Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (978)

Search Parameters:
Keywords = multi-state products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1250 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 (registering DOI) - 3 Aug 2025
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 (registering DOI) - 2 Aug 2025
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

28 pages, 5699 KiB  
Article
Multi-Modal Excavator Activity Recognition Using Two-Stream CNN-LSTM with RGB and Point Cloud Inputs
by Hyuk Soo Cho, Kamran Latif, Abubakar Sharafat and Jongwon Seo
Appl. Sci. 2025, 15(15), 8505; https://doi.org/10.3390/app15158505 (registering DOI) - 31 Jul 2025
Viewed by 107
Abstract
Recently, deep learning algorithms have been increasingly applied in construction for activity recognition, particularly for excavators, to automate processes and enhance safety and productivity through continuous monitoring of earthmoving activities. These deep learning algorithms analyze construction videos to classify excavator activities for earthmoving [...] Read more.
Recently, deep learning algorithms have been increasingly applied in construction for activity recognition, particularly for excavators, to automate processes and enhance safety and productivity through continuous monitoring of earthmoving activities. These deep learning algorithms analyze construction videos to classify excavator activities for earthmoving purposes. However, previous studies have solely focused on single-source external videos, which limits the activity recognition capabilities of the deep learning algorithm. This paper introduces a novel multi-modal deep learning-based methodology for recognizing excavator activities, utilizing multi-stream input data. It processes point clouds and RGB images using the two-stream long short-term memory convolutional neural network (CNN-LSTM) method to extract spatiotemporal features, enabling the recognition of excavator activities. A comprehensive dataset comprising 495,000 video frames of synchronized RGB and point cloud data was collected across multiple construction sites under varying conditions. The dataset encompasses five key excavator activities: Approach, Digging, Dumping, Idle, and Leveling. To assess the effectiveness of the proposed method, the performance of the two-stream CNN-LSTM architecture is compared with that of single-stream CNN-LSTM models on the same RGB and point cloud datasets, separately. The results demonstrate that the proposed multi-stream approach achieved an accuracy of 94.67%, outperforming existing state-of-the-art single-stream models, which achieved 90.67% accuracy for the RGB-based model and 92.00% for the point cloud-based model. These findings underscore the potential of the proposed activity recognition method, making it highly effective for automatic real-time monitoring of excavator activities, thereby laying the groundwork for future integration into digital twin systems for proactive maintenance and intelligent equipment management. Full article
(This article belongs to the Special Issue AI-Based Machinery Health Monitoring)
Show Figures

Figure 1

22 pages, 764 KiB  
Article
An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa
by Chia-Nan Wang, Duy-Oanh Tran Thi, Nhat-Luong Nhieu and Ming-Hsien Hsueh
Mathematics 2025, 13(15), 2465; https://doi.org/10.3390/math13152465 - 31 Jul 2025
Viewed by 176
Abstract
Agricultural development is vital for East Africa’s economic growth, yet the region faces significant disparities and systemic barriers. A critical problem exists due to the lack of an integrated quantitative framework to systematically comparing agricultural capacities and facilitate optimal resource allocation, as existing [...] Read more.
Agricultural development is vital for East Africa’s economic growth, yet the region faces significant disparities and systemic barriers. A critical problem exists due to the lack of an integrated quantitative framework to systematically comparing agricultural capacities and facilitate optimal resource allocation, as existing studies often overlook combined internal and external factors. This study proposes a comprehensive multi-criteria decision-making (MCDM) model to assess, categorize, and strategically profile the agricultural development capacity of 18 East African countries. The method employed is an integrated Entropy-MAIRCA model, which objectively weighs six criteria (the food production index, arable land, production fluctuation, food export/import ratios, and the political stability index) and ranks countries by their distance from an ideal development state. The experiment applied this framework to 18 East African nations using official data. The results revealed significant differences, forming four distinct strategic groups: frontier, emerging, trade-dependent, and high risk. The food export index (C4) and production volatility (C3) were identified as the most influential criteria. This model’s contribution is providing a science-based, transparent decision support tool for designing sustainable agricultural policies, aiding investment planning, and promoting regional cooperation, while emphasizing the crucial role of institutional factors. Full article
Show Figures

Figure 1

26 pages, 504 KiB  
Article
Exploring the Role of Social Protection in UK Asylum-Seeker Wellbeing Using Human Scale Development Theory
by Michelle James and Rachel Forrester-Jones
Soc. Sci. 2025, 14(8), 474; https://doi.org/10.3390/socsci14080474 - 30 Jul 2025
Viewed by 292
Abstract
This article utilises Max-Neef’s Human Scale Development (HSD) framework (1991) to answer two research questions: what impact does government and community-based social protection (SP) have on UK asylum-seeker wellbeing; how are interactions with all forms of SP, both as giver and receiver, supporting [...] Read more.
This article utilises Max-Neef’s Human Scale Development (HSD) framework (1991) to answer two research questions: what impact does government and community-based social protection (SP) have on UK asylum-seeker wellbeing; how are interactions with all forms of SP, both as giver and receiver, supporting or harming the satisfaction of asylum-seekers’ fundamental human needs at this time? The research study utilised a mixed-methods, collaborative, case study design situated within a refugee and asylum-seeker (RAS) support charity in Southwest England. Methods included peer-led Qualitative Impact Protocol interviews, Photovoice, surveys, and staff interviews. Data were subjected to an inductive, bottom-up process on Causal Map software (version 2, Causal Map Ltd., 39 Apsley Rd., Bath BA1 3LP, UK) and the analysis used the HSD framework. We found eight over-arching themes. The four main needs-violators/destroyers of asylum-seeker wellbeing were dehumanisation, unfreedoms, enforced ignorance, and (re)traumatisation, and the four main needs-satisfiers were common humanity, autonomy and resistance, exerting agency through knowledge exchange, and healing. Five policy and practice-focused bridging satisfiers are recommended to help move individual and collective experience from a negative to a positive state in the research population. Policy and practice should be transparent and evidence-based, efficient and equitable, supportive of participation and productivity, trauma-informed, and multi-agency. Full article
(This article belongs to the Section International Migration)
Show Figures

Figure 1

16 pages, 5655 KiB  
Article
A Multi-Branch Deep Learning Framework with Frequency–Channel Attention for Liquid-State Recognition
by Minghao Wu, Jiajun Zhou, Shuaiyu Yang, Hao Wang, Xiaomin Wang, Haigang Gong and Ming Liu
Electronics 2025, 14(15), 3028; https://doi.org/10.3390/electronics14153028 - 29 Jul 2025
Viewed by 156
Abstract
In the industrial production of polytetrafluoroethylene (PTFE), accurately recognizing the liquid state within the coagulation vessel is critical to achieving better product quality and higher production efficiency. However, the complex and subtle changes in the coagulation process pose significant challenges for traditional sensing [...] Read more.
In the industrial production of polytetrafluoroethylene (PTFE), accurately recognizing the liquid state within the coagulation vessel is critical to achieving better product quality and higher production efficiency. However, the complex and subtle changes in the coagulation process pose significant challenges for traditional sensing methods, calling for more reliable visual approaches that can handle varying scales and dynamic state changes. This study proposes a multi-branch deep learning framework for classifying the liquid state of PTFE emulsions based on high-resolution images captured in real-world factory conditions. The framework incorporates multi-scale feature extraction through a three-branch network and introduces a frequency–channel attention module to enhance feature discrimination. To address optimization challenges across branches, contrastive learning is employed for deep supervision, encouraging consistent and informative feature learning. The experimental results show that the proposed method significantly improves classification accuracy, achieving a mean F1-score of 94.3% across key production states. This work demonstrates the potential of deep learning-based visual classification methods for improving automation and reliability in industrial production. Full article
Show Figures

Figure 1

26 pages, 2227 KiB  
Article
Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production
by Madison D. Horgan, Christopher L. Cummings, Jennifer Kuzma, Michael Dahlstrom, Ilaria Cimadori, Maude Cuchiara, Colin Larter, Nick Loschin and Khara D. Grieger
Sustainability 2025, 17(15), 6795; https://doi.org/10.3390/su17156795 - 25 Jul 2025
Viewed by 446
Abstract
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the [...] Read more.
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the sustainability of these technologies is not defined by technical performance alone; it hinges on how they are perceived by key stakeholders and how well they align with broader societal values. This study addresses the critical question of how expert stakeholders evaluate the sustainability of GE and nano-based food and agriculture (agrifood) products. Using a multi-method online platform, we engaged 42 experts across academia, government, industry, and NGOs in the United States to assess six real-world case studies—three using GE and three using nano—across ten different dimensions of sustainability. We show that nano-based products were consistently rated more favorably than their GE counterparts in terms of environmental, economic, and social sustainability, as well as across ethical and societal dimensions. Like prior studies, our results reveal that stakeholders see meaningful distinctions between nanotechnology and biotechnology, likely due to underlying value-based concerns about animal welfare, perceived naturalness, or corporate control of agrifood systems. The fruit coating and flu vaccine—both nano-enabled—received the most positive ratings, while GE mustard greens and salmon were the most polarizing. These results underscore the importance of incorporating stakeholder perspectives in technology assessment and innovation governance. These results also suggest that responsible innovation efforts in agrifood systems should prioritize communication, addressing meaningful societal needs, and the contextual understanding of societal values to build trust and legitimacy. Full article
(This article belongs to the Special Issue Food Science and Engineering for Sustainability)
Show Figures

Figure 1

19 pages, 1803 KiB  
Article
Sustainable Crop Farm Productivity: Weather Effects, Technology Adoption, and Farm Management
by Sun Ling Wang, Ryan Olver and Daniel Bonin
Sustainability 2025, 17(15), 6778; https://doi.org/10.3390/su17156778 - 25 Jul 2025
Viewed by 317
Abstract
The main purpose of this study is to understand the potential determinants of sustainable field crop farm productivity. This paper considers a multi-input, multi-output production technology to estimate the effects of aridity on farm-level productivity using a stochastic input distance function. By isolating [...] Read more.
The main purpose of this study is to understand the potential determinants of sustainable field crop farm productivity. This paper considers a multi-input, multi-output production technology to estimate the effects of aridity on farm-level productivity using a stochastic input distance function. By isolating the respective weather components of agricultural total factor productivity (TFP), we can better assess the impact on productivity of adopting various technologies and farm practices that might otherwise be masked by changing climate conditions or weather shocks. We make use of data from Phase 3 of the United States Department of Agriculture (USDA) Agricultural Resource Management Survey (ARMS) between 2006 and 2020. We supplement this estimation using field crop farm productivity determinants, including technology adoption and farm practice variables derived from the ARMS Phase 2 data. We identify several factors that affect farm productivity, including many practices that help farmers make more sustainable use of natural resources. The results show that adopting yield monitoring technology, fallowing in previous years, adding or improving tile drainage, and contour farming each improved farm productivity. In particular, during our study period, conservation tillage increased by over 300% across states on average. It is estimated to increase productivity level by approximately 3% for those adopting this practice. Critically, accounting for local weather effects increased the estimated productivity of nearly all farm practices and increased the statistical significance of several variables, indicating that other TFP studies that did not account for climate or weather effects may have underestimated the technical efficiency of farms that adopted these conservation practices. However, the results also show the impacts can be heterogeneous, with effects varying between farms located in the U.S. northern or southern regions. Full article
(This article belongs to the Special Issue Sustainable Agricultural and Rural Development)
Show Figures

Figure 1

20 pages, 5366 KiB  
Review
Recirculating Aquaculture Systems (RAS) for Cultivating Oncorhynchus mykiss and the Potential for IoT Integration: A Systematic Review and Bibliometric Analysis
by Dorila E. Grandez-Yoplac, Miguel Pachas-Caycho, Josseph Cristobal, Sandy Chapa-Gonza, Roberto Carlos Mori-Zabarburú and Grobert A. Guadalupe
Sustainability 2025, 17(15), 6729; https://doi.org/10.3390/su17156729 - 24 Jul 2025
Viewed by 401
Abstract
The objective of this research was to conduct a comprehensive review of rainbow trout (Oncorhynchus mykiss) culture in recirculating aquaculture systems (RAS), identify knowledge gaps, and propose strategies oriented towards intelligent and sustainable aquaculture. A systematic review and bibliometric analysis of [...] Read more.
The objective of this research was to conduct a comprehensive review of rainbow trout (Oncorhynchus mykiss) culture in recirculating aquaculture systems (RAS), identify knowledge gaps, and propose strategies oriented towards intelligent and sustainable aquaculture. A systematic review and bibliometric analysis of 387 articles published between 1941 and 2025 in the Scopus database was carried out. Since 2011, there has been a sustained growth in scientific production, with the United States, Denmark, Finland, and Germany standing out as the main contributors. The journals with the highest number of publications were Aquacultural Engineering, Aquaculture, and Aquaculture Research. The conceptual analysis revealed the following three thematic clusters: experimental studies on physiology and metabolism; research focused on nutrition, growth, and yield; and technological developments for water treatment in RAS. This evolution reflects a transition from basic approaches to applied technologies oriented towards sustainability. There was also evidence of a thematic transition toward molecular tools such as proteomics, transcriptomics, and real-time PCR. However, there is still limited integration of smart technologies such as the IoT. It is recommended to incorporate self-calibrating multi-parametric sensors, machine learning models, and autonomous systems for environmental regulation in real time. Full article
(This article belongs to the Special Issue Sustainability in Aquaculture)
Show Figures

Figure 1

19 pages, 1247 KiB  
Article
Niche Overlap in Forest Tree Species Precludes a Positive Diversity–Productivity Relationship
by Kliffi M. S. Blackstone, Gordon G. McNickle, Morgan V. Ritzi, Taylor M. Nelson, Brady S. Hardiman, Madeline S. Montague, Douglass F. Jacobs and John J. Couture
Plants 2025, 14(15), 2271; https://doi.org/10.3390/plants14152271 - 23 Jul 2025
Viewed by 234
Abstract
Niche complementarity is suggested to be a main driver of productivity overyielding in diverse environments due to enhanced resource use efficiency and reduced competition. Here, we combined multiple different approaches to demonstrate that niche overlap is the most likely cause to explain a [...] Read more.
Niche complementarity is suggested to be a main driver of productivity overyielding in diverse environments due to enhanced resource use efficiency and reduced competition. Here, we combined multiple different approaches to demonstrate that niche overlap is the most likely cause to explain a lack of overyielding of three tree species when grown in different species combinations. First, in an experimental planting we found no relationship between productivity and species diversity for leaf, wood, or root production (no slope was significantly different from zero), suggesting a lack of niche differences among species. Second, data extracted from the United States Department of Agriculture Forest Inventory and Analysis revealed that the species do not significantly co-occur in natural stands (p = 0.4065) as would be expected if coexistence was common across their entire range. Third, we compared trait differences among our species and found that they are not significantly different in multi-dimensional trait space (p = 0.1724). By combining multiple analytical approaches, we provide evidence of potential niche overlap that precludes coexistence and a positive diversity–productivity relationship between these three tree species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

29 pages, 17922 KiB  
Article
Wheat Soil-Borne Mosaic Virus Disease Detection: A Perspective of Agricultural Decision-Making via Spectral Clustering and Multi-Indicator Feedback
by Xue Hou, Chao Zhang, Yunsheng Song, Turki Alghamdi, Majed Aborokbah, Hui Zhang, Haoyue La and Yizhen Wang
Plants 2025, 14(15), 2260; https://doi.org/10.3390/plants14152260 - 22 Jul 2025
Viewed by 243
Abstract
The rapid advancement of artificial intelligence is transforming agriculture by enabling data-driven plant disease monitoring and decision support. Soil-borne mosaic wheat virus (SBWMV) is a soil-transmitted virus disease that poses a serious threat to wheat production across multiple ecological zones. Due to the [...] Read more.
The rapid advancement of artificial intelligence is transforming agriculture by enabling data-driven plant disease monitoring and decision support. Soil-borne mosaic wheat virus (SBWMV) is a soil-transmitted virus disease that poses a serious threat to wheat production across multiple ecological zones. Due to the regional variability in environmental conditions and symptom expressions, accurately evaluating the severity of wheat soil-borne mosaic (WSBM) infections remains a persistent challenge. To address this, the problem is formulated as large-scale group decision-making process (LSGDM), where each planting plot is treated as an independent virtual decision maker, providing its own severity assessments. This modeling approach reflects the spatial heterogeneity of the disease and enables a structured mechanism to reconcile divergent evaluations. First, for each site, field observation of infection symptoms are recorded and represented using intuitionistic fuzzy numbers (IFNs) to capture uncertainty in detection. Second, a Bayesian graph convolutional networks model (Bayesian-GCN) is used to construct a spatial trust propagation mechanism, inferring missing trust values and preserving regional dependencies. Third, an enhanced spectral clustering method is employed to group plots with similar symptoms and assessment behaviors. Fourth, a feedback mechanism is introduced to iteratively adjust plot-level evaluations based on a set of defined agricultural decision indicators sets using a multi-granulation rough set (ADISs-MGRS). Once consensus is reached, final rankings of candidate plots are generated from indicators, providing an interpretable and evidence-based foundation for targeted prevention strategies. By using the WSBM dataset collected in 2017–2018 from Walla Walla Valley, Oregon/Washington State border, the United States of America, and performing data augmentation for validation, along with comparative experiments and sensitivity analysis, this study demonstrates that the AI-driven LSGDM model integrating enhanced spectral clustering and ADISs-MGRS feedback mechanisms outperforms traditional models in terms of consensus efficiency and decision robustness. This provides valuable support for multi-party decision making in complex agricultural contexts. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

33 pages, 1578 KiB  
Article
Machine Learning-Based Prediction of Resilience in Green Agricultural Supply Chains: Influencing Factors Analysis and Model Construction
by Daqing Wu, Tianhao Li, Hangqi Cai and Shousong Cai
Systems 2025, 13(7), 615; https://doi.org/10.3390/systems13070615 - 21 Jul 2025
Viewed by 248
Abstract
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory [...] Read more.
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory and complex adaptive systems, this paper constructs a resilience framework covering the three stages of “steady-state maintenance–dynamic adjustment–continuous evolution” from both single and multiple perspectives. Combined with 768 units of multi-agent questionnaire data, it adopts Structural Equation Modeling (SEM) and fuzzy-set Qualitative Comparative Analysis (fsQCA) to analyze the influencing factors of resilience and reveal the nonlinear mechanisms of resilience formation. Secondly, by integrating configurational analysis with machine learning, it innovatively constructs a resilience level prediction model based on fsQCA-XGBoost. The research findings are as follows: (1) fsQCA identifies a total of four high-resilience pathways, verifying the core proposition of “multiple conjunctural causality” in complex adaptive system theory; (2) compared with single algorithms such as Random Forest, Decision Tree, AdaBoost, ExtraTrees, and XGBoost, the fsQCA-XGBoost prediction method proposed in this paper achieves an optimization of 66% and over 150% in recall rate and positive sample identification, respectively. It reduces false negative risk omission by 50% and improves the ability to capture high-risk samples by three times, which verifies the feasibility and applicability of the fsQCA-XGBoost prediction method in the field of resilience prediction for agricultural product green supply chains. This research provides a risk prevention and control paradigm with both theoretical explanatory power and practical operability for agricultural product green supply chains, and promotes collaborative realization of the “carbon reduction–supply stability–efficiency improvement” goals, transforming them from policy vision to operational reality. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
Show Figures

Figure 1

29 pages, 6449 KiB  
Article
New Approach for Detecting Variability in Industrial Assembly Line Balancing Based on Multi-Criteria Analysis
by Youness Hillali, Mourad Zegrari, Najlae Alfathi and Samir Chafik
Automation 2025, 6(3), 33; https://doi.org/10.3390/automation6030033 - 19 Jul 2025
Viewed by 303
Abstract
This paper focuses on the complex dynamics that concern assembly line balance in the context of mass customization within manufacturing. In fact, the increase in demand for customized products has heightened the complexities associated with achieving optimal efficiency, productivity, product quality, and customer [...] Read more.
This paper focuses on the complex dynamics that concern assembly line balance in the context of mass customization within manufacturing. In fact, the increase in demand for customized products has heightened the complexities associated with achieving optimal efficiency, productivity, product quality, and customer satisfaction. The research proposes a multi-criteria analysis of statistical methods to determine the fluctuation of parameters affecting the state of balance of an assembly line. A 3D matrix model is suggested to analyze the parameters managing the assembly line. This representation is executed using the MATLAB R2024b tool, and a methodology for finding the variability of parameters affecting balance through statistical approaches is proposed. We observed that changes in parameters such as task times, worker efficiency, or material flow led to significant changes in the line’s overall balance. As a result, static balancing becomes inadequate to deal with the complexities introduced by these highly variable parameters. The novelty of this paper consists of the innovative integration of multi-criteria statistical analysis and 3D matrix modeling to detect parameter variability and optimize assembly line balancing. Conventional static approaches are often unable to capture the process-dynamic aspect of modern manufacturing. This work presents a systematic methodology capable of identifying, quantifying, and moderating the variability of key operating parameters. This methodology, carried out using MATLAB-based simulations, is based on principal component analysis (PCA) and correlation analysis to detect critical factors influencing balancing efficiency. By structuring assembly line parameters in a 3D matrix representation, this research gives a holistic, data-based method for improving decision-making in balancing procedures. The research goes beyond theoretical modeling by applying the approach to a real automotive assembly line, validating its effectiveness and demonstrating its practical applicability in industrial conditions. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

28 pages, 8982 KiB  
Article
Decision-Level Multi-Sensor Fusion to Improve Limitations of Single-Camera-Based CNN Classification in Precision Farming: Application in Weed Detection
by Md. Nazmuzzaman Khan, Adibuzzaman Rahi, Mohammad Al Hasan and Sohel Anwar
Computation 2025, 13(7), 174; https://doi.org/10.3390/computation13070174 - 18 Jul 2025
Viewed by 285
Abstract
The United States leads in corn production and consumption in the world with an estimated USD 50 billion per year. There is a pressing need for the development of novel and efficient techniques aimed at enhancing the identification and eradication of weeds in [...] Read more.
The United States leads in corn production and consumption in the world with an estimated USD 50 billion per year. There is a pressing need for the development of novel and efficient techniques aimed at enhancing the identification and eradication of weeds in a manner that is both environmentally sustainable and economically advantageous. Weed classification for autonomous agricultural robots is a challenging task for a single-camera-based system due to noise, vibration, and occlusion. To address this issue, we present a multi-camera-based system with decision-level sensor fusion to improve the limitations of a single-camera-based system in this paper. This study involves the utilization of a convolutional neural network (CNN) that was pre-trained on the ImageNet dataset. The CNN subsequently underwent re-training using a limited weed dataset to facilitate the classification of three distinct weed species: Xanthium strumarium (Common Cocklebur), Amaranthus retroflexus (Redroot Pigweed), and Ambrosia trifida (Giant Ragweed). These weed species are frequently encountered within corn fields. The test results showed that the re-trained VGG16 with a transfer-learning-based classifier exhibited acceptable accuracy (99% training, 97% validation, 94% testing accuracy) and inference time for weed classification from the video feed was suitable for real-time implementation. But the accuracy of CNN-based classification from video feed from a single camera was found to deteriorate due to noise, vibration, and partial occlusion of weeds. Test results from a single-camera video feed show that weed classification accuracy is not always accurate for the spray system of an agricultural robot (AgBot). To improve the accuracy of the weed classification system and to overcome the shortcomings of single-sensor-based classification from CNN, an improved Dempster–Shafer (DS)-based decision-level multi-sensor fusion algorithm was developed and implemented. The proposed algorithm offers improvement on the CNN-based weed classification when the weed is partially occluded. This algorithm can also detect if a sensor is faulty within an array of sensors and improves the overall classification accuracy by penalizing the evidence from a faulty sensor. Overall, the proposed fusion algorithm showed robust results in challenging scenarios, overcoming the limitations of a single-sensor-based system. Full article
(This article belongs to the Special Issue Moving Object Detection Using Computational Methods and Modeling)
Show Figures

Figure 1

20 pages, 9135 KiB  
Article
Kolmogorov–Arnold Networks for Interpretable Crop Yield Prediction Across the U.S. Corn Belt
by Mustafa Serkan Isik, Ozan Ozturk and Mehmet Furkan Celik
Remote Sens. 2025, 17(14), 2500; https://doi.org/10.3390/rs17142500 - 18 Jul 2025
Viewed by 651
Abstract
Accurate crop yield prediction is essential for stabilizing food supply chains and reducing the uncertainties in financial risks related to agricultural production. Yet, it is even more essential to understand how crop yield models make predictions depending on their relationship to Earth Observation [...] Read more.
Accurate crop yield prediction is essential for stabilizing food supply chains and reducing the uncertainties in financial risks related to agricultural production. Yet, it is even more essential to understand how crop yield models make predictions depending on their relationship to Earth Observation (EO) indicators. This study presents a state-of-the-art explainable artificial intelligence (XAI) method to estimate corn yield prediction over the Corn Belt in the continental United States (CONUS). We utilize the recently introduced Kolmogorov–Arnold Network (KAN) architecture, which offers an interpretable alternative to the traditional Multi-Layer Perceptron (MLP) approach by utilizing learnable spline-based activation functions instead of fixed ones. By including a KAN in our crop yield prediction framework, we are able to achieve high prediction accuracy and identify the temporal drivers behind crop yield variability. We create a multi-source dataset that includes biophysical parameters along the crop phenology, as well as meteorological, topographic, and soil parameters to perform end-of-season and in-season predictions of county-level corn yields between 2016–2023. The performance of the KAN model is compared with the commonly used traditional machine learning (ML) models and its architecture-wise equivalent MLP. The KAN-based crop yield model outperforms the other models, achieving an R2 of 0.85, an RMSE of 0.84 t/ha, and an MAE of 0.62 t/ha (compared to MLP: R2 = 0.81, RMSE = 0.95 t/ha, and MAE = 0.71 t/ha). In addition to end-of-season predictions, the KAN model also proves effective for in-season yield forecasting. Notably, even three months prior to harvest, the KAN model demonstrates strong performance in in-season yield forecasting, achieving an R2 of 0.82, an MAE of 0.74 t/ha, and an RMSE of 0.98 t/ha. These results indicate that the model maintains a high level of explanatory power relative to its final performance. Overall, these findings highlight the potential of the KAN model as a reliable tool for early yield estimation, offering valuable insights for agricultural planning and decision-making. Full article
Show Figures

Figure 1

Back to TopTop