Background: This narrative review examines the role of artificial intelligence (AI) in bowel sound analysis for the diagnosis and management of inflammatory bowel disease (IBD). Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, presents a significant clinical burden due to its unpredictable course, variable symptomatology, and reliance on invasive procedures for diagnosis and disease monitoring. Despite advances in imaging and biomarkers, tools such as colonoscopy and fecal calprotectin remain costly, uncomfortable, and impractical for frequent or real-time assessment. Meanwhile, bowel sounds—an overlooked physiologic signal—reflect underlying gastrointestinal motility and inflammation but have historically lacked objective quantification. With recent advances in artificial intelligence (AI) and acoustic signal processing, there is growing interest in leveraging bowel sound analysis as a novel, non-invasive biomarker for detecting IBD, monitoring disease activity, and predicting disease flares. This approach holds the promise of continuous, low-cost, and patient-friendly monitoring, which could transform IBD management. Objectives: This narrative review assesses the clinical utility, methodological rigor, and potential future integration of artificial intelligence (AI)-driven bowel sound analysis in inflammatory bowel disease (IBD), with a focus on its potential as a non-invasive biomarker for disease activity, flare prediction, and differential diagnosis. Methods: This manuscript reviews the potential of AI-powered bowel sound analysis as a non-invasive tool for diagnosing, monitoring, and managing inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Traditional diagnostic methods, such as colonoscopy and biomarkers, are often invasive, costly, and impractical for real-time monitoring. The manuscript explores bowel sounds, which reflect gastrointestinal motility and inflammation, as an alternative biomarker by utilizing AI techniques like convolutional neural networks (CNNs), transformers, and gradient boosting. We analyze data on acoustic signal acquisition (e.g., smart T-shirts, smartphones), signal processing methodologies (e.g., MFCCs, spectrograms, empirical mode decomposition), and validation metrics (e.g., accuracy, F1 scores, AUC). Studies were assessed for clinical relevance, methodological rigor, and translational potential. Results: Across studies enrolling 16–100 participants, AI models achieved diagnostic accuracies of 88–96%, with AUCs ≥ 0.83 and F1 scores ranging from 0.71 to 0.85 for differentiating IBD from healthy controls and IBS. Transformer-based approaches (e.g., HuBERT, Wav2Vec 2.0) consistently outperformed CNNs and tabular models, yielding F1 scores of 80–85%, while gradient boosting on wearable multi-microphone recordings demonstrated robustness to background noise. Distinct acoustic signatures were identified, including prolonged sound-to-sound intervals in Crohn’s disease (mean 1232 ms vs. 511 ms in IBS) and high-pitched tinkling in stricturing phenotypes. Despite promising performance, current models remain below established biomarkers such as fecal calprotectin (~90% sensitivity for active disease), and generalizability is limited by small, heterogeneous cohorts and the absence of prospective validation. Conclusions: AI-powered bowel sound analysis represents a promising, non-invasive tool for IBD monitoring. However, widespread clinical integration requires standardized data acquisition protocols, large multi-center datasets with clinical correlates, explainable AI frameworks, and ethical data governance. Future directions include wearable-enabled remote monitoring platforms and multi-modal decision support systems integrating bowel sounds with biomarker and symptom data. This manuscript emphasizes the need for large-scale, multi-center studies, the development of explainable AI frameworks, and the integration of these tools within clinical workflows. Future directions include remote monitoring using wearables and multi-modal systems that combine bowel sounds with biomarkers and patient symptoms, aiming to transform IBD care into a more personalized and proactive model.
Full article