Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,069)

Search Parameters:
Keywords = multi-seasonal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2475 KiB  
Article
Optimal Scheduling of a Hydropower–Wind–Solar Multi-Objective System Based on an Improved Strength Pareto Algorithm
by Haodong Huang, Qin Shen, Wan Liu, Ying Peng, Shuli Zhu, Rungang Bao and Li Mo
Sustainability 2025, 17(15), 7140; https://doi.org/10.3390/su17157140 - 6 Aug 2025
Abstract
Under the current context of the large-scale integration of wind and solar power, the coupling of hydropower with wind and solar energy brings significant impacts on grid stability. To fully leverage the regulatory capacity of hydropower, this paper develops a multi-objective optimization scheduling [...] Read more.
Under the current context of the large-scale integration of wind and solar power, the coupling of hydropower with wind and solar energy brings significant impacts on grid stability. To fully leverage the regulatory capacity of hydropower, this paper develops a multi-objective optimization scheduling model for hydropower, wind, and solar that balances generation-side power generation benefit and grid-side peak-regulation requirements, with the latter quantified by the mean square error of the residual load. To efficiently solve this model, Latin hypercube initialization, hybrid distance framework, and adaptive mutation mechanism are introduced into the Strength Pareto Evolutionary Algorithm II (SPEAII), yielding an improved algorithm named LHS-Mutate Strength Pareto Evolutionary Algorithm II (LMSPEAII). Its efficiency is validated on benchmark test functions and a reservoir model. Typical extreme scenarios—months with strong wind and solar in the dry season and months with weak wind and solar in the flood season—are selected to derive scheduling strategies and to further verify the effectiveness of the proposed model and algorithm. Finally, K-medoids clustering is applied to the Pareto front solutions; from the perspective of representative solutions, this reveals the evolutionary trends of different objective trade-off schemes and overall distribution characteristics, providing deeper insight into the solution set’s distribution features. Full article
16 pages, 2576 KiB  
Article
Modeling and Spatiotemporal Analysis of Actual Evapotranspiration in a Desert Steppe Based on SEBS
by Yanlin Feng, Lixia Wang, Chunwei Liu, Baozhong Zhang, Jun Wang, Pei Zhang and Ranghui Wang
Hydrology 2025, 12(8), 205; https://doi.org/10.3390/hydrology12080205 - 6 Aug 2025
Abstract
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based [...] Read more.
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based validation that significantly enhances spatiotemporal ET accuracy in the vulnerable desert steppe ecosystems. The study utilized meteorological data from several national stations and Landsat-8 imagery to process monthly remote sensing images in 2019. The Surface Energy Balance System (SEBS) model, chosen for its ability to estimate ET over large areas, was applied to derive modeled daily ET values, which were validated by a large-weighted lysimeter. It was shown that ET varied seasonally, peaking in July at 6.40 mm/day, and reaching a minimum value in winter with 1.83 mm/day in December. ET was significantly higher in southern regions compared to central and northern areas. SEBS-derived ET showed strong agreement with lysimeter measurements, with a mean relative error of 4.30%, which also consistently outperformed MOD16A2 ET products in accuracy. This spatial heterogeneity was driven by greater vegetation coverage and enhanced precipitation in the southeast. The steppe ET showed a strong positive correlation with surface temperatures and vegetation density. Moreover, the precipitation gradients and land use were primary controllers of spatial ET patterns. The process-based SEBS frameworks demonstrate dual functionality as resource-optimized computational platforms while enabling multi-scale quantification of ET spatiotemporal heterogeneity; it was therefore a reliable tool for ecohydrological assessments in an arid steppe, providing critical insights for water resource management and drought monitoring. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

23 pages, 5773 KiB  
Article
Multi-Seasonal Risk Assessment of Hydrogen Leakage, Diffusion, and Explosion in Hydrogen Refueling Station
by Yaling Liu, Yao Zeng, Guanxi Zhao, Huarong Hou, Yangfan Song and Bin Ding
Energies 2025, 18(15), 4172; https://doi.org/10.3390/en18154172 - 6 Aug 2025
Abstract
To reveal the influence mechanisms of seasonal climatic factors (wind speed, wind direction, temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks, compressors, dispensers) in hydrogen refueling stations (HRSs), this work established [...] Read more.
To reveal the influence mechanisms of seasonal climatic factors (wind speed, wind direction, temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks, compressors, dispensers) in hydrogen refueling stations (HRSs), this work established a full-scale 1:1 three-dimensional numerical model using the FLACS v22.2 software based on the actual layout of an HRS in Xichang, Sichuan Province. Through systematic simulations of 72 leakage scenarios (3 equipment types × 4 seasons × 6 leakage directions), the coupled effects of climatic conditions, equipment layout, and leakage direction on hydrogen dispersion patterns and explosion risks were quantitatively analyzed. The key findings indicate the following: (1) Downward leaks (−Z direction) from storage tanks tend to form large-area ground-hugging hydrogen clouds, representing the highest explosion risk (overpressure peak: 0.25 barg; flame temperature: >2500 K). Leakage from compressors (±X/−Z directions) readily affects adjacent equipment. Dispenser leaks pose relatively lower risks, but specific directions (−Y direction) coupled with wind fields may drive significant hydrogen dispersion toward station buildings. (2) Southeast/south winds during spring/summer promote outward migration of hydrogen clouds, reducing overall station risk but causing localized accumulation near storage tanks. Conversely, north/northwest winds in autumn/winter intensify hydrogen concentrations in compressor and station building areas. (3) An empirical formula integrating climatic parameters, leakage conditions, and spatial coordinates was proposed to predict hydrogen concentration (error < 20%). This model provides theoretical and data support for optimizing sensor placement, dynamically adjusting ventilation strategies, and enhancing safety design in HRSs. Full article
Show Figures

Figure 1

26 pages, 14813 KiB  
Article
Application and Comparison of Satellite-Derived Sea Surface Temperature Gradients to Identify Seasonal and Interannual Variability off the California Coast: Preliminary Results and Future Perspectives
by Jorge Vazquez-Cuervo, Marisol García-Reyes, David S. Wethey, Daniele Ciani and Jose Gomez-Valdes
Remote Sens. 2025, 17(15), 2722; https://doi.org/10.3390/rs17152722 - 6 Aug 2025
Abstract
The application of satellite-derived sea surface temperature in coastal regions is critical for resolving the dynamics of frontal features and coastal upwelling. Here, we examine and compare sea surface temperature (SST) gradients derived from two satellite products, the Multi-Scale Ultra-High Resolution SST Product [...] Read more.
The application of satellite-derived sea surface temperature in coastal regions is critical for resolving the dynamics of frontal features and coastal upwelling. Here, we examine and compare sea surface temperature (SST) gradients derived from two satellite products, the Multi-Scale Ultra-High Resolution SST Product (MUR, 0.01° grid scale) and the Operational SST and Ice Analysis (OSTIA, 0.05° grid scale), available through the Group for High Resolution SST (GHRSST). Both products show similar seasonal variability, with maxima occurring in the summer time frame. Additionally, both products show an increasing trend of SST gradients near the coast. However, differences exist between the two products (maximum gradient intensities were around 0.11 and 0.06 °C/km for OSTIA and MUR, respectively). The potential contributions of both cloud cover and the collocation of the MUR SST onto the OSTIA SST grid product to these differences were examined. Spectra and coherences were examined at two specific latitudes along the coast where upwelling can occur. A major conclusion is that future work needs to focus on cloud cover and its impact on the derivation of SST in coastal regions. Future comparisons also need to apply collocation methodologies that maintain, as much as possible, the spatial variability of the high-resolution product. Full article
Show Figures

Figure 1

20 pages, 16139 KiB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Viewed by 108
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
by Lele Lin, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu and Jixin Cao
Animals 2025, 15(15), 2271; https://doi.org/10.3390/ani15152271 - 4 Aug 2025
Viewed by 52
Abstract
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. [...] Read more.
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. Our aim was to identify keystone taxa critical for avian foraging and nesting during the breeding season. We performed a network analysis linking bird species, their diets, and nest plants. Dietary components were detected using DNA metabarcoding conducted with avian fecal samples. Nest plants were identified via transect surveys. Two indices of the network, degree and weighted mean degree, were calculated to evaluate the importance of the dietary and nest plant species. We identified 13 bird host species from 107 fecal samples and 14 bird species from 107 nest observations. Based on the degree indices, fruit trees Morus and Prunus were detected as key food sources, exhibiting both the highest degree (degree = 9, 9) and weighted mean degree (lnwMD = 5.21, 4.63). Robinia pseudoacacia provided predominant nesting sites, with a predominant degree of 7. A few taxa, such as Styphnolobium japonicum and Rhamnus parvifolia, served dual ecological significance as both essential food sources and nesting substrates. Scrublands, as a unique habitat type, provided nesting sites and food for small-bodied birds. Therefore, targeted management interventions are recommended to sustain or enhance these keystone resource species and to maintain the multi-layered vertical vegetation structure to preserve the diverse habitats of birds. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

25 pages, 10827 KiB  
Article
Integrated Transcriptomic and Metabolomic Analysis Reveals Nitrogen-Mediated Delay of Premature Leaf Senescence in Red Raspberry Leaves
by Qiang Huo, Feiyang Chang, Peng Jia, Ziqian Fu, Jiaqi Zhao, Yiwen Gao, Haoan Luan, Ying Wang, Qinglong Dong, Guohui Qi and Xuemei Zhang
Plants 2025, 14(15), 2388; https://doi.org/10.3390/plants14152388 - 2 Aug 2025
Viewed by 245
Abstract
The premature senescence of red raspberry leaves severely affects plant growth. In this study, the double-season red raspberry cultivar ‘Polka’ was used, with N150 (0.10 g N·kg−1) selected as the treatment group (T150) and N0 (0 g N·kg−1 [...] Read more.
The premature senescence of red raspberry leaves severely affects plant growth. In this study, the double-season red raspberry cultivar ‘Polka’ was used, with N150 (0.10 g N·kg−1) selected as the treatment group (T150) and N0 (0 g N·kg−1) set as the control (CK). This study systematically investigated the mechanism of premature senescence in red raspberry leaves under different nitrogen application levels by measuring physiological parameters and conducting a combined multi-omics analysis of transcriptomics and metabolomics. Results showed that T150 plants had 8.34 cm greater height and 1.45 cm greater ground diameter than CK. The chlorophyll, carotenoid, soluble protein, and sugar contents in all leaf parts of T150 were significantly higher than those in CK, whereas soluble starch contents were lower. Malondialdehyde (MDA) content and superoxide anion (O2) generation rate in the lower leaves of T150 were significantly lower than those in CK. Superoxide sismutase (SOD) and peroxidase (POD) activities in the middle and lower functional leaves of T150 were higher than in CK, while catalase (CAT) activity was lower. Transcriptomic analysis identified 4350 significantly differentially expressed genes, including 2062 upregulated and 2288 downregulated genes. Metabolomic analysis identified 135 differential metabolites, out of which 60 were upregulated and 75 were downregulated. Integrated transcriptomic and metabolomic analysis showed enrichment in the phenylpropanoid biosynthesis (ko00940) and flavonoid biosynthesis (ko00941) pathways, with the former acting as an upstream pathway of the latter. A premature senescence pathway was established, and two key metabolites were identified: chlorogenic acid content decreased, and naringenin chalcone content increased in early senescent leaves, suggesting their pivotal roles in the early senescence of red raspberry leaves. Modulating chlorogenic acid and naringenin chalcone levels could delay premature senescence. Optimizing fertilization strategies may thus reduce senescence risk and enhance the productivity, profitability, and sustainability of the red raspberry industry. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 139
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 217
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

19 pages, 5891 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 - 1 Aug 2025
Viewed by 139
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
Show Figures

Figure 1

16 pages, 4272 KiB  
Article
Prediction Analysis of Integrative Quality Zones for Corydalis yanhusuo W. T. Wang Under Climate Change: A Rare Medicinal Plant Endemic to China
by Huiming Wang, Bin Huang, Lei Xu and Ting Chen
Biology 2025, 14(8), 972; https://doi.org/10.3390/biology14080972 (registering DOI) - 1 Aug 2025
Viewed by 200
Abstract
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is [...] Read more.
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is of significant practical importance for resource conservation and adaptive management. This study integrates multiple data sources, including 121 valid distribution points, 37 environmental factors, future climate scenarios (SSP126 and SSP585 pathways for the 2050s and 2090s), and measured content of tetrahydropalmatine (THP) from 22 sampling sites. A predictive framework for habitat suitability and spatial distribution of effective components was constructed using a multi-model coupling approach (MaxEnt, ArcGIS spatial analysis, and co-kriging method). The results indicate that the MaxEnt model exhibits high prediction accuracy (AUC > 0.9), with the dominant environmental factors being the precipitation of the wettest quarter (404.8~654.5 mm) and the annual average temperature (11.8~17.4 °C). Under current climatic conditions, areas of high suitability are concentrated in parts of Central and Eastern China, including the Sichuan Basin, the middle–lower Yangtze plains, and coastal areas of Shandong and Liaoning. In future climate scenarios, the center of suitable areas is predicted to shift northwestward. The content of THP is significantly correlated with the mean diurnal temperature range, temperature seasonality, and the mean temperature of the wettest quarter (p < 0.01). A comprehensive assessment identifies the Yangtze River Delta region, Central China, and parts of the Loess Plateau as the optimal integrative quality zones. This research provides a scientific basis and decision-making support for the sustainable utilization of C. yanhusuo and other rare medicinal plants in China. Full article
Show Figures

Figure 1

16 pages, 763 KiB  
Article
Estimation of Genetic Parameters for Body Weight and Its Stability in Huaxi Cows from Xinjiang Region
by Ye Feng, Wenjuan Zhao, Xubin Lu, Xue Gao, Qian Zhang, Bin Zhang, Bao Wang, Fagang Zhong, Mengli Han and Zhi Chen
Animals 2025, 15(15), 2248; https://doi.org/10.3390/ani15152248 - 31 Jul 2025
Viewed by 183
Abstract
In this study, we analyzed data from 2992 cows to comprehensively evaluate the adult weight (WEI), a key growth and body-size indicator, in West China cattle, aiming to estimate the related phenotypic and genetic parameters. The analysis focused on four weight traits while [...] Read more.
In this study, we analyzed data from 2992 cows to comprehensively evaluate the adult weight (WEI), a key growth and body-size indicator, in West China cattle, aiming to estimate the related phenotypic and genetic parameters. The analysis focused on four weight traits while considering non-genetic factors such as parity, season, year, and birth weight. Data were processed and corrected using a MIXED procedure and a multi-trait animal model. Results showed that these non-genetic factors significantly affected the weight traits (p < 0.05), which had high heritability (0.25–0.39) (p < 0.01). WEI is crucial for improving the genetic traits of cattle in western China and provides innovative approaches for optimizing herd management, enhancing the efficiency of genetic selection, and boosting beef cattle productivity. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

13 pages, 4029 KiB  
Article
Performance of CMIP6 Models in Capturing Summer Maximum Temperature Variability over China
by Sikai Liu, Juan Zhou, Jun Wen, Guobin Yang, Yangruixue Chen, Xing Li and Xiao Li
Atmosphere 2025, 16(8), 925; https://doi.org/10.3390/atmos16080925 - 30 Jul 2025
Viewed by 228
Abstract
Previous research has primarily focused on assessing seasonal mean or annual extreme climate events, whereas intraseasonal variability in extreme climate has received comparatively little attention, despite its importance for understanding short-term climate dynamics and associated risks. This study evaluates the performance of nine [...] Read more.
Previous research has primarily focused on assessing seasonal mean or annual extreme climate events, whereas intraseasonal variability in extreme climate has received comparatively little attention, despite its importance for understanding short-term climate dynamics and associated risks. This study evaluates the performance of nine climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing summer maximum temperature (Tmax) variability across China during 1979–2014, with the variability defined as the standard deviation of daily Tmax anomalies for each summer. Results show that most CMIP6 models fail to reproduce the observed north–south gradient of Tmax variability with significant regional biases and limited agreement on temporal trends. The multi-model ensemble (MME) outperforms most individual models in terms of root-mean-square error and spatial correlation, but it still under-represents the observed temporal trends, especially over southeastern and central China. Taylor diagram analysis reveals that EC-Earth3, GISS-E2-1-G, IPSL-CM6A-LR, and the MME perform relatively well in capturing the spatial characteristics of Tmax variability, whereas MIROC6 shows the poorest performance. These findings highlight the persistent limitations in simulating intraseasonal Tmax variability and underscore the need for improved model representations of regional climate dynamics over China. Full article
(This article belongs to the Special Issue Extreme Climate Events: Causes, Risk and Adaptation)
Show Figures

Figure 1

27 pages, 2978 KiB  
Article
Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Agriculture 2025, 15(15), 1627; https://doi.org/10.3390/agriculture15151627 - 27 Jul 2025
Viewed by 382
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV [...] Read more.
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

31 pages, 5037 KiB  
Article
Evaluation and Improvement of Ocean Color Algorithms for Chlorophyll-a and Diffuse Attenuation Coefficients in the Arctic Shelf
by Yubin Yao, Tao Li, Qing Xu, Xiaogang Xing, Xingyuan Zhu and Yubao Qiu
Remote Sens. 2025, 17(15), 2606; https://doi.org/10.3390/rs17152606 - 27 Jul 2025
Viewed by 445
Abstract
Arctic shelf waters exhibit high optical variability due to terrestrial inputs and elevated colored dissolved organic matter (CDOM) concentrations, posing significant challenges for the accurate retrieval of chlorophyll-a (Chl-a) and downwelling diffuse attenuation coefficients (Κd(λ) [...] Read more.
Arctic shelf waters exhibit high optical variability due to terrestrial inputs and elevated colored dissolved organic matter (CDOM) concentrations, posing significant challenges for the accurate retrieval of chlorophyll-a (Chl-a) and downwelling diffuse attenuation coefficients (Κd(λ)). These retrieval biases contribute to substantial uncertainties in estimates of primary productivity and upper-ocean heat flux in the Arctic Ocean. However, the performance and constraints of existing ocean color algorithms in Arctic shelf environments remain insufficiently characterized, particularly under seasonally variable and optically complex conditions. In this study, we present a systematic multi-year evaluation of commonly used empirical and semi-analytical ocean color algorithms across the western Arctic shelf, based on seven expeditions and 240 in situ observation stations. Building on these evaluations, regionally optimized retrieval schemes were developed to enhance algorithm performance under Arctic-specific bio-optical conditions. The proposed OCx-AS series for Chl-a and Κd-DAS models for Κd(λ) significantly reduce retrieval errors, achieving RMSE improvements of over 50% relative to global standard algorithms. Additionally, we introduce QAA-LS, a modified semi-analytical model specifically adapted for the Laptev Sea, which addresses the strong absorption effects of CDOM and corrects the significant overestimation observed in previous QAA versions. Full article
Show Figures

Graphical abstract

Back to TopTop