-Doped Pb2fe2o5 Thin Films by Reactive Magnetron Sputtering. ECS J. Solid State Sci. Technol. 2023, 12, 103014. [Google Scholar] [CrossRef]
- Beklešovas, B.; Stankus, V.; Iljinas, A.; Marcinauskas, L. Ferroelectric and Structural Properties of Cobalt-Doped Lead Ferrite Thin Films Formed by Reactive Magnetron Sputtering. Crystals 2024, 14, 721. [Google Scholar] [CrossRef]
- Beklešovas, B.; Stankus, V.; Iljinas, A.; Balčiūnaitė, U. Enhancement of Ferroelectric Properties of Ni-Substituted Pb2fe2o5 Thin Films Synthesized by Reactive Magnetron Sputtering Deposition. Coatings 2025, 15, 143. [Google Scholar] [CrossRef]
- Choi, E.-S.; Yoon, S.-G.; Choi, W.-Y.; Kim, H.-G. Integration of Platinum Bottom Electrode on Poly-Si for Ferroelectric Thin Films. Appl. Surf. Sci. 1999, 141, 77–82. [Google Scholar] [CrossRef]
- Leclerc, G.; Poullain, G.; Bouregba, R.; Chateigner, D. Influence of the Substrate on Ferroelectric Properties of <111> Oriented Rhombohedral Pb(Zr0.6ti0.4)O3 Thin Films. Appl. Surf. Sci. 2009, 255, 4293–4297. [Google Scholar]
- Maeder, T.; Sagalowicz, L.; Muralt, P. Stabilized Platinum Electrodes for Ferroelectric Film Deposition Using Ti, Ta and Zr Adhesion Layers. Jpn. J. Appl. Phys. 1998, 37, 2007. [Google Scholar] [CrossRef]
- Millon, C.; Malhaire, C.; Barbier, D. Ti and Tiox Seeding Influence on the Orientation and Ferroelectric Properties of Sputtered Pzt Thin Films. Sens. Actuators A Phys. 2004, 113, 376–381. [Google Scholar] [CrossRef]
- Gil, D.M.; Nieva, G.; Franco, D.G.; Gómez, M.I.; Carbonio, R.E. Lead Nitroprusside: A New Precursor for the Synthesis of the Multiferroic Pb2fe2o5, an Anion-Deficient Perovskite. Mater. Chem. Phys. 2013, 141, 355–361. [Google Scholar] [CrossRef]
- Jun, Y.-K.; Moon, W.-T.; Chang, C.-M.; Kim, H.-S.; Ryu, H.S.; Kim, J.W.; Kim, K.H.; Hong, S.-H. Effects of Nb-Doping on Electric and Magnetic Properties in Multi-Ferroic Bifeo3 Ceramics. Solid State Commun. 2005, 135, 133–137. [Google Scholar] [CrossRef]
- Makhdoom, A.R.; Akhtar, M.J.; Rafiq, M.A.; Siddique, M.; Iqbal, M.; Hasan, M.M. Enhancement in the Multiferroic Properties of Bifeo3 by Charge Compensated Aliovalent Substitution of Ba and Nb. AIP Adv. 2014, 4, 37113. [Google Scholar] [CrossRef]
- Abakumov, A.M.; Hadermann, J.; Bals, S.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G. Crystallographic Shear Structures as a Route to Anion-Deficient Perovskites. Angew. Chem. Int. Ed. 2006, 45, 6697–6700. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tan, G. Multiferroic Properties of Pb2fe2o5 Ceramics. Mater. Res. Bull. 2011, 46, 438–441. [Google Scholar] [CrossRef]
- Arya, K.S.; Kalyani, A.K.; Chakrabarti, T. Flash Sintering of Lead Zirconate Titanate (Pzt) with Minimal Lead Oxide Loss and Enhanced Dielectric Properties. J. Eur. Ceram. Soc. 2024, 44, 2797–2810. [Google Scholar] [CrossRef]
- Hung, C.-L.; Wu, T.-B. Effects of Nb Doping on Highly Fatigue-Resistant Thin Films of (Pb0.8ba0.2)Zro3 for Ferroelectric Memory Application. J. Cryst. Growth 2005, 274, 402–406. [Google Scholar] [CrossRef]
- Fisher, J.G.; Jang, S.-H.; Park, M.-S.; Sun, H.; Moon, S.-H.; Lee, J.-S.; Hussain, A. The Effect of Niobium Doping on the Electrical Properties of 0.4(Bi0.5k0.5)Tio3-0.6bifeo3 Lead-Free Piezoelectric Ceramics. Materials 2015, 8, 8183–8194. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Electrical Properties of Li and Nb Modified Bifeo3 Ceramics with Reduced Leakage Current. Ceram. Int. 2021, 47, 4217–4225. [Google Scholar] [CrossRef]
- Cartwright, J.H.E.; Escribano, B.; Piro, O.; Sainz-Diaz, C.I.; Sánchez, P.A.; Sintes, T. Ice Film Morphologies and the Structure Zone Model. AIP Conf. Proc. 2008, 982, 696–701. [Google Scholar] [CrossRef]
- Xian, H.; Tang, L.; Mao, Z.; Zhang, J.; Chen, X. Synergistic Effects of Ca2+ and High-Valence Nb5+ Co-Doping on the Structural, Optical and Magnetic Properties of Bifeo3. J. Mater. Sci. Mater. Electron. 2021, 32, 10299–10307. [Google Scholar] [CrossRef]
- Barranco, A.; Borras, A.; Gonzalez-Elipe, A.R.; Palmero, A. Perspectives on Oblique Angle Deposition of Thin Films: From Fundamentals to Devices. Prog. Mater. Sci. 2016, 76, 59–153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beklešovas, B.; Stankus, V.; Iljinas, A. Influence of Niobium Substitution on the Properties of Pb2Fe2O5 Thin Films Synthesized via Reactive Magnetron Sputtering. Coatings 2025, 15, 863. https://doi.org/10.3390/coatings15080863
Beklešovas B, Stankus V, Iljinas A. Influence of Niobium Substitution on the Properties of Pb2Fe2O5 Thin Films Synthesized via Reactive Magnetron Sputtering. Coatings. 2025; 15(8):863. https://doi.org/10.3390/coatings15080863
Chicago/Turabian StyleBeklešovas, Benas, Vytautas Stankus, and Aleksandras Iljinas. 2025. "Influence of Niobium Substitution on the Properties of Pb2Fe2O5 Thin Films Synthesized via Reactive Magnetron Sputtering" Coatings 15, no. 8: 863. https://doi.org/10.3390/coatings15080863
APA StyleBeklešovas, B., Stankus, V., & Iljinas, A. (2025). Influence of Niobium Substitution on the Properties of Pb2Fe2O5 Thin Films Synthesized via Reactive Magnetron Sputtering. Coatings, 15(8), 863. https://doi.org/10.3390/coatings15080863