Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = multi-scale sliding window mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3866 KB  
Article
PALC-Net: A Partial Convolution Attention-Enhanced CNN-LSTM Network for Aircraft Engine Remaining Useful Life Prediction
by Lingrui Wu, Shikai Song, Hanfang Li, Chaozhu Hu and Youxi Luo
Electronics 2026, 15(1), 131; https://doi.org/10.3390/electronics15010131 - 27 Dec 2025
Viewed by 124
Abstract
Remaining Useful Life (RUL) prediction for aeroengines represents a core challenge in Prognostics and Health Management (PHM), with significant implications for condition-based maintenance, operational cost reduction, and flight safety enhancement. Current deep learning-based approaches encounter three major limitations when handling multi-source sensor data: [...] Read more.
Remaining Useful Life (RUL) prediction for aeroengines represents a core challenge in Prognostics and Health Management (PHM), with significant implications for condition-based maintenance, operational cost reduction, and flight safety enhancement. Current deep learning-based approaches encounter three major limitations when handling multi-source sensor data: conventional convolution operations struggle to model heterogeneous sensor feature distributions, leading to computational redundancy; simplistic multimodal fusion strategies often induce semantic conflicts; and high model complexity hinders industrial deployment. To address these issues, this paper proposes a novel Partial Convolution Attention-enhanced CNN-LSTM Network (PALC-Net). We introduce a partial convolution mechanism that applies convolution to only half of the input channels while preserving identity mappings for the remainder. This design retains representational power while substantially lowering computational overhead. A dual-branch feature extraction architecture is developed: the temporal branch employs a PConv-CNN-LSTM architecture to capture spatio-temporal dependencies, while the statistical branch utilizes multi-scale sliding windows to extract physical degradation indicators—such as mean, standard deviation, and trend. Additionally, an adaptive fusion module based on cross-attention is designed, where heterogeneous features are projected into a unified semantic space via Query-Key-Value mappings. A sigmoid gating mechanism is incorporated to enable dynamic weight allocation, effectively mitigating inter-modal conflicts. Extensive experiments on the NASA C-MAPSS dataset demonstrate that PALC-Net achieves state-of-the-art performance across all four subsets. Notably, on the FD003 subset, it attains an MAE of 7.70 and an R2 of 0.9147, significantly outperforming existing baselines. Ablation studies validate the effectiveness and synergistic contributions of the partial convolution, attention mechanism, and multimodal fusion modules. This work offers an accurate and efficient solution for aeroengine RUL prediction, achieving an effective balance between engineering practicality and algorithmic sophistication. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

25 pages, 12611 KB  
Article
Crop Row Line Detection for Rapeseed Seedlings in Complex Environments Based on Improved BiSeNetV2 and Dynamic Sliding Window Fitting
by Wanjing Dong, Rui Wang, Fanguo Zeng, Youming Jiang, Yang Zhang, Qingyang Shi, Zhendong Liu and Wei Xu
Agriculture 2026, 16(1), 23; https://doi.org/10.3390/agriculture16010023 - 21 Dec 2025
Viewed by 247
Abstract
Crop row line detection is essential for precision agriculture, supporting autonomous navigation, field management, and growth monitoring. To address the low detection accuracy of rapeseed seedling rows under complex field conditions, this study proposes a detection framework that integrates an improved BiSeNetV2 with [...] Read more.
Crop row line detection is essential for precision agriculture, supporting autonomous navigation, field management, and growth monitoring. To address the low detection accuracy of rapeseed seedling rows under complex field conditions, this study proposes a detection framework that integrates an improved BiSeNetV2 with a dynamic sliding-window fitting strategy. The improved BiSeNetV2 incorporates the Efficient Channel Attention (ECA) mechanism to strengthen crop-specific feature representation, an Atrous Spatial Pyramid Pooling (ASPP) decoder to improve multi-scale perception, and Depthwise Separable Convolutions (DS Conv) in the Detail Branch to reduce model complexity while preserving accuracy. After semantic segmentation, a Gaussian-filtered vertical projection method is applied to identify crop-row regions by locating density peaks. A dynamic sliding-window algorithm is then used to extract row trajectories, with the window size adaptively determined by the row width and the sliding process incorporating both a lateral inertial-drift strategy and a dynamically adjusted longitudinal step size. Finally, variable-order polynomial fitting is performed within each crop-row region to achieve precise extraction of the crop-row lines. Experimental results indicate that the improved BiSeNetV2 model achieved a Mean Pixel Accuracy (mPA) of 87.73% and a Mean Intersection over Union (MIoU) of 79.40% on the rapeseed seedling dataset, marking improvements of 9.98% and 8.56%, respectively, compared to the original BiSeNetV2. The crop row detection performance for rapeseed seedlings under different environmental conditions demonstrated that the Curve Fitting Coefficient (CFC), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) were 0.85, 1.57, and 1.27 pixels on sunny days; 0.86, 2.05 and 1.63 pixels on cloudy days; 0.74, 2.89, and 2.22 pixels on foggy days; and 0.76, 1.38, and 1.11 pixels during the evening, respectively. The results reveal that the improved BiSeNetV2 can effectively identify rapeseed seedlings, and the detection algorithm can identify crop row lines in various complex environments. This research provides methodological support for crop row line detection in precision agriculture. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 3829 KB  
Article
Air Pollutant Concentration Prediction Using a Generative Adversarial Network with Multi-Scale Convolutional Long Short-Term Memory and Enhanced U-Net
by Jiankun Zhang, Pei Su, Juexuan Wang and Zhantong Cai
Sustainability 2025, 17(24), 11177; https://doi.org/10.3390/su172411177 - 13 Dec 2025
Viewed by 469
Abstract
Accurate prediction of air pollutant concentrations, particularly fine particulate matter (PM2.5), is essential for controlling and preventing heavy pollution incidents by providing early warnings of harmful substances in the atmosphere. This study proposes a novel spatiotemporal model for PM2.5 concentration [...] Read more.
Accurate prediction of air pollutant concentrations, particularly fine particulate matter (PM2.5), is essential for controlling and preventing heavy pollution incidents by providing early warnings of harmful substances in the atmosphere. This study proposes a novel spatiotemporal model for PM2.5 concentration prediction based on a Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (CWGAN-GP). The framework incorporates three key design components: First, the generator employs an Inception-style Convolutional Long Short-Term Memory (ConvLSTM) network, integrating parallel multi-scale convolutions and hierarchical normalization. This design enhances multi-scale spatiotemporal feature extraction while effectively suppressing boundary artifacts via a map-masking layer. Second, the discriminator adopts an architecturally enhanced U-Net, incorporating spectral normalization and shallow instance normalization. Feature-guided masked skip connections are introduced, and the output is designed as a raw score map to mitigate premature saturation during training. Third, a composite loss function is utilized, combining adversarial loss, feature-matching loss, and inter-frame spatiotemporal smoothness. A sliding-window conditioning mechanism is also implemented, leveraging multi-level features from the discriminator for joint spatiotemporal optimization. Experiments conducted on multi-source gridded data from Dongguan demonstrate that the model achieves a 12 h prediction performance with a Root Mean Square Error (RMSE) of 4.61 μg/m3, a Mean Absolute Error (MAE) of 6.42 μg/m3, and a Coefficient of Determination (R2) of 0.80. The model significantly alleviates performance degradation in long-term predictions when the forecast horizon is extended from 3 to 12 h, the RMSE increases by only 1.84 μg/m3, and regional deviations remain within ±3 μg/m3. These results indicate strong capabilities in spatial topology reconstruction and robustness against concentration anomalies, highlighting the model’s potential for hyperlocal air quality early warning. It should be noted that the empirical validation is limited to the specific environmental conditions of Dongguan, and the model’s generalizability to other geographical and climatic settings requires further investigation. Full article
(This article belongs to the Special Issue Atmospheric Pollution and Microenvironmental Air Quality)
Show Figures

Figure 1

23 pages, 2768 KB  
Article
PSO–BiLSTM–Attention: An Interpretable Deep Learning Model Optimized by Particle Swarm Optimization for Accurate Ischemic Heart Disease Incidence Forecasting
by Ruihang Zhang, Shiyao Wang, Wei Sun and Yanming Huo
Bioengineering 2025, 12(12), 1343; https://doi.org/10.3390/bioengineering12121343 - 9 Dec 2025
Viewed by 417
Abstract
Ischemic heart disease (IHD) remains the predominant cause of global mortality, necessitating accurate incidence forecasting for effective prevention strategies. Existing statistical models inadequately capture nonlinear epidemiological patterns, while deep learning approaches lack clinical interpretability. We constructed an interpretable predictive framework combining particle swarm [...] Read more.
Ischemic heart disease (IHD) remains the predominant cause of global mortality, necessitating accurate incidence forecasting for effective prevention strategies. Existing statistical models inadequately capture nonlinear epidemiological patterns, while deep learning approaches lack clinical interpretability. We constructed an interpretable predictive framework combining particle swarm optimization (PSO), bidirectional long short-term memory (BiLSTM) networks, and a novel multi-scale attention mechanism. Age-standardized incidence rates (ASIRs) from the Global Burden of Disease (GBD) 2021 database (1990–2021) were stratified across 24 sex-age subgroups and processed through 10-year sliding windows with advanced feature engineering. SHapley Additive exPlanations (SHAP) provided a three-level interpretability analysis (global, local, and component). The framework achieved superior performance metrics: mean absolute error (MAE) of 0.0164, root mean squared error (RMSE) of 0.0206, and R2 of 0.97, demonstrating a 93.96% MAE reduction compared to ARIMA models and a 75.99% improvement over CNN–BiLSTM architectures. SHAP analysis identified females aged 60–64 years and males aged 85–89 years as primary predictive contributors. Architectural analysis revealed the residual connection captured 71.0% of the predictive contribution (main trends), while the BiLSTM–Attention pathway captured 29.0% (complex nonlinear patterns). This interpretable framework transforms opaque algorithms into transparent systems, providing precise epidemiological evidence for public health policy, resource allocation, and targeted intervention strategies for high-risk populations. Full article
Show Figures

Figure 1

32 pages, 13372 KB  
Article
Adaptive Multimodal Time–Frequency Feature Fusion for Tool Wear Recognition Based on SSA-Optimized Wavelet Transform
by Zhedong Xie, Chao Zhang, Siyang Gao, Yuxuan Liu, Yingbo Li, Bing Tian and Hongyu Guo
Machines 2025, 13(12), 1077; https://doi.org/10.3390/machines13121077 - 21 Nov 2025
Viewed by 1999
Abstract
Accurate identification of tool wear states is crucial for ensuring machining quality and reliability. However, non-stationary signal characteristics, feature coupling, and limited use of multimodal information remain major challenges. This study proposes a hybrid framework that integrates a Sparrow Search Algorithm–optimized Continuous Wavelet [...] Read more.
Accurate identification of tool wear states is crucial for ensuring machining quality and reliability. However, non-stationary signal characteristics, feature coupling, and limited use of multimodal information remain major challenges. This study proposes a hybrid framework that integrates a Sparrow Search Algorithm–optimized Continuous Wavelet Transform (SSA-CWT) with a Cross-Modal Time–Frequency Fusion Network (TFF-Net). The SSA-CWT adaptively adjusts Morlet wavelet parameters to enhance energy concentration and suppress noise, generating more discriminative time–frequency representations. TFF-Net further fuses cutting force and vibration signals through a sliding-window multi-head cross-modal attention mechanism, enabling effective multi-scale feature alignment. Experiments on the PHM2010 dataset show that the proposed model achieves classification accuracies of 100%, 98.7%, and 98.7% for initial, normal, and severe wear stages, with F1-score, recall, and precision all exceeding 98%. Ablation results confirm the contributions of SSA optimization and cross-modal fusion. External validation on the HMoTP dataset demonstrates strong generalization across different machining conditions. Overall, the proposed approach provides a reliable and robust solution for intelligent tool condition monitoring. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

26 pages, 3916 KB  
Article
Multi-Length Prediction of the Drilling Rate of Penetration Based on TCN–Informer
by Jun Sun, Wendi Huang, Lin Du, Qianyu Yang, Bowen Deng and Xiqiao Chen
Electronics 2025, 14(22), 4538; https://doi.org/10.3390/electronics14224538 - 20 Nov 2025
Viewed by 380
Abstract
The Rate of Penetration (ROP) during drilling is nonstationary and exhibits coupled local fluctuations, which makes it challenging to model for accurate prediction. To address the challenge of modeling multi-scale temporal dependencies in drilling, this study introduces a hybrid TCN–Informer framework. It integrates [...] Read more.
The Rate of Penetration (ROP) during drilling is nonstationary and exhibits coupled local fluctuations, which makes it challenging to model for accurate prediction. To address the challenge of modeling multi-scale temporal dependencies in drilling, this study introduces a hybrid TCN–Informer framework. It integrates the causal dilated Temporal Convolutional Network (TCN) for capturing short-term patterns with the Informer’s ProbSparse attention mechanism for modeling long-range dependencies. A comprehensive methodology is adopted, which includes a four-stage data preprocessing pipeline featuring per-well z-score standardization and label concatenation, a sliding-window training scheme to address cold-start issues, and an Optuna-based Bayesian search for hyperparameter optimization. The prediction performance of the models was evaluated across various input sequence lengths using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2). The results show that the proposed TCN–Informer demonstrates superior performance compared to Informer, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Transformer. Furthermore, the predictions of the TCN–Informer respond more rapidly to abrupt changes in the ROP and yield smoother, more stable results during intervals of stable ROP, validating its effectiveness in capturing both local and global temporal patterns. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications, 2nd Edition)
Show Figures

Figure 1

30 pages, 7150 KB  
Article
Research on Gas Pipeline Leakage Prediction Model Based on Physics-Aware GL-TransLSTM
by Chunjiang Wu, Haoyu Lu, Dianming Liu, Chen Wang, Jianhong Gan and Zhibin Li
Biomimetics 2025, 10(11), 743; https://doi.org/10.3390/biomimetics10110743 - 5 Nov 2025
Cited by 1 | Viewed by 644
Abstract
Natural gas pipeline leak monitoring suffers from severe environmental noise, non-stationary signals, and complex multi-source variable couplings, limiting prediction accuracy and robustness. Inspired by biological perceptual systems, particularly their multimodal integration and dynamic attention allocation, we propose GL-TransLSTM, a biomimetic hybrid deep learning [...] Read more.
Natural gas pipeline leak monitoring suffers from severe environmental noise, non-stationary signals, and complex multi-source variable couplings, limiting prediction accuracy and robustness. Inspired by biological perceptual systems, particularly their multimodal integration and dynamic attention allocation, we propose GL-TransLSTM, a biomimetic hybrid deep learning model. It synergistically combines Transformer’s global self-attention (emulating selective focus) and LSTM’s gated memory (mimicking neural temporal retention). The architecture incorporates a multimodal fusion pipeline; raw sensor data are first decomposed via CEEMDAN to extract multi-scale features, then processed by an enhanced LSTM-Transformer backbone. A novel physics-informed gated attention mechanism embeds gas diffusion dynamics into attention weights, while an adaptive sliding window adjusts temporal granularity. This study makes evaluations on an industrial dataset with methane concentration, temperature, and pressure, GL-TransLSTM achieves 99.93% accuracy, 99.86% recall, and 99.89% F1-score, thereby significantly outperforming conventional LSTM and Transformer-LSTM baselines. Experimental results demonstrate that the proposed biomimetic framework substantially enhances modeling capacity and generalization for non-stationary signals in noisy and complex industrial environments through multi-scale fusion, physics-guided learning, and bio-inspired architectural synergy. Full article
Show Figures

Figure 1

19 pages, 2431 KB  
Article
Predicting the Remaining Service Life of Power Transformers Using Machine Learning
by Zimo Gao, Binkai Yu, Jiahe Guang, Shanghua Jiang, Xinze Cong, Minglei Zhang and Lin Yu
Processes 2025, 13(11), 3459; https://doi.org/10.3390/pr13113459 - 28 Oct 2025
Viewed by 955
Abstract
In response to the insufficient adaptability of power transformer remaining useful life (RUL) prediction under complex working conditions and the difficulty of multi-scale feature fusion, this study proposes an industrial time series prediction model based on the parallel Transformer–BiGRU–GlobalAttention model. The parallel Transformer [...] Read more.
In response to the insufficient adaptability of power transformer remaining useful life (RUL) prediction under complex working conditions and the difficulty of multi-scale feature fusion, this study proposes an industrial time series prediction model based on the parallel Transformer–BiGRU–GlobalAttention model. The parallel Transformer encoder captures long-range temporal dependencies, the BiGRU network enhances local sequence associations through bidirectional modeling, the global attention mechanism dynamically weights key temporal features, and cross-attention achieves spatiotemporal feature interaction and fusion. Experiments were conducted based on the public ETT transformer temperature dataset, employing sliding window and piecewise linear label processing techniques, with MAE, MSE, and RMSE as evaluation metrics. The results show that the model achieved excellent predictive performance on the test set, with an MSE of 0.078, MAE of 0.233, and RMSE of 11.13. Compared with traditional LSTM, CNN-BiGRU-Attention, and other methods, the model achieved improvements of 17.2%, 6.0%, and 8.9%, respectively. Ablation experiments verified that the global attention mechanism rationalizes the feature contribution distribution, with the core temporal feature OT having a contribution rate of 0.41. Multiple experiments demonstrated that this method has higher precision compared with other methods. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

42 pages, 104137 KB  
Article
A Hierarchical Absolute Visual Localization System for Low-Altitude Drones in GNSS-Denied Environments
by Qing Zhou, Haochen Tang, Zhaoxiang Zhang, Yuelei Xu, Feng Xiao and Yulong Jia
Remote Sens. 2025, 17(20), 3470; https://doi.org/10.3390/rs17203470 - 17 Oct 2025
Cited by 1 | Viewed by 2466
Abstract
Current drone navigation systems primarily rely on Global Navigation Satellite Systems (GNSSs), but their signals are susceptible to interference, spoofing, or suppression in complex environments, leading to degraded positioning performance or even failure. To enhance the positioning accuracy and robustness of low-altitude drones [...] Read more.
Current drone navigation systems primarily rely on Global Navigation Satellite Systems (GNSSs), but their signals are susceptible to interference, spoofing, or suppression in complex environments, leading to degraded positioning performance or even failure. To enhance the positioning accuracy and robustness of low-altitude drones in satellite-denied environments, this paper investigates an absolute visual localization solution. This method achieves precise localization by matching real-time images with reference images that have absolute position information. To address the issue of insufficient feature generalization capability due to the complex and variable nature of ground scenes, a visual-based image retrieval algorithm is proposed, which utilizes a fusion of shallow spatial features and deep semantic features, combined with generalized average pooling to enhance feature representation capabilities. To tackle the registration errors caused by differences in perspective and scale between images, an image registration algorithm based on cyclic consistency matching is designed, incorporating a reprojection error loss function, a multi-scale feature fusion mechanism, and a structural reparameterization strategy to improve matching accuracy and inference efficiency. Based on the above methods, a hierarchical absolute visual localization system is constructed, achieving coarse localization through image retrieval and fine localization through image registration, while also integrating IMU prior correction and a sliding window update strategy to mitigate the effects of scale and rotation differences. The system is implemented on the ROS platform and experimentally validated in a real-world environment. The results show that the localization success rates for the h, s, v, and w trajectories are 95.02%, 64.50%, 64.84%, and 91.09%, respectively. Compared to similar algorithms, it demonstrates higher accuracy and better adaptability to complex scenarios. These results indicate that the proposed technology can achieve high-precision and robust absolute visual localization without the need for initial conditions, highlighting its potential for application in GNSS-denied environments. Full article
Show Figures

Graphical abstract

26 pages, 5742 KB  
Article
Multiscale Time Series Modeling in Energy Demand Prediction: A CWT-Aided Hybrid Model
by Elif Sezer, Güngör Yıldırım and Mahmut Temel Özdemir
Appl. Sci. 2025, 15(19), 10801; https://doi.org/10.3390/app151910801 - 8 Oct 2025
Cited by 1 | Viewed by 1204
Abstract
In the contemporary energy landscape, the increasing demand for electricity and the inherent uncertainties associated with the integration of renewable resources have rendered the accurate and reliable forecasting of short- and long-term demand imperative. Energy demand forecasting, fundamentally a time series problem, can [...] Read more.
In the contemporary energy landscape, the increasing demand for electricity and the inherent uncertainties associated with the integration of renewable resources have rendered the accurate and reliable forecasting of short- and long-term demand imperative. Energy demand forecasting, fundamentally a time series problem, can be inherently complex, nonlinear, and multi-scale. Therefore, interest in artificial intelligence–based methods that provide high performance for short- and long-term forecasting, rather than traditional methods, has increased in order to solve these problems. In this study, a hybrid artificial intelligence model based on LSTM, GRU, and Random Forest, utilizing a distinct mechanism to address these types of problems, is proposed. The Multi-Scale Sliding Window (MSSW) approach was utilized for the model’s input data to capture the dynamics of the time series at different scales. The optimization of windows was conducted using the Continuous Wavelet Transform (CWT) method to determine the optimal window sizes within the MSSW structure in a data-driven manner. Experimental studies on Panama’s real energy demand data from 2015 to 2020 show that the CWT-aided MSSW-hybrid model forecasts better with lower error rates (0.007 MAE, 0.009 RMSE, 1.051% MAPE) than single models and manually determined window sizes. The results of the study demonstrate the importance of hybrid structures and window optimization in energy demand forecasting. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

21 pages, 5171 KB  
Article
FDBRP: A Data–Model Co-Optimization Framework Towards Higher-Accuracy Bearing RUL Prediction
by Muyu Lin, Qing Ye, Shiyue Na, Dongmei Qin, Xiaoyu Gao and Qiang Liu
Sensors 2025, 25(17), 5347; https://doi.org/10.3390/s25175347 - 28 Aug 2025
Cited by 2 | Viewed by 875
Abstract
This paper proposes Feature fusion and Dilated causal convolution model for Bearing Remaining useful life Prediction (FDBRP), an integrated framework for accurate Remaining Useful Life (RUL) prediction of rolling bearings that combines three key innovations: (1) a data augmentation module employing sliding-window processing [...] Read more.
This paper proposes Feature fusion and Dilated causal convolution model for Bearing Remaining useful life Prediction (FDBRP), an integrated framework for accurate Remaining Useful Life (RUL) prediction of rolling bearings that combines three key innovations: (1) a data augmentation module employing sliding-window processing and two-dimensional feature concatenation with label normalization to enhance signal representation and improve model generalizability, (2) a feature fusion module incorporating an enhanced graph convolutional network for spatial modeling, an improved multi-scale temporal convolution for dynamic pattern extraction, and an efficient multi-scale attention mechanism to optimize spatiotemporal feature consistency, and (3) an optimized dilated convolution module utilizing interval sampling to expand the receptive field, and combines the residual connection structure to realize the regularization of the neural network and enhance the ability of the model to capture long-range dependencies. Experimental validation showcases the effectiveness of proposed approach, achieving a high average score of 0.756564 and demonstrating a lower average error of 10.903656 in RUL prediction for test bearings compared to state-of-the-art benchmarks. This highlights the superior RUL prediction capability of the proposed methodology. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

15 pages, 3095 KB  
Article
Improved YOLOv8n Method for the High-Precision Detection of Cotton Diseases and Pests
by Jiakuan Huang and Wei Huang
AgriEngineering 2025, 7(7), 232; https://doi.org/10.3390/agriengineering7070232 - 11 Jul 2025
Cited by 1 | Viewed by 1237
Abstract
Accurate detection of cotton pests and diseases is essential for agricultural productivity yet remains challenging due to complex field environments, the small size of pests and diseases, and significant occlusions. To address the challenges presented by these factors, a novel cotton disease and [...] Read more.
Accurate detection of cotton pests and diseases is essential for agricultural productivity yet remains challenging due to complex field environments, the small size of pests and diseases, and significant occlusions. To address the challenges presented by these factors, a novel cotton disease and pest detection method is proposed. This method builds upon the YOLOv8 baseline model and incorporates a Multi-Scale Sliding Window Attention Module (MSFE) within the backbone architecture to enhance feature extraction capabilities specifically for small targets. Furthermore, a Depth-Separable Dilated Convolution Module (C2f-DWR) is designed to replace the existing C2f module in the neck of the network. By employing varying dilation rates, this modification effectively expands the receptive field and alleviates the loss of detailed information associated with the downsampling processes. In addition, a Multi-Head Attention Detection Head (MultiSEAMDetect) is introduced to supplant the original detection head. This new head utilizes diverse patch sizes alongside adaptive average pooling mechanisms, thereby enabling the model to adjust its responses in accordance with varying contextual scenarios, which significantly enhances its ability to manage occlusion during detection. For the purpose of experimental validation, a dedicated dataset for cotton disease and pest detection was developed. In this dataset, the improved model’s mAP50 and mAP50:95 increased from 73.4% and 46.2% to 77.2% and 48.6%, respectively, compared to the original YOLOv8 algorithm. Validation on two Kaggle datasets showed that mAP50 rose from 92.1% and 97.6% to 93.2% and 97.9%, respectively. Meanwhile, mAP50:95 improved from 86% and 92.5% to 87.1% and 93.5%. These findings provide compelling evidence of the superiority of the proposed algorithm. Compared to other advanced mainstream algorithms, it exhibits higher accuracy and recall, indicating that the improved algorithm performs better in the task of cotton pest and disease detection. Full article
Show Figures

Figure 1

22 pages, 9548 KB  
Article
A BiGRUSA-ResSE-KAN Hybrid Deep Learning Model for Day-Ahead Electricity Price Prediction
by Nan Yang, Guihong Bi, Yuhong Li, Xiaoling Wang, Zhao Luo and Xin Shen
Symmetry 2025, 17(6), 805; https://doi.org/10.3390/sym17060805 - 22 May 2025
Cited by 1 | Viewed by 922
Abstract
In the context of the clean and low-carbon transformation of power systems, addressing the challenge of day-ahead electricity market price prediction issues triggered by the strong stochastic volatility of power supply output due to high-penetration renewable energy integration, as well as problems such [...] Read more.
In the context of the clean and low-carbon transformation of power systems, addressing the challenge of day-ahead electricity market price prediction issues triggered by the strong stochastic volatility of power supply output due to high-penetration renewable energy integration, as well as problems such as limited dataset scales and short market cycles in test sets associated with existing electricity price prediction methods, this paper introduced an innovative prediction approach based on a multi-modal feature fusion and BiGRUSA-ResSE-KAN deep learning model. In the data preprocessing stage, maximum–minimum normalization techniques are employed to process raw electricity price data and exogenous variable data; the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) methods are utilized for multi-modal decomposition of electricity price data to construct a multi-scale electricity price component matrix; and a sliding window mechanism is applied to segment time-series data, forming a three-dimensional input structure for the model. In the feature extraction and prediction stage, the BiGRUSA-ResSE-KAN multi-branch integrated network leverages the synergistic effects of gated recurrent units combined with residual structures and attention mechanisms to achieve deep feature fusion of multi-source heterogeneous data and model complex nonlinear relationships, while further exploring complex coupling patterns in electricity price fluctuations through the knowledge-adaptive network (KAN) module, ultimately outputting 24 h day-ahead electricity price predictions. Finally, verification experiments conducted using test sets spanning two years from five major electricity markets demonstrate that the introduced method effectively enhances the accuracy of day-ahead electricity price prediction, exhibits good applicability across different national electricity markets, and provides robust support for electricity market decision making. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

25 pages, 8000 KB  
Article
A Diagnosis Method for Noise and Intermittent Faults in Analog Circuits Based on the Fusion of Multiscale Fuzzy Entropy Features and Amplitude Features
by Junyou Shi, Yilei Hou, Zili Wang, Zhilin Yang and Zhenyang Lv
Sensors 2025, 25(4), 1090; https://doi.org/10.3390/s25041090 - 12 Feb 2025
Cited by 3 | Viewed by 2355
Abstract
Intermittent faults occur randomly, last for short durations, and ultimately lead to permanent failures, threatening the safety and stability of analog circuits. Additionally, these faults are often hard to differentiate from noise-induced anomalies, resulting in incorrect disassembly and complicating circuit maintenance. To address [...] Read more.
Intermittent faults occur randomly, last for short durations, and ultimately lead to permanent failures, threatening the safety and stability of analog circuits. Additionally, these faults are often hard to differentiate from noise-induced anomalies, resulting in incorrect disassembly and complicating circuit maintenance. To address these challenges, we propose a novel fault diagnosis method. The method uses an adjustable sliding window to extract multiscale fuzzy entropy features, mitigating the impact of normal data on entropy calculations for intermittent faults. The coarse granulation strategy of sliding point by point is applied to avoid information loss in short time series. The raw signal is then segmented and transformed into four statistical features, which are fused into comprehensive amplitude features via a self-attention mechanism. This comprehensive feature better captures amplitude variations than individual statistical features. Finally, the two features are fed into a convolutional neural network for diagnosis. The method is applied to two typical analog circuits. Ablation studies confirmed its effectiveness. Although the proposed method does not have the lowest diagnostic cost and the fastest detection time, the differences with state-of-the-art methods are minimal, and the proposed method achieves higher classification accuracy. Taken together, these findings demonstrate the superiority of the proposed method. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 1375 KB  
Article
MSDG: Multi-Scale Dynamic Graph Neural Network for Industrial Time Series Anomaly Detection
by Zhilei Zhao, Zhao Xiao and Jie Tao
Sensors 2024, 24(22), 7218; https://doi.org/10.3390/s24227218 - 12 Nov 2024
Cited by 6 | Viewed by 6787
Abstract
A large number of sensors are typically installed in industrial plants to collect real-time operational data. These sensors monitor data with time series correlation and spatial correlation over time. In previous studies, GNN has built many successful models to deal with time series [...] Read more.
A large number of sensors are typically installed in industrial plants to collect real-time operational data. These sensors monitor data with time series correlation and spatial correlation over time. In previous studies, GNN has built many successful models to deal with time series data, but most of these models have fixed perspectives and struggle to capture the dynamic correlations in time and space simultaneously. Therefore, this paper constructs a multi-scale dynamic graph neural network (MSDG) for anomaly detection in industrial sensor data. First, a multi-scale sliding window mechanism is proposed to input different scale sensor data into the corresponding network. Then, a dynamic graph neural network is constructed to capture the spatial–temporal dependencies of multivariate sensor data. Finally, the model comprehensively considers the extracted features for sequence reconstruction and utilizes the reconstruction errors for anomaly detection. Experiments have been conducted on three real public datasets, and the results show that the proposed method outperforms the mainstream methods. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop