Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals
Abstract
1. Introduction
2. Electrospinning Process and Parameters
2.1. Electrospinning
2.2. Process Parameters
3. Composite Ferroelectric and Multiferroic Fibers with Inorganic Inclusions
3.1. Ferroelectric Polymers
3.2. Electrospinning-Assisted Ferroelectric Inorganic Nanofibers
3.3. Electrospinning-Assisted Multiferroic Nanofibers
3.3.1. Core–Shell Multiferroic Fibers
Polymer | Core–Shell Fibers | Heat Treatment | Magnetoelectric Coefficient | Ref. |
---|---|---|---|---|
PVP for CFO Mw = 1,300,000 PMMA for PZT Mw = 120,000 | CoFe2O4–Pb(Zr0.52Ti0.48)O3 CFO–PZT | Nanofibers were collected on Pt/Ti/SiO2/Si substrates and dried at 120 °C for 4 h, followed by heating at 400 °C and then thermal annealing at 750 °C for 2 h in air | α31 = 29.5 V/cmOe | [126] |
PVP for NFO and PZT Mw = 1,300,000 | NiFe2O4–Pb(Zr0.52Ti0.48)O3 NFO–PZT | Fibers dried at 40 °C for 24 h and annealed in air at 650 °C for 1 h | Av = δHr /V Av = −24 Oe/V Converse effect, @ 5.4 GHz [85] MD = Δε′/ε′ MD = 8% (unassembled), −2% (assembled in magnetic field) @ 20–22 GHz, H = 0.8 T [127] | [124,127] |
PVP for NDO Mw = 1,300,000 PVA for PZT Mw = 50,000 | NdFeO3–Pb(Zr0.52Ti0.48)O3 NDO–PZT | Nanofibers were kept on a hot plate to dry at 100 for 10 h, followed by annealing at 850 C for 8 h. | - | [128] |
PVP for CFO and BFO | CoFe2O4–BiFeO3 CFO–BFO | Nanofibers were collected to Pt/Ti/SiO2/Si substrates and dried at 120 °C for 4 h, followed by thermal annealing at 750 °C for 2 h in air. | 220–250 V/cm Oe - | [129] |
PVP Mw = 1,300,000 For NFO and BFO | NiFe2O4–BiFeO3 NFO–BFO | The samples were dried at 80 °C for 8 h, calcined at 350 °C for 2 h, and then calcined at 700 °C for 4 h in air. | - | [130] |
PVP Mw = 1,300,000 For NFO and BTO | NiFe2O4–BaTiO3 NFO–BTO | Dried in an oven at 40 °C for 24 h, and then annealed for 1 h at 600–700 °C in air | 0.4 mV/cm Oe @ 30 Hz | [131] |
PVP for CFO and BCZT | CoFe2O4–Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (CFO–BCZT) | Dried at 120 °C for 90 min and calcined at temperatures of between 700 °C and 1000 °C for 1 h | - | [132] |
PVP for BNFO and PZT | Ba2Ni2Fe12O22–Pb(Zr0.52Ti0.48)O3 BNFO–PZT | Dried on a hot plate at 100 °C for 6 h and then annealed at 1100 °C for 6 h | MD = Δε′/ε′ MD = –2.4% @ 100 Hz, H = 0.6 T | [133] |
PVP for CFO and BCTSO | CoFe2O4–Ba0.95Ca0.05Ti0.89Sn0.11O3 CFO–BCTSO | Fibers dried at 80 °C under vacuum for 12 h and then annealed at 700 °C for 4 h in air | α = 0.346 V/cm Oe @ H = 1 T | [134] |
3.3.2. Composite and Janus Multiferroic Fibers
Polymer | Composite and Janus Fibers | Heat Treatments | Magnetoelectric Coefficient | Ref. |
---|---|---|---|---|
PVP Mw = 1,300,000 | Ni0.8Zn0.2Fe2O4–Ba0.7Sr0.3TiO3 NZFO–BSTO composite fibers | Composite BSTO/NZFO fibers with molar ratios of 95/5, 90/10, 80/20, and 70/30 were annealed at 700 °C for 2 h. | MD = Δε′/ε′ MD ~18.2% @ 1 kHz, H = 6.3 kOe | [135] |
PVP | CoFe2O4–BaTiO3 CFO–BTO composite fibers | Composite CFO/BTO fibers with a molar ratio of 50/50 were dried in an oven at 120 °C for 8 h, followed by annealing at 700 °C for 2 h. | α31 = 7.8 V/cmOe | [136] |
PVP Mw = 1,300,000 | CoFe2O4–Pb(Zr0.52Ti0.48)O3 CFO–PZT composite fibers | Composite CFO/PZT fibers with molar ratios of 0.75:1, 1:1, and 1.25:1 were dried at 120 °C for 4 h, followed by heating at 400 °C and then annealing at 550 °C for 2 h in air. | - | [137,138] |
PVP Mw = 1,300,000 | NiFe2O4–Pb(Zr0.52Ti0.48)O3 NFO–PZT composite fibers | Composite NFO/PZT fibers with molar ratios of 0.75:1, 1:1, and 1.25:1 were dried at 120 °C for 4 h, followed by heating at 400 °C and then annealing at 550 °C for 2 h in air. | - | [139] |
PVP Mw = 1,300,000 | CoFe2O4–(Ba0.95Ca0.05)(Ti0.89Sn0.11)O3 CFO–BCTSO composite fibers | Composite BCTSn/CFO fibers with a 1:1 molar ratio were dried at 80 °C under vacuum for 12 h before being annealed at 700 °C for 4 h in air. | - | [140] |
PVP Mw = 1,300,000 | CoFe2O4–BiFeO3 CFO–BFO composite fibers | Nanofibers with molar ratios of 1:0, 1:0.5, 1:1, 1:1.5, and 0:1 were dried at 60 °C for 12 h, followed by heating at 400 °C for 1.5 h and then annealing at 600 °C for 2 h in air. | - | [141] |
PVP Mw = 1,300,000 | CoFe2O4–BaTiO3 CFO–BTO Janus fibers | The fibers were calcined at 750 °C for 2 h. | Changes in magnetization at the BTO ferroelectric Curie temperature [23,142,143]; MOKE [144] Magnetic field-dependent polarization-resolved SHG [145] | [23,142,143,144,145,146] |
4. Composite Fibers with Organic Ferroelectric Crystals
5. Nonlinear Optical Nanofibers
6. Perspectives for Applications: Stability, Biocompatibility, Scalability, and Environmental Impact
6.1. Long-Term Stability
6.2. Biocompatibility
6.3. Scalability of Production
6.4. Environmental Impact
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sekhar, M.C.; Veena, E.; Kumar, N.S.; Naidu, K.C.B.; Mallikarjuna, A.; Basha, D.B. A review on piezoelectric materials and their applications. Cryst. Res. Technol. 2023, 58, 2200130. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Setter, N.; Damjanovic, D.; Eng, L.; Fox, G.; Gevorgian, S.; Hong, S.; Kingon, A.; Kohlstedt, H.; Park, N.; Stephenson, G. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006, 100, 051606. [Google Scholar]
- Zhang, D.; Wu, H.; Bowen, C.R.; Yang, Y. Recent advances in pyroelectric materials and applications. Small 2021, 17, 2103960. [Google Scholar] [CrossRef]
- Chen, X.; Xu, S.; Yao, N.; Shi, Y. 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers. Nano Lett. 2010, 10, 2133–2137. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, T.; Lee, C. MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci. Rep. 2016, 6, 24946. [Google Scholar] [CrossRef]
- Todaro, M.T.; Guido, F.; Mastronardi, V.; Desmaele, D.; Epifani, G.; Algieri, L.; De Vittorio, M. Piezoelectric MEMS vibrational energy harvesters: Advances and outlook. Microelectron. Eng. 2017, 183, 23–36. [Google Scholar] [CrossRef]
- Meng, C.; Thrane, P.C.; Ding, F.; Bozhevolnyi, S.I. Full-range birefringence control with piezoelectric MEMS-based metasurfaces. Nat. Commun. 2022, 13, 2071. [Google Scholar] [CrossRef]
- Scott, J. Applications of modern ferroelectrics. Science 2007, 315, 954–959. [Google Scholar] [CrossRef]
- Scott, J.F. Applications of magnetoelectrics. J. Mater. Chem. 2012, 22, 4567–4574. [Google Scholar] [CrossRef]
- Martin, L.W.; Rappe, A.M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2016, 2, 16087. [Google Scholar] [CrossRef]
- Mikolajick, T.; Schroeder, U.; Slesazeck, S. The past, the present, and the future of ferroelectric memories. IEEE Trans. Electron. Dev. 2020, 67, 1434–1443. [Google Scholar] [CrossRef]
- Lim, H.E.; Nakanishi, Y.; Liu, Z.; Pu, J.; Maruyama, M.; Endo, T.; Ando, C.; Shimizu, H.; Yanagi, K.; Okada, S. Wafer-Scale Growth of One-Dimensional Transition-Metal Telluride Nanowires. Nano Lett. 2020, 21, 243–249. [Google Scholar] [CrossRef]
- Varghese, J.; O’Regan, C.; Deepak, N.; Whatmore, R.W.; Holmes, J.D. Surface roughness assisted growth of vertically oriented ferroelectric SbSI nanorods. Chem. Mater. 2012, 24, 3279–3284. [Google Scholar] [CrossRef]
- Ji, S.; Liu, H.; Sang, Y.; Liu, W.; Yu, G.; Leng, Y. Synthesis, structure, and piezoelectric properties of ferroelectric and antiferroelectric NaNbO3 nanostructures. Crystengcomm 2014, 16, 7598–7604. [Google Scholar] [CrossRef]
- Buscaglia, M.T.; Sennour, M.; Buscaglia, V.; Bottino, C.; Kalyani, V.; Nanni, P. Formation of Bi4Ti3O12 one-dimensional structures by solid-state reactive diffusion. From core− shell templates to nanorods and nanotubes. Cryst. Growth. Des. 2011, 11, 1394–1401. [Google Scholar] [CrossRef]
- Yang, P.; Ding, Y.; Lin, Z.; Chen, Z.; Li, Y.; Qiang, P.; Ebrahimi, M.; Mai, W.; Wong, C.P.; Wang, Z.L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano lett. 2014, 14, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yang, S.A.; Choi, Y.C.; Han, J.K.; Jeong, K.O.; Yun, Y.J.; Kim, D.J.; Yang, S.M.; Yoon, D.; Cheong, H. Ferroelectricity in highly ordered arrays of ultra-thin-walled Pb(Zr,Ti)O3 nanotubes composed of nanometer-sized perovskite crystallites. Nano Lett. 2008, 8, 1813–1818. [Google Scholar] [CrossRef]
- Wang, W.; Ke, H.; Rao, J.-C.; Feng, M.; Zhou, Y. Sol–Gel synthesis of SrBi2Ta2O9 nanowires. J. Alloy Compd. 2010, 504, 367–370. [Google Scholar] [CrossRef]
- Karvounis, A.; Timpu, F.; Vogler-Neuling, V.V.; Savo, R.; Grange, R. Barium titanate nanostructures and thin films for photonics. Adv. Opt. Mater. 2020, 8, 2001249. [Google Scholar] [CrossRef]
- Isakov, D.V.; de Matos Gomes, E.; Vieira, L.G.; Dekola, T.; Belsley, M.S.; Almeida, B.G. Oriented single-crystal-like molecular arrangement of optically nonlinear 2-methyl-4-nitroaniline in electrospun nanofibers. ACS Nano 2011, 5, 73–78. [Google Scholar] [CrossRef]
- Wendorff, J.H.; Agarwal, S.; Greiner, A. Electrospinning: Materials, Processing, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Starr, J.D.; Andrew, J.S. Janus-type bi-phasic functional nanofibers. Chem. Commun. 2013, 49, 4151–4153. [Google Scholar] [CrossRef] [PubMed]
- Isakov, D.; Gomes, E.D.; Almeida, B.; Kholkin, A.L.; Zelenovskiy, P.; Neradovskiy, M.; Shur, V.Y. Energy harvesting from nanofibers of hybrid organic ferroelectric dabcoHReO4. Appl. Phys. Lett. 2014, 104, 4. [Google Scholar] [CrossRef]
- Sun, B.; Long, Y.Z.; Zhang, H.D.; Li, M.M.; Duvail, J.L.; Jiang, X.Y.; Yin, H.L. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci. 2014, 39, 862–890. [Google Scholar] [CrossRef]
- Bernardo, C.R.; Baptista, R.M.F.; de Matos Gomes, E.; Lopes, P.E.; Raposo, M.M.M.; Costa, S.P.G.; Belsley, M.S. Anisotropic PCL nanofibers embedded with nonlinear nanocrystals as strong generators of polarized second harmonic light and piezoelectric currents. Nanoscale Adv. 2020, 2, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Laramée, A.W.; Lanthier, C.; Pellerin, C. Electrospinning of Highly Crystalline Polymers for Strongly Oriented Fibers. ACS Appl. Polym. Mater. 2020, 2, 5025–5032. [Google Scholar] [CrossRef]
- Greiner, A.; Wendorff, J.H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Yong, T.; Ma, Z.; Ramaseshan, R. Electrospun nanofibers: Solving global issues. Mater. Today 2006, 9, 40–50. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Lim, T.-C.; Ma, Z. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005; p. 396. [Google Scholar]
- Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, S.; Lu, W.; Wang, Y.; Zhang, P.; Yao, Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 2019, 9, 25712–25729. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. Conductive electrospun nanofiber mats. Materials 2019, 13, 152. [Google Scholar] [CrossRef]
- Rathore, P.; Schiffman, J.D. Beyond the single-nozzle: Coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Inter. 2020, 13, 48–66. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Yeang, B.J.; Park, Y.K.; Choi, H.J.; Kim, J.H.; Kang, Y.S.; Bae, Y.; Kim, J.Y.; Lim, S.J.; Lee, W. Washable colorimetric nanofiber nonwoven for ammonia gas detection. Polymers 2020, 12, 1585. [Google Scholar] [CrossRef] [PubMed]
- Fasano, V.; Polini, A.; Morello, G.; Moffa, M.; Camposeo, A.; Pisignano, D. Bright light emission and waveguiding in conjugated polymer nanofibers electrospun from organic salt added solutions. Macromolecules 2013, 46, 5935–5942. [Google Scholar] [CrossRef] [PubMed]
- Morello, G.; Polini, A.; Girardo, S.; Camposeo, A.; Pisignano, D. Enhanced emission efficiency in electrospun polyfluorene copolymer fibers. Appl. Phys. Lett. 2013, 102, 211911. [Google Scholar] [CrossRef]
- Prateek; Thakur, V.K.; Gupta, R.K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef]
- Habib, M.; Lantgios, I.; Hornbostel, K. A review of ceramic, polymer and composite piezoelectric materials. J. Phys. D: Appl. Phys. 2022, 55, 423002. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Manikandan, M.; Zhang, B.; Guo, J.; Chen, J.; Yang, F.; Zheng, M.; Zhang, H.; Hou, M. Recent advances in composite films of lead-free ferroelectric ceramics and poly (vinylidene fluoride)(PVDF) for energy storage capacitor: A review. J. Mater. Sci. 2023, 58, 124–143. [Google Scholar] [CrossRef]
- Pal, S.; Sarath, N.; Priya, K.S.; Murugavel, P. A review on ferroelectric systems for next generation photovoltaic applications. J. Phys. D: Appl. Phys. 2022, 55, 283001. [Google Scholar] [CrossRef]
- Jayakrishnan, A.R.; Kumar, A.; Druvakumar, S.; John, R.; Sudeesh, M.; Puli, V.S.; Silva, J.P.; Gomes, M.J.; Sekhar, K.C. Inorganic ferroelectric thin films and their composites for flexible electronic and energy device applications: Current progress and perspectives. J. Mater. Chem. C 2023, 11, 827–858. [Google Scholar] [CrossRef]
- Bakhtiar, S.U.H.; abbas Hussain, S.; Ali, S.; Ismail, A.; Zada, A.; Sattar, H.; Raziq, F.; Zahid, M.; Al-Fatesh, A.S.; Dong, W. Innovative Perspectives on Porous Ferroelectric Ceramics and their Composites: Charting New Frontiers in Energy Applications. Mater. Today Commun. 2024, 38, 108388. [Google Scholar] [CrossRef]
- Wang, Z.L. Nanogenerators and piezotronics: From scientific discoveries to technology breakthroughs. MRS Bull. 2023, 48, 1014–1025. [Google Scholar] [CrossRef]
- Ren, K.; Shen, Y.; Wang, Z.L. Piezoelectric Properties of Electrospun Polymer Nanofibers and Related Energy Harvesting Applications. Macromol. Mater. Eng. 2024, 309, 2300307. [Google Scholar] [CrossRef]
- Arica, T.A.; Isık, T.; Guner, T.; Horzum, N.; Demir, M.M. Advances in Electrospun Fiber-Based Flexible Nanogenerators for Wearable Applications. Macromol. Mater. Eng. 2021, 306, 2100143. [Google Scholar] [CrossRef]
- Starr, J.D.; Andrew, J.S. A route to synthesize multifunctional tri-phasic nanofibers. J. Mater. Chem. C 2013, 1, 2529–2533. [Google Scholar] [CrossRef]
- Koka, A.; Sodano, H.A. High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays. Nat. Commun. 2013, 4, 2682. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, M.; Shen, Z.; Zhang, X.; Pan, H.; Lin, Y.-H. Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Mater. 2021, 9, 020905. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Lee, M.; Park, K.J.; Kim, S.; Mahadevan, L. Nanopottery: Coiling of Electrospun Polymer Nanofibers. Nano Lett. 2010, 10, 2138–2140. [Google Scholar] [CrossRef]
- Luo, G.; Teh, K.S.; Liu, Y.; Zang, X.; Wen, Z.; Lin, L. Direct-Write, Self-Aligned Electrospinning on Paper for Controllable Fabrication of Three-Dimensional Structures. ACS Appl. Mater. Inter. 2015, 7, 27765–27770. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.Q.; Zheng, Y.; Wang, B.; Yang, G.W. Nanosize confinement induced enhancement of spontaneous polarization in a ferroelectric nanowire. Appl. Phys. Lett. 2009, 95, 232901. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Suryavanshi, A.P.; Yum, K.; Yu, M.-F. Voltage Generation from Individual BaTiO3 Nanowires under Periodic Tensile Mechanical Load. Nano Lett. 2007, 7, 2966–2969. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Liu, H.; Ge, S. Advancing Versatile Ferroelectric Materials Toward Biomedical Applications. Adv. Sci. 2021, 8, 2003074. [Google Scholar] [CrossRef] [PubMed]
- Koka, A.; Zhou, Z.; Sodano, H.A. Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ. Sci. 2014, 7, 288–296. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, H.; Sodano, H.A. Vertically Aligned Arrays of BaTiO3 Nanowires. ACS Appl. Mater. Inter. 2013, 5, 11894–11899. [Google Scholar] [CrossRef] [PubMed]
- Baji, A.; Mai, Y.-W.; Li, Q.; Liu, Y. Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale 2011, 3, 3068–3071. [Google Scholar] [CrossRef]
- Noyori, M.; Neo, Y.; Mimura, H. Single-crystalline poly(vinylidene fluoride–trifluoroethylene) nanofiber webs fabricated by electrospinning. Jpn. J. Appl. Phys. 2015, 54, 021601. [Google Scholar] [CrossRef]
- Xin, Y.; Zhu, J.; Sun, H.; Xu, Y.; Liu, T.; Qian, C. A brief review on piezoelectric PVDF nanofibers prepared by electrospinning. Ferroelectrics 2018, 526, 140–151. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Chow, M.-J.; Chen, Q.N.; Li, J. Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy. Phys. Rev. Lett. 2012, 108, 078103. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Chow, M.-J.; Chen, N.Q.; Ma, F.; Zhang, Y.; Li, J. Glucose suppresses biological ferroelectricity in aortic elastin. Phys. Rev. Lett. 2013, 110, 168101. [Google Scholar] [CrossRef]
- Coste, B.; Xiao, B.; Santos, J.S.; Syeda, R.; Grandl, J.; Spencer, K.S.; Kim, S.E.; Schmidt, M.; Mathur, J.; Dubin, A.E. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 2012, 483, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cai, H.-L.; Zelisko, M.; Wang, Y.; Sun, J.; Yan, F.; Ma, F.; Wang, P.; Chen, Q.N.; Zheng, H. Ferroelectric switching of elastin. Proc. Natl. Acad. Sci. USA 2014, 111, E2780–E2786. [Google Scholar] [CrossRef]
- Balizer, E.; Fedderly, J.; Haught, D.; Dickens, B.; Dereggi, A. FTIR and X-ray study of polymorphs of nylon 11 and relation to ferroelectricity. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 365–369. [Google Scholar] [CrossRef]
- Itoh, T.; Tanaka, T.; Hashimoto, M.; Takashi Konishi, T.K. Ferroelectric Hysteresis Behavior and Structural Property of Even-Numbered Nylon Film. Jpn. J. Appl. Phys. 1995, 34, 6164. [Google Scholar] [CrossRef]
- Capsal, J.-F.; Dantras, E.; Dandurand, J.; Lacabanne, C. Dielectric relaxations and ferroelectric behaviour of even–odd polyamide PA 6,9. Polymer 2010, 51, 4606–4610. [Google Scholar] [CrossRef]
- Murata, Y.; Tsunashima, K.; Umemura, J.; Koizumi, N. Ferroelectric properties of polyamides consisting of hepta- and nonamethylenediamines. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 96–102. [Google Scholar] [CrossRef]
- Wu, J.; Fu, Y.; Hu, G.-H.; Wang, S.; Xiong, C. Effect of Stretching on Crystalline Structure, Ferroelectric and Piezoelectric Properties of Solution-Cast Nylon-11 Films. Polymers 2021, 13, 2037. [Google Scholar] [CrossRef]
- Eom, K.; Na, S.; Kim, J.-K.; Ko, H.; Jin, J.; Kang, S.J. Engineering crystal phase of Nylon-11 films for ferroelectric device and piezoelectric sensor. Nano Energy 2021, 88, 106244. [Google Scholar] [CrossRef]
- Prasad, G.; Graham, S.A.; Yu, J.S.; Kim, H.; Lee, D.-W. Investigated a PLL surface-modified Nylon 11 electrospun as a highly tribo-positive frictional layer to enhance output performance of triboelectric nanogenerators and self-powered wearable sensors. Nano Energy 2023, 108, 108178. [Google Scholar] [CrossRef]
- Tu, N.D.K.; Park, J.; Na, S.; Kim, K.M.; Kwon, T.-H.; Ko, H.; Kang, S.J. Co-solvent induced piezoelectric γ-phase nylon-11 separator for sodium metal battery. Nano Energy 2020, 70, 104501. [Google Scholar] [CrossRef]
- Kim, D.K.; Hwang, M.; Lagerwall, J.P.F. Liquid crystal functionalization of electrospun polymer fibers. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 855–867. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Miao, X.; Xie, P.; Sun, N.; Xu, Z.; Zhong, T.; Zhang, L.; Shen, Y. Advancements and Applications of Liquid Crystal/Polymer Composite Films. ACS Mater. Lett. 2023, 5, 2760–2775. [Google Scholar] [CrossRef]
- Bertocchi, M.J.; Ratchford, D.C.; Casalini, R.; Wynne, J.H.; Lundin, J.G. Electrospun polymer fibers containing a liquid crystal core: Insights into semiflexible confinement. J. Phys. Chem. C 2018, 122, 16964–16973. [Google Scholar] [CrossRef]
- Nguyen, J.; Stwodah, R.M.; Vasey, C.L.; Rabatin, B.E.; Atherton, B.; D’Angelo, P.A.; Swana, K.W.; Tang, C. Thermochromic fibers via electrospinning. Polymers 2020, 12, 842. [Google Scholar] [CrossRef] [PubMed]
- Lagerwall, J.P.; McCann, J.T.; Formo, E.; Scalia, G.; Xia, Y. Coaxial electrospinning of microfibres with liquid crystal in the core. Chem. Commun. 2008, 42, 5420–5422. [Google Scholar] [CrossRef]
- Reyes, C.G.; Sharma, A.; Lagerwall, J.P. Non-electronic gas sensors from electrospun mats of liquid crystal core fibres for detecting volatile organic compounds at room temperature. Liq. Cryst. 2016, 43, 1986–2001. [Google Scholar] [CrossRef]
- Williams, M.W.; Wimberly, J.A.; Stwodah, R.M.; Nguyen, J.; D’Angelo, P.A.; Tang, C. Temperature-Responsive Structurally Colored Fibers via Blend Electrospinning. ACS Appl. Polym. Mater. 2023, 5, 3065–3078. [Google Scholar] [CrossRef]
- Sharma, A.; Lagerwall, J.P. Electrospun composite liquid crystal elastomer fibers. Materials 2018, 11, 393. [Google Scholar] [CrossRef]
- Kularatne, R.S.; Kim, H.; Boothby, J.M.; Ware, T.H. Liquid crystal elastomer actuators: Synthesis, alignment, and applications. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 395–411. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, H.; Gao, Z.; Xie, H.; Guo, R.; Wang, F.; Zhou, X.; Cao, J.; Zhang, D. Electrospinning Synthesis of Na0.5Bi0.5TiO3 Nanofibers for Dielectric Capacitors in Energy Storage Application. Nanomaterials 2022, 12, 906. [Google Scholar] [CrossRef]
- Yuh, J.; Nino, J.C.; Sigmund, W.M. Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater. Lett. 2005, 59, 3645–3647. [Google Scholar] [CrossRef]
- Sá, P.; Barbosa, J.; Bdikin, I.; Almeida, B.; Rolo, A.G.; Gomes, E.d.M.; Belsley, M.; Kholkin, A.L.; Isakov, D. Ferroelectric characterization of aligned barium titanate nanofibres. J. Phys. D Appl. Phys. 2013, 46, 105304. [Google Scholar] [CrossRef]
- Ganeshkumar, R.; Sopiha, K.V.; Wu, P.; Cheah, C.W.; Zhao, R. Ferroelectric KNbO3 nanofibers: Synthesis, characterization and their application as a humidity nanosensor. Nanotechnology 2016, 27, 395607. [Google Scholar] [CrossRef] [PubMed]
- Jalalian, A.; Grishin, A.M. Biocompatible ferroelectric (Na,K)NbO3 nanofibers. Appl. Phys. Lett. 2012, 100, 012904. [Google Scholar] [CrossRef]
- Chen, X.; Xu, S.; Yao, N.; Xu, W.; Shi, Y. Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 2009, 94, 253113. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, Z.; Cheng, Z.; Kimura, H. Ferroelectric nanofibers and their application in energy harvesting. In Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications; Kimura, H., Cheng, Z., Jia, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 181–194. [Google Scholar]
- Yan, J.; Jeong, Y.G. High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl. Mater. Inter. 2016, 8, 15700–15709. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, H.; Liu, G.; Liu, Z.; Ren, X. Ferroelectric, piezoelectric properties and magnetoelectric coupling behavior in aurivillius Bi5Ti3FeO15 multiferroic nanofibers by electrospinning. J. Alloy Compd. 2016, 675, 441–447. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.; Liu, W.; Zhong, Y.; An, R. Synthesis of Co-doped barium strontium titanate nanofibers by sol–gel/electrospinning process. Mater. Lett. 2012, 75, 207–210. [Google Scholar] [CrossRef]
- Wang, Y.; Santiago-Avilés, J.J. A Review on Synthesis and Characterization of Lead Zirconate Titanate Nanofibers through Electrospinning. Integr. Ferroelectr. 2011, 126, 60–76. [Google Scholar] [CrossRef]
- Yousefi, F.; Esfahani, H. Role of Nb5+-Nd3+ co-dopant in morphotropic boundary of electrospun PZT nanoneedles: Study on dielectric and piezoelectric sensitivity. J. Alloy Compd. 2023, 966, 171531. [Google Scholar] [CrossRef]
- Gu, L.; Cui, N.; Cheng, L.; Xu, Q.; Bai, S.; Yuan, M.; Wu, W.; Liu, J.; Zhao, Y.; Ma, F.; et al. Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode. Nano Lett. 2013, 13, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Bai, S.; Yuan, M.; Qin, Y.; Wang, Z.L.; Jing, T. Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-Powered Devices. ACS Nano 2012, 6, 6231–6235. [Google Scholar] [CrossRef]
- Xia, S.; Wei, C.; Zhai, Y.; Ding, B.; Yu, J.; Yan, J. Ultrasonic cavitation enhanced photocatalytic CO2 reduction by superior flexible black BaTiO3 nanofibers. Chem. Eng. J. 2023, 475, 146516. [Google Scholar] [CrossRef]
- Maensiri, S.; Nuansing, W.; Klinkaewnarong, J.; Laokul, P.; Khemprasit, J. Nanofibers of barium strontium titanate (BST) by sol–gel processing and electrospinning. J. Colloid Interface Sci. 2006, 297, 578–583. [Google Scholar] [CrossRef]
- Pan, Z.B.; Yao, L.M.; Zhai, J.W.; Liu, S.H.; Yang, K.; Wang, H.T.; Liu, J.H. Fast discharge and high energy density of nanocomposite capacitors using Ba0.6Sr0.4TiO3 nanofibers. Ceram. Int. 2016, 42, 14667–14674. [Google Scholar] [CrossRef]
- Maldonado-Orozco, M.C.; Ochoa-Lara, M.T.; Sosa-Márquez, J.E.; Olive-Méndez, S.F.; Espinosa-Magaña, F. Synthesis and characterization of electrospun LiNbO3 nanofibers. Ceram. Int. 2015, 41, 14886–14889. [Google Scholar] [CrossRef]
- Maldonado-Orozco, M.C.; Ochoa-Lara, M.T.; Sosa-Márquez, J.E.; Olive-Méndez, S.F.; Pizá-Ruiz, P.; Quintanar-Sierra, J.J.C.; Espinosa-Magaña, F. Characterization of Mn-doped electrospun LiNbO3 nanofibers by Raman spectroscopy. Mater. Charact. 2017, 127, 209–213. [Google Scholar] [CrossRef]
- Zhou, B.; Li, C.; Zhou, Y.; Liu, Z.; Gao, X.; Wang, X.; Jiang, L.; Tian, M.; Zhou, F.-L.; Jerrams, S.; et al. A flexible dual-mode pressure sensor with ultra-high sensitivity based on BTO@MWCNTs core-shell nanofibers. Compos. Sci. Technol. 2022, 224, 109478. [Google Scholar] [CrossRef]
- Ichangi, A.; Lê, K.; Queraltó, A.; Grosch, M.; Weißing, R.; Ünlü, F.; Chijioke, A.K.; Verma, A.; Fischer, T.; Surmenev, R.; et al. Electrospun BiFeO3 Nanofibers for Vibrational Energy Harvesting Application. Adv. Eng. Mater. 2022, 24, 2101394. [Google Scholar] [CrossRef]
- Fei, L.; Hu, Y.; Li, X.; Song, R.; Sun, L.; Huang, H.; Gu, H.; Chan, H.L.W.; Wang, Y. Electrospun Bismuth Ferrite Nanofibers for Potential Applications in Ferroelectric Photovoltaic Devices. ACS Appl. Mater. Inter. 2015, 7, 3665–3670. [Google Scholar] [CrossRef]
- Fourmont, P.; Nechache, R.; Cloutier, S.G. Reusable BiFeO3 Nanofiber-Based Membranes for Photo-activated Organic Pollutant Removal with Negligible Colloidal Release. ACS Appl. Nano Mater. 2021, 4, 12261–12269. [Google Scholar] [CrossRef]
- Prashanthi, K.; Shaibani, P.M.; Sohrabi, A.; Natarajan, T.S.; Thundat, T. Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2012, 6, 244–246. [Google Scholar] [CrossRef]
- Sá, P.; Bdikin, I.; Almeida, B.; Rolo, A.G.; Isakov, D. Production and PFM Characterization of Barium Titanate Nanofibers. Ferroelectrics 2012, 429, 48–55. [Google Scholar] [CrossRef]
- Wei, Y.; Song, Y.; Deng, X.; Han, B.; Zhang, X.; Shen, Y.; Lin, Y. Dielectric and ferroelectric properties of BaTiO3 nanofibers prepared via electrospinning. J. Mater. Sci. Technol. 2014, 30, 743–747. [Google Scholar] [CrossRef]
- Yan, J.; Han, Y.; Xia, S.; Wang, X.; Zhang, Y.; Yu, J.; Ding, B. Polymer template synthesis of flexible BaTiO3 crystal nanofibers. Adv. Funct. Mater. 2019, 29, 1907919. [Google Scholar] [CrossRef]
- Tang, M.; Shu, W.; Yang, F.; Zhang, J.; Dong, G.; Hou, J. The fabrication of La-substituted bismuth titanate nanofibers by electrospinning. Nanotechnology 2009, 20, 385602. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.; Kang, J.; Koh, S.W.; Kang, Y.C. Synthesis and characterization of lead zirconate titanate nanofibers obtained by electrospinning. B. Kor. Chem. Soc. 2015, 36, 1594–1598. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef]
- Leung, C.M.; Li, J.; Viehland, D.; Zhuang, X. A review on applications of magnetoelectric composites: From heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D Appl. Phys. 2018, 51, 263002. [Google Scholar] [CrossRef]
- Hu, J.M.; Chen, L.Q.; Nan, C.W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 2016, 28, 15–39. [Google Scholar] [CrossRef]
- Hu, J.-M.; Nan, C.-W.; Chen, L.-Q. Perspective: Voltage control of magnetization in multiferroic heterostructures. Natl. Sci. Rev. 2019, 6, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Gao, Y.; Wang, X.; Nan, T.; Liu, M.; Lou, J.; Yang, G.; Zhou, Z.; Yang, X.; Wu, J. Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans. Magn. 2016, 52, 4002208. [Google Scholar] [CrossRef]
- Manipatruni, S.; Nikonov, D.E.; Young, I.A. Beyond CMOS computing with spin and polarization. Nat. Phys. 2018, 14, 338–343. [Google Scholar] [CrossRef]
- Bichurin, M.; Petrov, R.; Sokolov, O.; Leontiev, V.; Kuts, V.; Kiselev, D.; Wang, Y. Magnetoelectric Magnetic Field Sensors: A Review. Sensors 2021, 21, 6232. [Google Scholar] [CrossRef]
- Zuo, S.; Schmalz, J.; Özden, M.Ö.; Gerken, M.; Su, J.; Niekiel, F.; Lofink, F.; Nazarpour, K.; Heidari, H. Ultrasensitive Magnetoelectric Sensing System for Pico-Tesla MagnetoMyoGraphy. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Lazenka, V.; Schwinkendorf, P.; Bern, F.; Ziese, M.; Modarresi, H.; Volodin, A.; Van Bael, M.J.; Temst, K.; Vantomme, A. Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: Strain engineering and magnetoelectric coupling. J. Phys. D Appl. Phys. 2014, 47, 135303. [Google Scholar] [CrossRef]
- Pradhan, D.K.; Kumari, S.; Rack, P.D. Magnetoelectric composites: Applications, coupling mechanisms, and future directions. Nanomaterials 2020, 10, 2072. [Google Scholar] [CrossRef]
- Andrew, J.S.; Starr, J.D.; Budi, M.A. Prospects for nanostructured multiferroic composite materials. Scr. Mater. 2014, 74, 38–43. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.; Xie, S.; Yang, J.; Li, J. The magnetoelectric effects in multiferroic composite nanofibers. Appl. Phys. Lett. 2009, 94, 102907. [Google Scholar] [CrossRef]
- Liu, Y.; Sreenivasulu, G.; Zhou, P.; Fu, J.; Filippov, D.; Zhang, W.; Zhou, T.; Zhang, T.; Shah, P.; Page, M.R.; et al. Converse magneto-electric effects in a core–shell multiferroic nanofiber by electric field tuning of ferromagnetic resonance. Sci. Rep. 2020, 10, 20170. [Google Scholar] [CrossRef]
- Bauer, M.J.; Wen, X.; Tiwari, P.; Arnold, D.P.; Andrew, J.S. Magnetic field sensors using arrays of electrospun magnetoelectric Janus nanowires. Microsyst. Nanoeng. 2018, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Ma, F.; Liu, Y.; Li, J. Multiferroic CoFe2O4–Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 2011, 3, 3152–3158. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Popov, M.; Zhang, R.; Sharma, K.; Janes, C.; Mukundan, A.; Srinivasan, G. Magnetic field assisted self-assembly of ferrite-ferroelectric core-shell nanofibers and studies on magneto-electric interactions. Appl. Phys. Lett. 2014, 104, 052910. [Google Scholar] [CrossRef]
- Yadav, S.K.; Hemalatha, J. Electrospinning and characterization of magnetoelectric NdFeO3–PbZr0.52Ti0.48O3 core–shell nanofibers. Ceram. Int. 2022, 48, 18415–18424. [Google Scholar] [CrossRef]
- Zhu, Q.; Xie, Y.; Zhang, J.; Liu, Y.; Zhan, Q.; Miao, H.; Xie, S. Multiferroic CoFe2O4–BiFeO3 core–shell nanofibers and their nanoscale magnetoelectric coupling. J. Mater. Res. 2014, 29, 657–664. [Google Scholar] [CrossRef]
- Li, Z.; Dai, J.; Huang, D.; Wen, X. Tuning the ferromagnetic and ferroelectric properties of BiFeO3 multiferroic nanofibers by Co/Ni spinel ferrites. J. Alloy Compd. 2022, 907, 164386. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Zhang, J.; Zhang, R.; Popov, M.; Petrov, V.; Srinivasan, G. Multiferroic Core-Shell Nanofibers, Assembly in a Magnetic Field, and Studies on Magneto-Electric Interactions. Materials 2017, 11, 18. [Google Scholar] [CrossRef]
- Molavi, A.M.; Alizadeh, P. Electrospinning of multiferroic CoFe2O4@Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nano-structured fibers via two different routes. Mater. Charact. 2021, 172, 110880. [Google Scholar] [CrossRef]
- Yadav, S.K.; Hemalatha, J. Direct magnetoelectric and magnetodielectric studies of electrospun Ba2Ni2Fe12O22–Pb(Zr0.52Ti0.48)O3 core–shell nanofibers. J. Magn. Magn. Mater. 2022, 564, 170174. [Google Scholar] [CrossRef]
- Hadouch, Y.; Mezzane, D.; Amjoud, M.b.; Laguta, V.; Hoummada, K.; Dolocan, V.O.; Jouiad, M.; Lahcini, M.; Uršič, H.; Fišinger, V.; et al. Multiferroic CoFe2O4–Ba0.95Ca0.05Ti0.89Sn0.11O3 Core–Shell Nanofibers for Magnetic Field Sensor Applications. ACS Appl. Nano Mater. 2023, 6, 10236–10245. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.; Zhang, W.; Hang, C.; Fei, J.; Wang, H. Fabrication of multiferroic Ba0.7Sr0.3TiO3–Ni0.8Zn0.2Fe2O4 composite nanofibers by electrospinning. Mater. Lett. 2013, 91, 55–58. [Google Scholar] [CrossRef]
- Fu, B.; Lu, R.; Gao, K.; Yang, Y.; Wang, Y. Magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 composite nanofibers via electrospinning. Europhys. Lett. 2015, 111, 17007. [Google Scholar] [CrossRef]
- Xie, S.; Li, J.; Qiao, Y.; Liu, Y.; Lan, L.; Zhou, Y.; Tan, S. Multiferroic CoFe2O4–Pb(Zr0.52Ti0.48)O3 nanofibers by electrospinning. Appl. Phys. Lett. 2008, 92, 062901. [Google Scholar] [CrossRef]
- Zhu, Q.; Pan, K.; Xie, S.; Liu, Y.; Li, J. Nanomechanics of multiferroic composite nanofibers via local excitation piezoresponse force microscopy. J. Mech. Phys. Solids 2019, 126, 76–86. [Google Scholar] [CrossRef]
- Xie, S.; Li, J.; Liu, Y.; Lan, L.; Jin, G.; Zhou, Y. Electrospinning and multiferroic properties of NiFe2O4–Pb(Zr0.52Ti0.48)O3 composite nanofibers. J. Appl. Phys. 2008, 104, 024115. [Google Scholar] [CrossRef]
- Hadouch, Y.; Abdallah, N.; Mezzane, D.; Amjoud, M.b.; Dolocan, V.; Hoummada, K.; Novak, N.; Razumnaya, A.; Rozic, B.; Fisinger, V. Multiferroic properties of electrospun CoFe2O4–(Ba0.95Ca0.05)(Ti0.89Sn0.11)O3 nanocomposites for magnetoelectric and magnetic field sensing applications. J. Mater. Sci. Mater. Electron. 2024, 35, 1794. [Google Scholar] [CrossRef]
- An, F.; Zhong, G.; Zhu, Q.; Huang, Y.; Yang, Y.; Xie, S. Synthesis and mechanical properties characterization of multiferroic BiFeO3-CoFe2O4 composite nanofibers. Ceram. Int. 2018, 44, 11617–11621. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, D.D.; Guo, P.; Leckie, J.O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano lett. 2007, 7, 1081–1085. [Google Scholar] [CrossRef]
- Starr, J.D.; Budi, M.A.; Andrew, J.S. Processing-Property Relationships in Electrospun Janus-Type Biphasic Ceramic Nanofibers. J. Am. Ceram. Soc. 2015, 98, 12–19. [Google Scholar] [CrossRef]
- Dolbashian, C.; Chavez, B.; Bauer, M.; Budi, M.; Andrew, J.S.; Crawford, T.M. Magnetic properties of aligned multiferroic Janus nanofiber agglomerates measured with the scattered magneto-optical Kerr effect. J. Phys. D Appl. Phys. 2020, 53, 195002. [Google Scholar] [CrossRef]
- Arash, S.; Kharal, G.; Chavez, B.L.; Ferson, N.D.; Mills, S.C.; Andrew, J.S.; Crawford, T.M.; Wu, Y. Multiferroicity and Semi-Cylindrical Alignment in Janus Nanofiber Aggregates. Adv. Funct. Mater. 2024, 35, 2412690. [Google Scholar] [CrossRef]
- Chavez, B.L.; Sosnowski, K.C.; Bauer, M.J.; Budi, M.A.; Andrew, J.S.; Crawford, T.M. Toward nanoscale multiferroic devices: Magnetic field-directed self-assembly and chaining in Janus nanofibers. AIP Adv. 2018, 8, 056808. [Google Scholar] [CrossRef]
- Isakov, D.V.; Gomes, E.d.M.; Almeida, B.G.; Bdikin, I.K.; Martins, A.M.; Kholkin, A.L. Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers. J. Appl. Phys. 2010, 108, 042011. [Google Scholar] [CrossRef]
- Isakov, D.; Gomes, E.d.M.; Bdikin, I.; Almeida, B.; Belsley, M.; Costa, M.; Rodrigues, V.; Heredia, A. Production of Polar β-Glycine Nanofibers with Enhanced Nonlinear Optical and Piezoelectric Properties. Cryst. Growth. Des. 2011, 11, 4288–4291. [Google Scholar] [CrossRef]
- Isakov, D.; Martins, A.M.; Gomes, E.d.M.; Bdikin, I.; Guimarães, A.; Dekola, T.; Almeida, B.; Neves, N.M.; Reis, R.L.; Macedo, F. Synthesis of polymer-based triglycine sulfate nanofibres by electrospinning. J. Phys. D Appl. Phys. 2009, 42, 205403. [Google Scholar] [CrossRef]
- Baptista, R.M.F.; Isakov, D.; Raposo, M.M.M.; Belsley, M.; Bdikin, I.; Kholkin, A.L.; Costa, S.P.G.; de Matos Gomes, E. Ferroelectric nanofibers with an embedded optically nonlinear benzothiazole derivative. J. Nanopart. Res. 2014, 16, 2502. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Baptista, R.M.F.; Moreira, G.; Silva, B.; Oliveira, J.; Almeida, B.; Castro, C.; Rodrigues, P.V.; Machado, A.; Belsley, M.; de Matos Gomes, E. Lead-Free MDABCO-NH4I3 Perovskite Crystals Embedded in Electrospun Nanofibers. Materials 2022, 15, 8397. [Google Scholar] [CrossRef]
- Chemla, D.S. Nonlinear Optical Properties of Organic Molecules and Crystals; Academic Press: New York, NY, USA, 1987. [Google Scholar]
- Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R. High nonlinear optical anisotropy of urea nanofibers. EPL Europhys. Lett. 2010, 91, 28007. [Google Scholar] [CrossRef]
- Kongkhlang, T.; Tashiro, K.; Kotaki, M.; Chirachanchai, S. Electrospinning as a New Technique To Control the Crystal Morphology and Molecular Orientation of Polyoxymethylene Nanofibers. J. Am. Chem. Soc. 2008, 130, 15460–15466. [Google Scholar] [CrossRef]
- Isakov, D.; Gomes, E.D.; Belsley, M.S.; Almeida, B.; Cerca, N. Strong enhancement of second harmonic generation in 2-methyl-4-nitroaniline nanofibers. Nanoscale 2012, 4, 4978–4982. [Google Scholar] [CrossRef]
- Woodford, J.; Pauley, M.; Wang, C. Solvent dependence of the first molecular hyperpolarizability of p-nitroaniline revisited. J. Phys. Chem. A 1997, 101, 1989–1992. [Google Scholar] [CrossRef]
- Karna, S.P.; Prasad, P.N.; Dupuis, M. Nonlinear optical properties of p-nitroaniline: An ab initio time-dependent coupled perturbed Hartree–Fock study. J. Chem. Phys. 1991, 94, 1171–1181. [Google Scholar] [CrossRef]
- Champagne, B. Vibrational polarizability and hyperpolarizability of p-nitroaniline. Chem. Phys. Lett. 1996, 261, 57–65. [Google Scholar] [CrossRef]
- Trueblood, K.N.; Goldish, E.; Donohue, J. A three-dimensional refinement of the crystal structure of 4-nitroaniline. Acta Crystallogr. 1961, 14, 1009–1017. [Google Scholar] [CrossRef]
- Isakov, D.V.; Belsley, M.S.; de Matos Gomes, E.; Goncalves, H.; Schellenberg, P.; Almeida, B.G. Intense optical second harmonic generation from centrosymmetric nanocrystalline para-nitroaniline. Appl. Phys. Lett. 2014, 104, 181903. [Google Scholar] [CrossRef]
- Gonçalves, H.; Saavedra, I.; Ferreira, R.A.; Lopes, P.; de Matos Gomes, E.; Belsley, M. Efficient second harmonic generation by para-nitroaniline embedded in electrospun polymeric nanofibres. J. Phys. D Appl. Phys. 2018, 51, 105106. [Google Scholar] [CrossRef]
- Kolev, T.; Koleva, B.B.; Spiteller, M.; Mayer-Figge, H.; Sheldrick, W.S. 2-Amino-4-nitroaniline, a Known Compound with Unexpected Properties. J. Phys. Chem. A 2007, 111, 10084–10089. [Google Scholar] [CrossRef]
- Baptista, R.M.F.; Bernardo, C.R.; Belsley, M.S.; de Matos Gomes, E. Electrospun fibers with highly polarized second harmonic light from 2-amino-4-nitroaniline and 3-nitroaniline nanocrystals embedded in poly-L-lactic acid polymer. Opt. Mater. 2021, 116, 111089. [Google Scholar] [CrossRef]
- Liu, Y.; Pellerin, C. Stability and phase behavior of the poly(ethylene oxide)–urea complexes prepared by electrospinning. Polymer 2009, 50, 2601–2607. [Google Scholar] [CrossRef]
- Liu, Y.; Antaya, H.; Pellerin, C. Characterization of the stable and metastable poly(ethylene oxide)–urea complexes in electrospun fibers. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1903–1913. [Google Scholar] [CrossRef]
- Tadokoro, H.; Yoshihara, T.; Chatani, Y.; Murahashi, S. A preliminary report of structural studies on polyethylene oxide-urea complex. J. Polym. Sci. Part B Polym. Lett. 1964, 2, 363–368. [Google Scholar] [CrossRef]
- Liu, Y.; Pellerin, C. Highly Oriented Electrospun Fibers of Self-Assembled Inclusion Complexes of Poly(ethylene oxide) and Urea. Macromolecules 2006, 39, 8886–8888. [Google Scholar] [CrossRef]
- Malara, A. Environmental concerns on the use of the electrospinning technique for the production of polymeric micro/nanofibers. Sci. Rep. 2024, 14, 8293. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, M. Global markets and technologies for nanofibers. PR Newswire 2016, 1, 1–10. [Google Scholar]
- Al-Abduljabbar, A.; Farooq, I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers 2023, 15, 65. [Google Scholar] [CrossRef]
- Sridhar, R.; Sundarrajan, S.; Venugopal, J.R.; Ravichandran, R.; Ramakrishna, S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. J. Biomater. Sci. Polym. Ed. 2013, 24, 365–385. [Google Scholar] [CrossRef]
- Houis, S.; Engelhardt, E.; Wurm, F.; Gries, T. Application of polyvinylidene fluoride (PVDF) as a biomaterial in medical textiles. In Medical and Healthcare Textiles; Elsevier: Amsterdam, The Netherlands, 2010; pp. 342–352. [Google Scholar]
- Da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. J. Chem. Eng. 2018, 340, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Alfareed, T.M.; Slimani, Y.; Almessiere, M.A.; Nawaz, M.; Khan, F.A.; Baykal, A.; Al-Suhaimi, E.A. Biocompatibility and colorectal anti-cancer activity study of nanosized BaTiO3 coated spinel ferrites. Sci. Rep. 2022, 12, 14127. [Google Scholar] [CrossRef]
- Srinivasan, S.Y.; Paknikar, K.M.; Bodas, D.; Gajbhiye, V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 2018, 13, 1221–1238. [Google Scholar] [CrossRef]
- Lickmichand, M.; Shaji, C.S.; Valarmathi, N.; Benjamin, A.S.; Kumar, R.A.; Nayak, S.; Saraswathy, R.; Sumathi, S.; Raj, N.A.N. In vitro biocompatibility and hyperthermia studies on synthesized cobalt ferrite nanoparticles encapsulated with polyethylene glycol for biomedical applications. Mater. Today Proc. 2019, 15, 252–261. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Inovenso. Nanospinner 416 Industrial Electrospinning/Spraying Line. Available online: https://www.inovenso.com/portfolio-view/nanospinner416/ (accessed on 25 February 2025).
- Elmarco. Available online: http://www.elmarco.com (accessed on 25 February 2025).
- O’Connor, D.; Hou, D. Manage the environmental risks of perovskites. One Earth 2021, 4, 1534–1537. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Koh, S.; Reaney, I.; Sinclair, D.; Mustapha, K.; Acquaye, A.; Wang, D. Are lead-free piezoelectrics more environmentally friendly? MRS Commun. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Bell, A.J.; Deubzer, O. Lead-free piezoelectrics-The environmental and regulatory issues. MRS Bull 2018, 43, 581–587. [Google Scholar] [CrossRef]
- Gomes, M.d.A.; Magalhães, L.G.; Paschoal, A.R.; Macedo, Z.S.; Lima, Á.S.; Eguiluz, K.I.B.; Salazar-Banda, G.R. An Eco-Friendly Method of BaTiO3 Nanoparticle Synthesis Using Coconut Water. J. Nanomater. 2018, 2018, 5167182. [Google Scholar] [CrossRef]
Polymer | Inclusions | Heat Treatment | Purpose | Ref. |
---|---|---|---|---|
PVP Mw = 1,300,000 | KNbO3 | Heated to 550 °C at a 5 °C/min in air | For humidity sensors | [86] |
PVP | (Na,K)NbO3 | Dried at 100 °C in nitrogen atmosphere for 12 h; annealed at 800 °C for 1 h in air | For biocompatible implants and tissue growth | [87] |
PVP | PbZr1–xTixO3 (PZT) (52/48) | Annealed at 650 °C in air | To measure single-fiber bending piezoelectric voltage | [88] |
PVP Mw = 13,000,000 | 0.96KNNS–0.04BNKZ, BZT–BCT, PZT (52/48) | Energy harvesting | [89] | |
PVP Mw = 1,300,000 | BaTiO3 nanofibers in PDMS | Calcined at 1000 °C for 6 h, then inserted in PDMS | Flexible nanogenerators | [90] |
PVP Mw = 1,300,000 | Aurivillius Bi5Ti3FeO15 | Dried in vacuum overnight at 90 °C; calcined at 300 °C for 2 h in oxygen burn PVP; annealed at 600 °C for 2 h in nitrogen; heating rate of 30 °C/h | Multiferroic nanofibers | [91] |
PVP Mw = 1,300,000 | Co doped Ba0.7Sr0.3Ti0.95Co0.05O3 | Dried at 130 °C for 4 h and heated at 400 °C for 2 h; annealed at target temperatures (700 °C and 600 °C) for 2 h under a heating rate of 2 °C/min | Multiferroic nanofibers | [92] |
PVP Mw = 1,300,000 | Na0.5Bi0.5TiO3 (NBT) nanofibers in PVDF | Dried at 60 °C for 48 h and then kept at 325 °C and 700 °C for 1 h; afterwards, NBT fibers inserted in PVDF | NBT–PVDF composites in capacitors for energy storage applications | [83] |
xylene | Pb(Zr0.52Ti0.48)O3 (PZT) | The as-spun fibers and mats were isochronally sintered in air for two hours at 400, 500, 600, 700, and 800 °C. | To study PZT electrospun nanofiber synthesis | [93] |
PVP | Co-doping of Nb5+–Nd3+ into PZT nanoneedles | Calcination at 800 °C for 2 h | For piezoelectric and high-dielectric-constant applications | [94] |
PVP Mw = 1,300,000 | vertically aligned ultralong Pb(Zr0.52Ti0.48)O3 (PZT) nanowire | Calcination at 650 °C for 3 h | Wearable energy-harvesting and self-powered devices, flexible fiber nanogenerators | [95,96] |
PVP Mw = 1,300,000 | BaTiO3 | Pyrolysis in nitrogen at 900 °C | Photocatalysis | [97] |
PVP Mw = 1,300,000 | Ba0.6Sr0.4TiO3 (BST) | Different heat treatment temperatures: calcined at 600–800 °C for 2 h in air | To study BST synthesis | [98] |
PVP Mw = 50,000 | Ba0.6Sr0.4TiO3 (BST) | Dried at 60 °C for 10 h; calcined at 900 °C in air, then included in PVDF to form BST–PVDF composites by drop casting | Nanocomposite capacitors | [99] |
PVP | LiNbO3 (LNO) | Annealing at 700 °C for 6 h | To study LNO fiber synthesis | [100] |
PVP | Mn-doped LiNbO3 | Annealing at 700 °C | To study Mn–LNO fiber synthesis | [101] |
PVP | BaTiO3-multiwalled carbon nanotube core–shell fibers | Put in vacuum oven at 70 °C for 1 h, and annealed at 800 °C in a nitrogen atmosphere for 2 h | Flexible piezoelectric pressure sensors | [102] |
PAN Mw = 150,000 | BiFeO3 | Calcined at 500 °C for 3 h; then dispersed in PVDF to form a composite | Flexible piezoelectric nanogenerators | [103] |
PVP Mw = 1,300,000 | BiFeO3 | Thermal annealing at temperatures from 400 to 600 °C for 2 h in ambient conditions | Photovoltaic devices | [104] |
PVP Mw = 1,300,000 | BiFeO3 | Calcined at 520 °C for 2 h in an ambient atmosphere | Photocatalysis | [105] |
Nylon-6 | BiFeO3 | Calcined at 600 °C for 2 h in air | Magnetoelectric α33 = 0.49 V cm–1 Oe−1 | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, R.M.F.; de Matos Gomes, E.; Belsley, M.; Almeida, B. Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals. Nanomaterials 2025, 15, 409. https://doi.org/10.3390/nano15050409
Baptista RMF, de Matos Gomes E, Belsley M, Almeida B. Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals. Nanomaterials. 2025; 15(5):409. https://doi.org/10.3390/nano15050409
Chicago/Turabian StyleBaptista, Rosa M. F., Etelvina de Matos Gomes, Michael Belsley, and Bernardo Almeida. 2025. "Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals" Nanomaterials 15, no. 5: 409. https://doi.org/10.3390/nano15050409
APA StyleBaptista, R. M. F., de Matos Gomes, E., Belsley, M., & Almeida, B. (2025). Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals. Nanomaterials, 15(5), 409. https://doi.org/10.3390/nano15050409